不同腔结构下的声光调 *Q* 双包层光纤激光器 特性研究*

赵宏明^{1,2,} 楼祺洪¹) 周 军¹) 董景星¹) 魏运荣¹) 王之江¹)

上海光学精密机械研究所,上海 201800)
 2)(中国科学院研究生院,北京 100039)
 (2007年7月22日收到2007年9月17日收到修改稿)

报道了半导体激光器端面抽运不同结构的声光调 Q 的双包层光纤激光器的脉冲输出特性. 对前向、后向不同 抽运方式的掺镱调 Q 双包层光纤激光器在输出平均功率,调 Q 脉冲宽度及脉冲稳定性进行了对比及讨论;其中后 向抽运的光纤激光器,在 10 kHz 重复频率调制下,获得了斜效率为 60%的平均功率输出,其脉冲宽度为 52 ns,单脉 冲能量为 0.3 nJ. 最后利用不同抽运方式下的速率方程,理论分析调 Q 脉冲的特性,分析结果与实验相符.

关键词:双包层光纤激光器, 声光开关, 前向抽运, 后向抽运 PACC: 4255N, 4260D

1.引 言

自 Snitzer 等人首次提出包层抽运技术以来,包 层抽运的光纤激光器由于具有结构设计紧凑、可靠 性好,并且比传统腔体固体激光器具有更高的抽运 耦合效率、转换效率、高的表面体积比和光束质量 (近衍射极限)等优点,而越来越受到关注. 与传统 光纤激光器相比,包层抽运方式使得从光纤激光器 提取高能量成为可能,特别是掺镱的双包层光纤. 近年来国内外报道掺镱双包层光纤激光器输出高功 率也逐年提升^[1-3].

而另一方面调 Q 的脉冲光纤激光器在测距、遥 感、医疗、激光加工及电信方面的潜在应用 特别是短 的 ,高峰值功率的调 Q 的双包层光纤激光器被多方 报道.其中的被动调 Q 技术主要包括在光纤激光器的 腔内插入饱和吸收体 ,例如 Co²⁺ :ZnS⁴¹, Cr⁴⁺ :YAC⁵¹ 或者一段掺稀土的光纤^[6].近几年来 ,有关利用光 纤中的非线性效应中的受激布里渊散射^[7]和受激拉 曼散射^[8]效应来产生被动调 Q 脉冲也多次报道.

由于主动调 Q 重复频率可调,可控性好,所以 一直是双包层光纤激光器调 Q 研究的热点,关于声 光调 Q 的双包层光纤的实验研究多次报道^{9,10]},特别是输出高能量(mJ),高峰值功率(kW),高重复频 率(kHz),高亮度(近衍射极限)的掺镱双包层光纤激 光器.

在理论方面, Wang 等人^[11,12]对声光调 Q 的双 包层光纤进行了一系列的研究, Wang 等人^[11]理论 分析了声光调 Q 的双包层光纤采用不同的抽运方 式(前向抽运、后向抽运方式),但关于这两种方式的 光纤激光装置的主动调 Q 脉冲的实验结果的比较 还未见报道.本篇文章主要针对这两种不同的腔结 构方案,进行实验比较,并讨论了实验获得的结果; 文章最后给出了相应的调 Q 脉冲特性的理论分析 结果.

2. 实验装置

实验分别采用如图 1(a)和(b)所示的实验装置,调 Q 双包层光纤激光器采用典型的 F-P 腔结构,采用波长为 975 nm 的带光纤(200 μm,NA 0.22) 耦合输出的激光二极管(LD)阵列连续抽运,抽运光 经一对透镜组合注入到双包层光纤.图1(a)所示采 用了前向抽运技术,光纤激光器的前腔镜为对 975

^{*}国家高技术研究发展计划(863)(批准号 2008AA03Z405)资助的课题.

[†] E-mail:ming_zhm@yahoo.com.cn

图 1 声光调 Q 双包层光纤激光器实验装置 (a)前向抽运; (b)后向抽运

高透(90%),1080 nm 高反(99.5%)的双色镜片. 该 双色镜紧贴光纤前端面但不接触,图1(b)采用了后 向抽运方式,双包层光纤的前镜采用了对 45° (1080 nm 高反, 975 nm 高透)的双色镜, 该光纤激 光器利用光纤前端面 Fresnel 反射作为谐振前腔镜. 为了进行比较 实验采用了同一根掺镱的双包层光 纤 Southampton ,UK) 光纤长度 2.5 m ,其内包层为 D 型 450 µm/400 µm(NA = 0.46), 纤芯直径 30 µm 纤芯 数值孔径 0.08 双包层光纤的注入前端面与光传输 方向垂直,后端面被切斜并抛光与光路大约15°夹 角,以防止光纤后端面 Fresnel 反射而产生的自激振 荡,由光纤输出的激光,经准直透镜注入到声光调 制器(GOOCH&HOUSEGO INC.). 该声光调制器衍射 效率 80%, 工作波长 1100 nm, 中心频率为 80 MHz. 实验中声光调制器均工作在一级衍射方向.图1(a) 为前向抽运的声光调 () 双包层光纤激光器实验装 置 图 1(b)为后向抽运的声光调 O 双包层光纤激光 器.图1中声光调制器后为对激光波长高反的平面 镜 1080 nm 高反 99.5%). 实验采用快速光电探测 管探测 利用 Lecroy WR62XR 示波器监测输出的调 O脉冲波形,输出功率采用 Spectra-Physics 407A 功 率计测量.

为了保证两种不同激光装置输出脉冲的可比 性,激光器采用同一个根光纤,同时声光位置及装置 中透镜固定不变,声光装置均在一级衍射方向工作 输出.

3. 实验结果对比及讨论

调节实验装置,首先利用光谱分析仪测量了输 出激光光谱,如图2所示,激光运转中心波长在 1071 nm左右,线宽大约3 nm,实验同时观察到了在 1050 nm 左右的激光发射谱,这是由于谐振腔内的全 反镜镀膜对波长的选择,在一定程度上没有完全抑 制 1053 nm 中心左右的激光发射谱.随后我们对图 1 不同实验装置的输出调 Q 脉冲特性进行了比较.

图 2 输出激光光谱图

3.1. 输出平均功率

图 3 给出了在重复频率 10 kHz 下不同装置得到 的输出平均功率(单脉冲能量)与入纤功率的对比. 可以看出,两种方式下的输出平均功率(单脉冲能 量)均随入纤抽运功率的增大而增大.

图 3 10 kHz 调制频率下,不同装置的平均输出功率(单脉冲能量)与 LD 抽运功率关系

由图 3 还可以看出后向抽运方式输出激光功率 要明显优于前向抽运方式,在入纤功率 7.5 W 下,后 向抽运方式激光斜效率达到了 60%,光光转换效率 为 40%,单脉冲能量 0.3 mJ. 与文献 13 报道提到 采用前向和后向抽运在连续输出功率下物理分析类 似,后向抽运功率输出斜效率高于前向抽运方式, 这主要是因为不同的抽运方式和激光器谐振腔结构 引起的反转粒子数腔内分布不均,而导致的增益不 同^[13]后向抽运方式更有利于输出较高的功率.此 外由于前向抽运方式中采用的前腔镜双色镜与其后 相邻的光纤端面虽然接近但是仍有一定距离,在一 定程度上加大了该抽运方式下的光纤激光器模式 损耗.

3.2. 输出脉冲的宽度、峰值功率

实验发现随着调制频率的升高,10-50 kHz 输 出激光脉冲由几十纳秒显著加宽到几百个纳秒(近 微秒 左右, 在同一调制重复频率下 随着抽运功率 增大、输出的脉冲宽度降低,在低功率抽运下、阈值 附近 前向抽运方式输出的脉冲比后向抽运脉冲宽 度窄 随着抽运功率的增大 后向抽运的输出脉冲比 前向抽运脉冲宽度窄 进一步加大抽运功率 二者脉 冲宽度之间的差异逐渐减少,且脉冲随抽运功率变 化趋向平缓,在不同的调制频率下,得到脉冲宽度 对比不尽相同,例如在10kHz下前向抽运方式,获 得的激光脉冲宽度反而比后向抽运方式窄,如图4 所示. 随着重复频率的增大到 50 kHz,其脉宽之间 差异也越来越小几乎一致.这可以解释为,当调制 频率低 10 kHz 时,后向抽运的调 Q 脉冲形成过程 中自发辐射快速增长¹¹¹引起的脉冲加宽,相反的当 调制频率比较高时(50 kHz),由于光纤中的反转粒 子数不足引起不同抽运方式中的自发辐射光的增长 差异而产生脉冲宽度接近[11].另外图4同时给出了 两种不同抽运方式中的调 Q 脉冲的峰值功率 随着 入纤功率增加 峰值功率随之增加 低抽运功率下, 峰值功率差异很小 随着抽运功率增加 后向抽运产 生的调 0 脉冲峰值功率增加越来越快. 由于高的 抽运功率下 两种不同方式获得的脉冲宽度比较接 近 图 3 所示)因此峰值功率的差异主要是因为在

图 4 10 kHz 调制频率下 不同结构的调 () 脉冲宽度随 LD 抽运 功率关系

后向抽运方式下 输出平均功率的斜效率大引起的.

3.3. 输出脉冲的稳定性

影响声光调 Q 的光纤激光器稳定性输出因素 很多 ,在调 Q 的光纤激光器中常见的是寄生在调 Q 脉冲的自锁模现象^[14,15],锁模现象使得输出的激光 脉冲形状有毛刺而不平滑.主要是因为光纤增益介 质长而引起的在相临的起振纵模之间产生的模式耦 合引发的模式拍频' mode beating ^{€14,15]}.

实验对不同抽运方式的激光器的锁模现象分别 进行了观察,实验发现在前向抽运装置中,其脉冲锁 模现象要更显著,同样的抽运功率下其调 Q 脉冲锁 模调深度要高于后向抽运方式的调Q 脉冲. 而随着 抽运功率的增加,调 Q 中的锁模现象逐渐减弱,可 以得到比较干净的脉冲形状. 这是由于高的抽运功 率下,大量的纵模模式振荡输出,同时它们之间也相 互耦合,这样就淹没或者说抑制了原有的相邻纵模 间的模式拍频耦合. 图 5 给出了在前向抽运方式 下,低功率输出脉冲中的锁模现象,高功率干净的脉 冲波形见图 7 中前向抽运方式获得的脉冲(实线 所示).

图 5 低功率前向抽运下输出的锁模脉冲

对于脉冲序列的稳定性,两种不同装置的实验 结果均发现声光调制器的一级衍射工作时间宽度对 输出脉冲的稳定性很重要.在低抽运功率下,输出 激光脉冲的稳定与声光工作时间宽度的变化更为灵 敏.前向抽运的激光器在抽运功率4W,声光开关 重频为20kHz下工作.当声光开关的工作门宽度在 20 µs 时,此时激光器没有脉冲输出,当时间门宽度 为9.3 µs 时,激光器输出稳定的20kHz的调 Q脉 冲,随着时间门宽度的缩短,激光器出现了稳定的输 出重复频率在10kHz脉冲的"半频"效应^[16].这是 由于低功率抽运,光纤介质的增益低,并且脉冲建立 时间比较长,与声光一级衍射工作时间相比拟引起 的.这也导致了在高重复频率调制下,输出的调*Q* 脉冲的不稳定,在前向抽运装置中尤为明显.实验 还发现,随着抽运功率的增加,输出脉冲与脉冲的稳 定性也随之提高,在抽运功率 7W,调制频率 20 kHz, 时间门宽度 9—9.5 µs,获得了稳定性在 95%的脉冲 序列.

4. 调 Q 脉冲的理论模拟计算

进一步的脉冲理论模型分析如下,首先假设声 光调制器(acousto-optic modulator,简称 AOM)和全反 镜引起的时间延迟(其引起的腔长远小于增益介质 光纤的长度)忽略不计;其次假定采用的 AOM 为快 开关声光,由此得到一组偏微分方程组^[11].

$$\frac{\partial N_{2}}{\partial t} = -\frac{N_{2}}{\tau} + \frac{\Gamma_{\rm p} P_{\rm p}}{h \nu_{\rm p} A_{\rm eff}} [\sigma_{\rm ap} (N_{t} - N_{2}) - \sigma_{\rm ep} N_{2}] + \frac{\Gamma_{\rm 1} P_{\rm 1}}{h \nu_{\rm 1} A_{\rm eff}} [\sigma_{\rm al} (N_{t} - N_{2}) - \sigma_{\rm el} N_{2}] (P_{\rm 1}^{+} + P_{\rm 1}^{-}),$$
(12)

$$\frac{1}{V_{p}} \frac{\partial P_{p}^{\pm}}{\partial t} \pm \frac{\partial P_{p}^{\pm}}{\partial z}$$

$$= \Gamma_{p} \left[\sigma_{ep} N_{2} - \sigma_{ap} \left(N_{t} - N_{2} \right) \right] P_{p}^{\pm} - \alpha_{p} P_{p}^{\pm} , \quad (2)$$

$$\frac{1}{V_{1}} \frac{\partial P_{1}^{\pm}}{\partial t} \pm \frac{\partial P_{1}^{\pm}}{\partial z}$$

$$= \Gamma_{1} \left[\sigma_{el} N_{2} - \sigma_{al} \left(N_{t} - N_{2} \right) \right] P_{1}^{\pm}$$

$$- \alpha_{1} P_{p}^{\pm} + 2\sigma_{el} N_{2} \frac{\hbar v_{1}^{2}}{V_{1}} \Delta \lambda , \quad (3)$$

其中, N_t , N_2 是时间 t 和位置 z 的函数, 分别表示 掺镱粒子数密度和上能级粒子数密度. $P_p(P_1)$ 代 表抽运光(信光)功率强度; $\Gamma_p(\Gamma_1)$ 是抽运光(信光) 的传输迭代系数. $\nu_p(\nu_1)$ 分别是抽运光(信光)的频 率, $V_p(V_1)$ 表示抽运光(信光)在光纤内的传输速 度. τ 为上能级粒子数寿命, $\Delta\lambda$ 为输出激光的带 宽. \pm 分别表示前向、后向传输. $\sigma_{ap}(\sigma_{al})$, $\sigma_{ep}(\sigma_{el})$ 分别是掺镱粒子对抽运光(信光)吸收和发射截面. A_{eff} 为光纤纤芯有效截面. 其中的 a_p 、 a_1 分别为抽 运光、信光的吸收系数.

对于前向抽运,声光开关打开时,其边界满足如 下条件:

$$P_{1}^{-}(0) = R_{1}P_{1}^{+}(0)T_{f} , \qquad (4)$$

$$P_{1}^{-}(L) = (1 - T)^{2} \eta^{2} P_{1}^{+}(L), \qquad (5)$$

$$P_{\text{out}} = TP_1^+(L).$$
 (6)

后向抽运方式 其边界条件为

报

$$P_1^+(0) = R_2 P_1^-(0), \qquad (7)$$

$$P_{1}^{-}(L) = T^{2} \eta^{2} P_{1}^{+}(L), \qquad (8)$$

$$P_{\text{out}} = (1 - R_2) P_1^{-}(0).$$
 (9)

以上边界条件把实验装置图 1 所示光纤的右端全反 镜均视为理想的高反镜. 其中的 L 为掺镱双包层光 纤长度 ; T_f 为前向抽运装置中双色镜与光纤入射端 面对激光往返的耦合效率 ,T 为声光开关对激光的 衍射效率 ; R_1 , R_2 分别为前向抽运中的双色镜对信 光的反射系数、后向抽运中光纤端面的剩余菲涅耳反 射系数 , η 为双包层光纤后的透镜对激光的耦合 效率.

表1 (1)-(9) 武中的相关参数[11,13]

$N_{\rm t}/10^{25}{\rm m}^{-3}$	3.5	T _p	0.0046
$\sigma_{\rm ap}/10^{-24} {\rm m}^2$	1.5	T _s	0.9
$\sigma_{\rm ep}/10^{-24} {\rm m}^2$	3	R_1	0.99
$\sigma_{\rm as}/10^{-26} {\rm m}^2$	1.4	R_2	0.04
$\sigma_{\rm es}/10^{-25} {\rm m}^2$	2	$T_{\rm f}$	0.9
$ au/\mu s$	840	Т	0.85
$A_{\rm eff}/10^{-10}{\rm m}^2$	7	$a_{\rm p}/10^{-3}{\rm m}^{-1}$	4
$\Delta\lambda/nm$	3	η	0.9

根据以上偏微分方程组,分别给出了不同入纤 功率下的脉冲能量及脉冲宽度的理论曲线,如图 6 所示,可以看出理论分析得到的结果与实验结果(图 3和图 4)能够较好的符合.图7比较了在抽运功率 6W,重复频率10kHz下,两种不同抽运方式下的脉 冲宽度实验结果和理论分析结果.由图7可以看 出,由以上理论分析的调0脉冲形状能很好的吻合

图 6 调 Q 脉冲能量和宽度的理论分析与入纤功率关系

 $\supset M$

实验得到的脉冲波形。

图 7 不同抽运方式下调 *Q* 脉冲波形 实线为实验结果 ;虚线为 理论结果)

5.结 论

实验报道了不同抽运结构(前向抽运、后向抽运)的声光调 Q 的大模场双包层光纤激光器输出脉冲特性研究,对前向抽运,后向抽运的光纤激光器在输平均功率,脉冲宽度及脉冲稳定性进行了比较分析,实验研究发现后向抽运结构更有利于输出高功率,平滑的调 Q 脉冲,且稳定性高的调 Q 脉冲序列,这为调 Q 光纤激光器的研究具有一定指导意义.实验采用后向抽运装置,在 10 kHz 调制下,获得了斜效率为 60% 的平均功率输出,其脉冲宽度为52 ns,单脉冲能量为 0.3 mJ.最后给出了相应的速率方程组,不同抽运方式下的理论分析调 Q 脉冲宽度和能量结果与实验结果相符.

- [1] Dominic V , MacCormack S , Waarts R , Sanders S 1999 Electron . Lett. 35 1158
- [2] Limpert I , Liem A , Zellmer H 2003 Electron. Lett. 39 645
- [3] Lou Q H, Zhou J, Zhu J Q, Xue D, Kong L F, Li J Y, Li S Y, Dong J X, Wei Y R, Wu Z L, Ye Z H, Ling L, Wang Z J 2005 *Chin*. J. of Lasers 32 20 (in Chinese)[楼祺洪、周 军、朱建 强、薛 冬、孔令峰、李进延、李诗愈、董景星、魏运荣、吴中 林、叶震寰、凌 磊、王之江 2005 中国激光 32 20]
- [4] Philippov V N, Kiryanov A V, Unger S 2004 IEEE Photon. Technol. Lett. 16 57
- [5] Laroche M, Gilles H, Girard S, Passilly N, Aït-Ameur K 2006 IEEE Photon. Technol. Lett. 18 764
- [6] Fotiadi A , Kurkov A , Razdobreev I 2005 Technical Digest CJ2-3
- [7] Fan Y, Lu F, Hu S 2004 Opt. Lett. 29 724

- [8] Zhao Y, Jackson S D 2006 Opt. Lett. 31 751
- [9] Piper A, Malinowski A, Furusawa K, Richardson D J 2004 Electron. Lett. 40 928
- [10] Zalvidea D , Russo N A , Duchowicz R , Delgado-pinar M , Díez A , Cruz J L , Andrés M V 2005 Opt . Commun . 244 315
- [11] Wang Y, Xu C 2006 Appl. Opt. 45 2058
- [12] Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113
- [13] Xue D , Lou Q , Zhou J 2007 Opt . & Laser Technol . 39 871
- [14] Myslinski P , Chrostowski J , Koningstein J A K , Simpson J R 1993 Appl. Opt. 32 286
- [15] Zhao H , Lou Q , Zhou J , Zhang F , Dong J , Wei Y , Wang Z 2007 Chin. Opt. Lett. 5 522
- [16] Wang Y 2004 IEEE Quantum . Electron . 40 1583

Study of characteristics of acoustic-optic *Q*-switched double-clad fiber laser with different cavity configurations *

Zhao Hong-Ming^{1,2})[†] Lou Qi-Hong¹) Zhou Jun¹) Dong Jing-Xing¹) Wei Yun-Rong¹) Wang Zhi-Jiang¹)

1 X Shanghai Institute of Optical Fine and Mechanics , Chinese Academy of Sciences , Shanghai 201800 , China)

2) Graduate School of Chinese Academy of Sciences , Beijing 100039 , China)

(Received 22 July 2007 ; revised manuscript received 17 September 2007)

Abstract

The characteristics of acoustic-optic double-clad fiber laser end-pumped by diode laser are reported for different pumping constructions. The comparison and discussions of average power, pulse width and stability of Q-switched pulses under the forward pump and back ward pump conditions are presented. In experiment, the output of Q-switched pulses with 60% slope efficiency of average power, 52 ns pulse width and 0.3 mJ single pulse were obtained at the repetition rate of 10 kHz. Finally, the rate equations with different pump configurations are deduced to analyze the Q-switched pulse, and the theoretical results agree with well experimental results.

Keywords: double-clad fiber laser , acoustic-optic switch , forward pump , backward pump **PACC**: 4255N , 4260D

^{*} Project supported by the Natonal High Technology Research and Development Program of China (Grant No. 2008AA03Z405).

[†] E-mail : ming_ zhm@yahoo.com.cn