MgH 分子 $X^2 \Sigma^+$, $A^2 \Pi$ 和 $B^2 \Sigma^+$ 电子态的势能函数 *

1 ∭四川大学原子与分子物理研究所,成都 610065)
 2 ∭贵州师范大学理学院,贵阳 550001)
 (2007年5月6日收到 2007年6月4日收到修改稿)

利用 QCISI(T) SAC-CI 方法和 cc-pVQZ .aug-cc-pVTZ 6-311 ++ G 及 6-311 ++ Q 3df 2pd)基组,对 MgH 分子的基态 $X^2 \Sigma^+$ 第一简并激发态 $A^2 \Pi$ 和第二激发态 $B^2 \Sigma^+$ 的结构进行优化计算.通过对 4 个基组计算结果进行比较,得出 6-311 ++ Q 3df 2pd)基组为最优基组.使用 6-311 ++ Q 3df 2pd)基组和 QCISI(T)方法对基态 $X^2 \Sigma^+$ SAC-CI 方法 对激发态 $A^2 \Pi$ 和 $B^2 \Sigma^+$ 进行单点能扫描计算,然后采用 Murrell-Sorbie 函数及修正的 Murrell-Sorbie + C_6 函数进行拟合,得到了相应电子态的势能函数参数和对应的光谱常数.计算结果表明,用修正的 Murrell-Sorbie + C_6 函数计算得到的 MgH 分子基态和第一简并激发态的光谱常数 ω_e , $\omega_e x_e$, B_e , α_e 与实验数据吻合很好.表明修正后的 Murrell-Sorbie + C_6 函数能更为准确地描述 MgH 分子的基态和第一激发态的势能函数。

关键词:分子结构与势能函数,激发态,Murrell-Sorbie 函数,Murrell-Sorbie + C_6 函数 PACC: 3520G, 3410

1.引 言

势能函数既是分子的几何与电子结构的完全描述^[12],又是研究分子反应动力学的关键^[3-5].双原 子分子势能函数是构造多原子分子全空间势能函数 的基础.因此,理论计算导出双原子分子基态与低激 发态的势能函数是较重要的研究课题^{(~8]}.

MgH分子及其辐射在地球大气及其他星体周 围都普遍存在,它在天体物理学等领域有相当的重 要性^[9],并且 Mg 及镁氢化物具有储氢量高、质量 轻、成本低、无污染、资源丰富和便于输运等综合优 势,有望作为最有发展前景的氢能载体材料而备受 人们广泛重视^[10-12],因此研究 MgH 分子具有重要 意义.人们对 MgH 分子已经通过不同方法进行了广 泛研究^[9,13],特别是近年来人们从理论和实验上对 MgH 分子的平衡核间距、振动频率、离解能及电子态 的振动和转动光谱常数开展了进一步的研究^[14].但 研究 MgH 分子激发态的势能函数 还未见文献报道.

SAC-CI 是 Gaussian03 程序中计算激发态的一种 新方法,谢安东等^[15]利用 SAC-CI 方法对 BF 分子的 $X^{1}\Sigma^{+}$, $A^{1}\Pi$ 和 $B^{1}\Sigma^{+}$ 电子态的分子结构和光谱数据 做了计算,计算结果与实验结果符合得很好,本文在 简要推导 MgH 分子各电子态的离解极限后,利用 QCISD(T)和 SAC-CI 方法计算并讨论了 cc-pVQZ, aug-cc-pVTZ 6-311 ++ G和 6-311 ++ C(3df ,2pd)基组 对 MgH 分子基态 $X^2 \Sigma^+$,第一简并激发态 $A^2 \Pi$ 和第 二激发态 $B^2\Sigma^+$ 的平衡核间距和能量的影响 ,使用 优选出的 6-311 ++ Q 3df ,2pd)基组 ,用 QCISD(T)方 法对基态、SAC-CI 方法对激发态进行单点能扫描计 算 然后采用 Murrell-Sorbie 函数及修正的 Murrell-Sorbie + C_6 函数^[16]进行拟合得到了相应电子态的完 整势能函数 ,并计算了 MgH 分子基态 ,第一简并激 发态和第二激发态的光谱常数.计算结果表明,用修 正的 Murrell-Sorbie + C₆ 函数计算得到的 MgH 分子 的基态和第一简并激发态的光谱常数 $\omega_{e}, \omega_{e} x_{e}, B_{e}$,

^{*} 国家自然科学基金(批准号:10574096),高等学校博士学科点专项科研基金(批准号 20050610010),贵州省教育厅自然科学基金(批准号: 2005105)和贵州师范大学青年教师科研基金资助的课题.

[†] 通讯联系人. E-mail :xdyang@scu.edu.cn

 α_e 与文献 17 报道的光谱实验结果吻合很好.说明 MgH分子的基态和第一简并激发态的势能函数可 用修正后的 Murrell-Sorbie + C_6 函数来获得更为准确的描述.

2. 理论计算

2.1. MgH 分子基态和激发态的离解极限

MgH 分子为线性双原子分子 ,属 $C_{\infty V}$ 群. 要获 得其基态 $X^2 \Sigma^+$,第一简并激发态 $A^2 \Pi$ 和第二激发 态 $B^2 \Sigma^+$ 的正确势能函数 ,必须确定其合理的离解 极限. Mg 原子和 H 原子基态的电子状态分别为¹ S_g 和² S_g ,属于 SO(3)群 ,MgH 属于 $C_{\infty V}$ 群 ,当 Mg(¹ S_g) 和 H(² S_g)形成 MgH 分子时 ,其对称性会进一步降 低. SO(3)群的不可约表示分解为 $C_{\infty V}$ 群的不可约 表示 ,即¹ S_g→¹ Σ^+ , S_g→² Σ^+ ,二者的直积和约化可 以得到 MgH 分子可能的电子态 ,结果为

 ${}^{1}S_{g} \otimes {}^{2}S_{g} = {}^{1}\Sigma^{+} \otimes {}^{2}\Sigma^{+} = {}^{2}\Sigma^{+}$, 可以看出上式结果中含有 MgH 分子的 ${}^{2}\Sigma^{+}$,因此由 基态的 Mg 原子和 H 原子可以得到 MgH 分子的 ${}^{2}\Sigma^{+}$ 态.根据微观过程的可逆性原理[18],可以表示为

 $MgH(^{2}\Sigma^{+}) \rightarrow Mg(^{1}S_{g}) + H(^{2}S_{g}).$ (1) 当 $Mg 原子和 H 原子分别处于^{3}P_{u} 和^{2}P_{u}$ 激发 态时 $^{3}P_{u} \pi^{2}P_{u}$ 可以分解为 $C_{\infty v}$ 群的不可约表示, 即 $^{3}P_{u} \rightarrow ^{3}\Sigma^{+} \oplus ^{3}\Pi$ $^{2}P_{u} \rightarrow ^{2}\Sigma^{+} \oplus ^{2}\Pi$,二者的直积和 约化可以得到 MgH 分子可能的电子态 ,结果为

(${}^{3}\Sigma^{+}\oplus{}^{3}\Pi$) \otimes (${}^{2}\Sigma^{+}\oplus{}^{2}\Pi$)

 $={}^{2}\Sigma^{+}(2)\oplus{}^{4}\Sigma^{+}(2)\oplus{}^{2}\Pi(2)\oplus{}^{4}\Pi(2)$

 \oplus $^{2}\Sigma^{-}\oplus^{4}\Sigma^{-}\oplus^{2}\Delta \oplus^{4}\Delta$,

其中既含有²∑⁺,又含有²∏,因此根据微观过程的 可逆性原理^[18],下述离解极限是可能的:

 $\operatorname{MgH}({}^{2}\Sigma^{+}) \rightarrow \operatorname{Mg}({}^{3}P_{u}) + \operatorname{H}({}^{2}P_{u}), \quad (2)$

 M_g H(²Π)→ Mg(³P_u)+ H(²P_u). (3) 但是对于通道(2),由于 Mg 原子和 H 原子分别处于 激发态³P_u和²P_u,因此其离解能肯定高于 Mg 原子 和 H 原子都处于基态的通道(1).所以,根据分子反 应静力学的最优能量过程原则¹⁸¹,通道(1)较通道 (2)为最优过程.

当 Mg 原子处于基态¹ S_a ,H 原子处于激发态² P_a

时 ${}^{_{1}}S_{g}$ 和² P_{u} 可以分解为 $C_{\infty v}$ 群的不可约表示 ,即 ${}^{1}S_{g} \rightarrow {}^{1}\Sigma^{+}$, ${}^{_{2}}P_{u} \rightarrow {}^{2}\Sigma^{+} \oplus {}^{2}\Pi$,二者的直积和约化也可 以得到 MgH 分子可能的电子态,结果为

 ${}^{1}\Sigma^{+}\otimes({}^{2}\Sigma^{+}\oplus{}^{2}\Pi) = {}^{2}\Sigma^{+}\oplus{}^{2}\Pi$, (4) 其中既含有 ${}^{2}\Sigma^{+}$,又含有 ${}^{2}\Pi$,因此根据微观过程的 可逆性原理[18],下述离解极限是可能的:

$$\operatorname{MgH}({}^{2}\Sigma^{+}) \rightarrow \operatorname{Mg}({}^{1}S_{g}) + \operatorname{H}({}^{2}P_{u}), \quad (5)$$

$$\operatorname{MgH}({}^{2}\Pi) \to \operatorname{Mg}({}^{1}S_{g}) + \operatorname{H}({}^{2}P_{u}). \quad (6)$$

同理,下述离解极限也是可能的,即

$$\operatorname{MgH}({}^{2}\Sigma^{+}) \to \operatorname{Mg}({}^{3}P_{u}) + \operatorname{H}({}^{2}S_{g}), \quad (7)$$

$$\operatorname{MgH}({}^{2}\Pi) \to \operatorname{Mg}({}^{3}P_{u}) + \operatorname{H}({}^{2}S_{g}).$$
(8)

对于通道(2),由于所生成的 Mg 原子和 H 原子 分别处于激发态³ P_u和² P_u,因此其离解能肯定高于 生成原子,一个处于基态,另一个处于激发态的通道 (5)和通道(7).所以,根据分子反应静力学的最优能 量过程原则^[18],通道(5)和通道(7)优于通道(2),根 据 Mg 原子和 H 原子的能级^[19]进一步对通道(5)和 通道(7)分析,通道(5)为最优过程.同理,通道(6)和 通道(8)优于通道(3),根据 Mg 原子和 H 原子的能 级^[19]进一步对通道(6)为 最优过程.

综上所述 ,MgH 分子的三个电子状态的合理离 解极限为

 $MgH(X^{2}\Sigma^{+}) \rightarrow Mg(^{1}S_{g}) + H(^{2}S_{g}), \quad (9)$ $MgH(A^{2}\Pi) \rightarrow Mg(^{1}S_{g}) + H(^{2}P_{u}), \quad (10)$ $MgH(B^{2}\Sigma^{+}) \rightarrow Mg(^{1}S_{g}) + H(^{2}P_{u}). \quad (11)$

2.2. MgH 分子基态和激发态的结构参数

利用 Gaussian03 程序进行能量计算,即使采用 同一计算方法,不同的基组对基态及激发态的能量 计算结果仍有较大影响.本文选用 cc-pVQZ, aug-ccpVTZ 6-311 ++ G和 6-311 ++ G(3df,2pd)四个基组, 分别对 MgH 分子的 $X^2 \Sigma^+$, $A^2 \Pi$ 和 $B^2 \Sigma^+$ 态进行几 何优化 表 1 列出了本文的计算结果, R_e 和 E 分别 为平衡位置的核间距和能量,对于 R_e ,表 1 中也列 出了文献 17 报道的实验结果.由表 1 可以看出 6-311 ++ Q 3df,2pd)基组计算得到的 R_e 与实验值符 合很好,且所计算得到的能量最低,因此,本文后面 对 MgH 分子的基态和激发态的单点能扫描都使用 6-311 ++ Q 3df 2pd)基组进行计算.

表 1 MgH 分子的 $X^2 \Sigma^+$ $A^2 \Pi$ 和 $B^2 \Sigma^+$ 态的优化计算结果

基组 -	$X^2 \Sigma^+$		$A^2 \Pi$		$B^2 \Sigma^+$	
	$R_{ m e}/{ m nm}$	E/a.u.	$R_{\rm e}/{ m nm}$	E/a.u.	$R_{\rm e}/{\rm nm}$	E/a.u.
cc-pVQZ	0.17511	- 200.2712	0.16686	- 199.9981	0.3032	- 200.02705
aug-cc-pVTZ	0.17289	- 200.2748	0.1644	- 200.0203	0.2941	- 200.0173
6-311 ++ G	0.1735	- 200.292	0.17195	- 200.2014	0.2625	- 200.1947
6-311 ++ Q 3df 2pd)	0.17262	- 200.2941	0.16612	- 200.2271	0.2617	- 200.2102
实验值[17]	0.17297		0.16778		0.2597	

2.3. MgH 分子基态和激发态的势能函数及光谱常数的计算

分别在 QCISD(T)/6-311 ++ Q(3df ,2pd)与 SAC-CI/6-311 ++ Q(3df ,2pd)水平上,对 MgH 分子基态及 激发态进行单点能扫描计算.扫描计算过程中使用 的各种参数 除 Mg 原子和 H 原子的核间距在不断 改变外,其他与结构优化时保持严格一致,得到 $X^2 \Sigma^+$, $A^2 \Pi$ 和 $B^2 \Sigma^+$ 态的一系列单点势能值后,用 Murrell-Sorbie 函数:

$$V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})$$

$$\times \exp(-a_1 \rho)$$
, (12)

相修止的 Murrell-Sorbie +
$$C_6$$
 函数

$$V = -D_{e}(1 + a_{1}\rho + a_{2}\rho^{2} + a_{3}\rho^{3})$$

$$\times \exp(-a_{1}\rho) - \frac{C_{6}}{r^{6}}, \qquad (13)$$

进行拟合,式中 $\rho = R - R_e$, R 为核间距, R_e 为平衡 核间距, a_1 , a_2 , a_3 , C_6 为拟合参数, MgH 分子的 $X^2 \Sigma^+$, $A^2 \Pi$ 和 $B^2 \Sigma^+$ 态的势能函数参数列入表 2 中.对于平衡核间距 R_e 和离解能 D_e , 表 2 中列出了 文献 17 **的**实验值.

表 2 MgH 分子的 $X^2 \Sigma^+$, $A^2 \Pi$ 和 $B^2 \Sigma^+$ 态的 Murrell-Sorbie 和 Murrell-Sorbie + C_6 势能函数参数

电子态	势能函数	$R_{ m e}/{ m nm}$	D_e/eV	$a_1/{\rm nm}^{-1}$	$a_2/{\rm nm}^{-2}$	$a_3/{\rm nm}^{-3}$	$C_6/10^{-6} \text{ eV} \cdot \text{nm}^6$
	Murrell-Sorbie	0.1726198	1.4042	17.61341	- 131.31487	-0.692	
$X^2 \Sigma^+$	Murrell-Sorbie + C_6	0.1726198	1.4042	12.386	- 208.274	595.82	- 0.5692
	实验值 ^{17]}	0.17297	1.4317				
	Murrell-Sorbie	0.166115	1.42391	42.8902	623.976	4782.87	
$A^2 \Pi$	Murrell-Sorbie + C_6	0.166115	1.42391	42.1666	583.092	3977.14	- 0.4448
	实验值 ^{17]}	0.16778	1.4375				
$B^2 \Sigma^+$	Murrell-Sorbie	0.26172	1.38907	30.8742	388.955	4362.25	
	实验值 ^{17]}	0.2597	1.39097				

图 1 给出了 M_{gH} 分子的基态 $X^2 \Sigma^+$,第一简并 激发态 $A^2 \Pi$ 和第二激发态 $B^2 \Sigma^+$ 的势能曲线 ,势能 曲线均具有对应于平衡结构的极小点 ,第一简并激 发态 $A^2 \Pi$ 和第二激发态 $B^2 \Sigma^+$ 的势能曲线在离解 极限处是趋于重合的 ,这也与离解通道(10)和通道 (11)相吻合.

图 2—4 给出了 M_{gH} 分子的基态 $X^2 \Sigma^+$,第一简 并激发态 $A^2 \Pi$ 和第二激发态 $B^2 \Sigma^+$ 的势能曲线.由 图 2—4 可以看出,用两种函数拟合得到的 M_{gH} 分 子的基态和第一简并激发态的势能曲线均与从头算 结果符合很好,但第二激发态用修正的 Murrell-Sorbie + C_6 函数拟合得到的势能曲线以及从头算计算结 果有明显的差异.对于 M_{gH} 分子的基态和第一简并

激发态从拟合曲线上无法区分哪种势能函数更适合 描述其基态和第一简并激发态的分子结构和能量变

图 2 MgH 分子的基态 $X^2 \Sigma^+$ 的势能曲线

图 4 MgH 分子的第二激发态 $B^2 \Sigma^+$ 的势能曲线

化.下面我们用这两种势能函数来推导 MgH 分子的 基态和第一简并激发态的分子光谱常数 对于第二激 发态用 Murrell-Sorbie 函数来推导其分子光谱常数.

由势能函数与各阶力常数的关系 ,即

$$f_n = \frac{\partial^n V}{\partial R^n} \Big|_{R=R_n} , \qquad (14)$$

通过(12)式的 Murrell-Sorbie 函数可得到力常数 f_2 , f_3 , f_4 的表达式 结果为

$$f_{2} = \frac{d^{2} V(R)}{dR^{2}} \Big|_{R=R_{e}} = D_{e} (a_{1}^{2} - 2a_{2}), \quad (15)$$

$$f_{3} = \frac{d^{3} V(R)}{dR^{3}} \Big|_{R=R_{e}}$$

$$= -6D_{e} (a_{3} - a_{1}a_{2} + \frac{1}{3}a_{1}^{3}), \quad (16)$$

$$d^{4} V(R) \Big|$$

$$f_{4} = \frac{d (n + n)}{dR^{4}} \Big|_{R=R_{e}}$$
$$= D_{e} (2a_{1}^{4} - 12a_{1}^{2}a_{2} + 24a_{1}a_{3}). \quad (17)$$

通过(13)式的修正的 Murrell-Sorbie + C_6 函数可得到 力常数 f_2 f_3 f_4 的表达式 结果为

$$f_{2} = \frac{d^{2} V(R)}{dR^{2}} \Big|_{R=R_{e}} = D_{e} (a_{1}^{2} - 2a_{2}) - \frac{42C_{6}}{R_{e}^{8}} , (18)$$

$$f_{3} = \frac{d^{3} V(R)}{dR^{3}} \Big|_{R=R_{e}}$$

$$= 6D_{e} (a_{1}a_{2} - a_{3} - \frac{a_{1}^{3}}{3}) + \frac{336C_{6}}{R_{e}^{9}} , (19)$$

$$f_{4} = \frac{d^{4} V(R)}{dR^{4}} \Big|_{R=R_{e}}$$

$$= D_{\rm e} (2a_1^4 - 12a_1^2a_2 + 24a_1a_2) - \frac{3024C_6}{R_{\rm e}^{10}}.(20)$$

根据表 2 中的势能函数参数 R_e , D_e , a_1 , a_2 , a_3 , C_6 , 通过(15)--(20)式可计算出力常数 f_2 , f_3 , f_4 , 计算 结果列于表 3 中.

表 3 MgH 分子的基态和激发态的力常数

电子态	势能函数	$f_2/10^2 \text{ aJ} \cdot \text{nm}^{-2}$	$f_3/10^3 \text{ aJ} \cdot \text{nm}^{-3} f$	$f_4/10^4 \text{ aJ} \cdot \text{nm}^{-4}$
$X^2 \Sigma^+$	Murrell-Sorbie	1.2762	- 5.5253	17.3167
	Murrell-Sorbie + C_6	1.2697	- 5.0910	14.0599
$A^2\Pi$	Murrell-Sorbie	1.36035	- 5.96036	29.91964
	Murrell-Sorbie + C_6	1.40826	- 6.05048	24.58079
$B^2 \Sigma^+$	Murrell-Sorbie	0.34638	- 1.93189	16.46696

根据力常数与光谱常数的关系^[20],可计算出 MgH基态和激发态的光谱常数 ω_e , $\omega_e x_e$, B_e , α_e ,其 中 ω_e 和 $\omega_e x_e$ 分别为谐振频率和非谐振频率, B_e 和 α_e 分别为刚性转动因子和非刚性转动因子^[20]相应 的公式如下:

$$B_{\rm e} = \frac{h}{8\pi^2 \,\mu c R_{\rm e}^2} \,, \qquad (21)$$

$$\alpha_{e} = -\frac{6B_{e}^{2}}{\omega_{e}} \left(\frac{f_{3}R_{e}}{3f_{2}} + 1 \right) , \qquad (22)$$

$$\omega_{\rm e} = \sqrt{\frac{f_2}{4\pi^2 \mu c^2}} , \qquad (23)$$

$$\omega_{e} \chi_{e} = \frac{B_{e}}{8} \left[-\frac{f_{4} R_{e}^{2}}{f_{2}} + 15 \left(1 + \frac{\omega_{e} \alpha_{e}}{6B_{e}^{2}} \right)^{2} \right] , (24)$$

式中 μ 为分子的约化质量 ,c 为光速,计算结果列于 表4.由表4 可以看出,利用修正的 Murrell-Sorbie + C_6 函数拟合 MgH 分子基态和第一简并激发态得到 的参数计算所得光谱常数与实验结果符合更好.例 如 对于 MgH 分子的基态,由 Murrell-Sorbie 函数的 势参数计算所得的谐振频率 ω_e 与实验值的偏差是 3.30 cm⁻¹而用修正的 Murrell-Sorbie + C_6 函数的势 参数计算所得的谐振频率 ω_e 与实验值偏差减小为 0.52 cm⁻¹.同样,对于 MgH 分子的第一简并激发态, 由 Murrell-Sorbie 函数的势参数计算所得的谐振频率 ω_e 与实验值的偏差是 53.12 cm⁻¹而用修正的 Murrell-Sorbie + C_6 函数的势参数计算所得的谐振频 率 ω_e 与实验值偏差减小为 26.15 cm⁻¹,其百分误差 从修正前的 3.32%减小到 1.63%.其他光谱常数也 有一定的改善.这就表明修正的 Murrell-Sorbie + C_6 函数比 Murrell-Sorbie 函数更适合用来描述 MgH 分 子的基态和第一简并激发态的势能函数.

表4 MgH 分子基态和激发态的光谱常数

电子态	势能函数	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e} x_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$
$X^2 \Sigma^+$	Murrell-Sorbie	1498.50	38.50	5.7217	0.2006
	Murrell-Sorbie + C_6	1494.68	34.25	5.7817	0.1764
	实验值 ^{17]}	1495.20	31.889	5.8257	0.1859
$A^2 \Pi$	Murrell-Sorbie	1545.05	20.565	5.9612	0.1968
	Murrell-Sorbie + C_6	1572.02	28.046	6.1086	0.1964
	实验值 ^{17]}	1598.17	31.085	6.1913	0.1931
$B^2 \Sigma^+$	Murrell-Sorbie	789.64	9.84	2.572	0.1965
	实验值[17]	828.0	11.6	2.596	

3.结 论

本文利用原子分子反应静力学的原理,推导出 了 MgH 分子各电子态的离解极限.利用 QCISD(T) 和 SAC-CI 方法计算并讨论 cc-pVQZ, aug-cc-pVTZ, 6-311 ++ G和 6-311 ++ Q(3df, 2pd)基组对 MgH 分子 基态 $X^2\Sigma^+$,第一简并激发态 $A^2\Pi$ 和第二激发态 $B^2\Sigma^+$ 的平衡核间距和能量的影响,使用优选出的 6-311 ++ Q(3df, 2pd)基组,用 QCISD(T)方法对基态, SAC-CI 方法对激发态进行单点能扫描计算,然后采用 Murrell-Sorbie 函数及修正的 Murrell-Sorbie + C_6 函数进行拟合得到了相应电子态的完整势能函数,并计算了 MgH 分子基态,第一简并激发态和第二激发态的光谱常数.计算结果表明,用修正的 Murrell-Sorbie + C_6 函数的势参数计算所得到的 MgH 分子基态和第一简并激发态的光谱常数 ω_e , $\omega_e x_e$, B_e , α_e 与实验数据吻合很好.说明修正的 Murrell-Sorbie + C_6 函数能更为精确的描述 MgH 分子基态和第一简并激发态的结构特征和能量变化.

- [1] Grandinetti F, Vinciguerra V 2002 Int. J. Mass Spectrum. 216 285
- [2] Živný O "Czernek J 1999 Chem. Phys. Lett. 308 165
- [3] Hirst D M 2001 J. Chem. Phys. 115 9320
- [4] Horst M A ,Schatz G C , Harding L B 1996 J. Chem. Phys. 105 558
- [5] Liu Y J ,Huang M B ,Zhou X G ,Li Q X ,Yu S Q 2002 J. Chem. Phys. 117 6519
- [6] Shi D H Sun J F, Ma H, Zhu Z L 2007 Acta Phys. Sin. 56 2085 (in Chinese)[施德恒、孙金锋、马 恒、朱遵略 2007 物理学报 56 2085]
- [7] Gao F, Yang C L, Zhang X Y 2007 Acta Phys. Sin. 56 2547 (in Chinese)[高峰、杨传路、张晓燕 2007 物理学报 56 2547]
- [8] Li Q, Zhu Z H 2006 Acta Phys. Sin. 55 102 (in Chinese) [李 权、朱正和 2006 物理学报 55 102]

- 2期
- [9] Shayesteh A ,Appadoo D R T ,Gordon I ,Le Roy R J ,Bernatha P F 2004 J. Chem. Phys. 120 10002
- [10] Zhang Z M Zeng X Y Zhou S B 1999 J. At. Mol. Phys. 16 281
 (in Chinese)[张中明、曾小云、周曙白 1999 原子与分子物理 学报 16 281]
- [11] Wang X L, Tu J P, Zhang X B, Gao R G, Chen C P 2002 The Chinese Journal of Nonferrous Metals 12 907(in Chinese)[王秀丽、 涂江平、张孝彬、高嵘岗、陈长聘 2002 中国有色金属学报 12 907]
- [12] Chen D, Chen L, Wang Y M, Liu S, Chen D M, Ma C X, Wang L B 2004 Rare Metal Materials and Engineering 33 485 (in Chinese)
 [陈 东、陈 廉、王元明、刘 实、陈德敏、马常祥、王隆保 2004 稀有金属材料与工程 33 485]
- [13] Saxon R P ,Kirby K ,Liu B 1978 J. Chem. Phys. 69 5303
- [14] Zhang P, Zhang Z 2005 Journal of Sichuan Normal University (Natural Science Edition) 28 501 (in Chinese)[张 萍、张 忠

2005 四川师范大学学报 28 501]

- [15] Xie A D Zhu Z H 2005 Acta Chim. Sin. 63 2126 (in Chinese) [谢安东、朱正和 2005 化学学报 63 2126]
- [16] Xu M , Linghu R F , Wang R K , Yang X D 2007 Acta Phys. Sin. 56 1000 (in Chinese)[徐 梅、令狐荣锋、汪荣凯、杨向东 2007 物理学报 56 1000]
- [17] Huber K P, Hertzberg G 1979 Molecular Spectrum and Molecular Structure (N) (New York: Van Nostrand Reinhold Company)
- [18] Zhu Z H 1996 Atomic and Molecular Reaction Static (Beijing: Science Press)(in Chinese)[朱正和 1996 原子分子反应静力 学(北京 科学出版社)]
- [19] Moore C E 1971 Atomic Energy Levels (]) (Washington : Unite State Government Printing Office)
- [20] Zhu Z H, Yu H G 1997 Molecular Structure and Potential Energy Function (Beijing: Science Press) (in Chinese) [朱正和、俞华根 1997 分子结构与分子势能函数(北京 科学出版社)]

Analytical potential energy function for the electronic states $X^2 \Sigma^+$, $A^2 \Pi$ and $B^2 \Sigma^+$ of MgH molecule *

Lü Bing^{1,2}) Zhou Xun²) Linghu Rong-Feng²) Yang Xiang-Dong^{1,)†} Zhu Zheng-He¹)

1 X Institute of Atomic and Molecular Physics , Sichuan University , Chengdu 610065 , China)

2 X School of Physics and Chemistry , Guizhou Normal University , Guiyang 550001 , China)

(Received 6 May 2007; revised manuscript received 4 June 2007)

Abstract

The equilibrium geometries of three electronic states $X^2 \Sigma^+$, $A^2 \Pi$ and $B^2 \Sigma^+$ of MgH molecule have been calculated using the SAC-CI and QCISD (T) methods with the basis sets cc-pVQZ ,aug-cc-pVTZ ,6-311 ++ G and 6-311 ++ G(3df ,2pd). Comparing the above mentioned four basis sets the conclusion is obtained that the basis set 6-311 ++ G(3df 2pd) is the most suitable for the energy calculation of MgH molecule. The whole potential curves for three electronic states are further scanned using QCISD (T)/6-311 ++ G(3df 2pd) method for the ground state and SAC-CI/6-311 ++ G(3df 2pd) method for the excited states. The potential energy functions and relevant spectrum constants ω_e , $\omega_e x_e$, B_e , α_e of these states are obtained by fitting to the Murrell-Sorbie function and the modified Murrell-Sorbie + C_6 function ,respectively. The results showed that the spectral constants derived from the modified Murrell-Sorbie + C_6 function are in very good agreement with the experimental data ,and the modified Murrell-Sorbie + C_6 function can correctly describe the potential energy function of the ground state and the first degenerate state of MgH molecule.

Keywords : molecular structure and potential function, excited state, Murrell-Sorbie function, Murrell-Sorbie + C_6 function **PACC** : 3520G, 3410

^{*} Project supported by the National Natural Science Foundation of China(Grant No. 10574096), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20050610010), the Natural Science Foundation of the Education Bureau of Guizhou Province, China (Grant No. 2005105) and the Research Foundation of Young Teacher of Guizhou Normal University.

[†] Corresponding author. E-mail ;xdyang@scu.edu.cn