混沌通信系统中非线性信道的自适应 组合神经网络均衡*

赵海全 张家树

(西南交通大学信号与信息处理四川省重点实验室,成都 610031)(2007年12月15日收到2007年12月27日收到修改稿)

针对混沌通信系统的非线性信道干扰问题,基于混沌信号重构理论和函数型连接神经网络理论,提出了一种 横向滤波器与函数型连接神经网络组合(combination of transversal filter and functional link neural network,CFFLNN)的自 适应非线性信道均衡器,并给出基于低复杂度归一化最小均方(NLMS)的自适应算法,并对该均衡器的稳定性以及 收敛条件进行了分析.该非线性自适应均衡器充分利用了横向滤波器的快速收敛,以及函数型连接神经网络通过 增大输入空间提高非线性逼近能力的特点,进一步提高均衡器的收敛速度和降低稳态误差.仿真研究表明:所提出 的非线性自适应均衡器能够有效地消除线性和非线性信道干扰,均衡器输出信号能反映出混沌信号的特性,具有 良好的抗干扰性能;且该均衡器的结构简单,收敛稳定性较好,易于工程实现.

关键词:非线性信道,自适应均衡器,混沌吸引子,神经网络 PACC:0545

1.引 言

混沌信号由于本身所具有的宽带和确定性的本 质 使得基于混沌的宽带通信提供了一个更有应用 价值的途径 而且可以解决现有通信系统中诸多矛 盾和缺陷的 具有潜在的应用价值 尽管目前已经提 出了许多基于混沌的通信理论与技术,但是这些研 究主要集中在理想通信环境或具有中等程度的噪声 通信环境1-4] 而实际通信环境中存在着各种干扰, 如码间干扰以及由多径传播而引起的多径干扰 特 别是信道的非理想特性引起的非线性失真干扰(包 括信道的有限带宽效应使得宽带混沌信号产生幅度 和相位失真 无线通信信道的多径效应以及信道的 时变衰落特性引起发射的混沌信号产生幅度和相位 失真等)将严重地蜕化混沌通信系统的性能,从而 使系统无法正常工作 阻止了混沌通信系统的实用 化1-4] 而采用信道均衡技术可以有效的解决上述 问题,并能够恢复出混沌信号,由于混沌信号既不是 周期信号也不是准周期信号 具有长期不可预测性, 以及其功率谱具有宽的似噪声的特性 因此,一般的

均衡技术如线性均衡器是不可能进行工作.研究表 明,采用非线性均衡技术能够有效解决上述问题,恢 复并重构出混沌信号.近年来对混沌信号重构方法 的研究主要有两大类:基于多项式展式结构和基于 神经网络的非线性重构方法^[5-21].基于 Volterra 展式 的滤波器由于具有大量的非线性耦合项,因此能够 处理一大类非线性问题,并已经成功的应用在卫星 通信信道均衡,非线性辨识以及混沌序列预测等系 统中.如文献 8—10 给出的简化结构对混沌时间序 列成功的预测,文献[15—17]提出的逼近二阶 Volterra 结构的改进型非线性均衡器能够有效重构 出混沌信号.然而这些方法都是基于截断的二阶 Volterra 展式,虽然结构简单,易于硬件实现,但是多 项式展式只用到二阶,非线性处理能力有限,限制了 其工程的实用化.

神经网络由于具有良好的非线性逼近等优点而 得到较多的研究,如文献 18—21 提出的改进的回 归神经网络以及径向基神经网络能够较好恢复出混 沌信号.但是,目前的理论分析和计算机仿真表明, 神经网络具有参数空间过大,结构复杂,网络参数的 初始化需谨慎等固有的缺点,限制其在混沌通信系

^{*}国家自然科学基金(批准号 50572027)和教育部新世纪优秀人才支持计划(批准号:NCET-05-0794)资助的课题.

统中的实用化.为了克服神经网络的这些缺点,文献 [22]利用单层神经网络和多项式(Volterra)结构提出 了 PPN(polynomial perceptron network)均衡器,并且均 衡性能得到改善;而文献 23 正 PPN 结构的基础上 给出了函数型连接神经网络,具有结构简单,收敛较 快等优点而被成功应用于非线性辨识和信道均衡器 中^[22-27].由于非线性信道可看成线性失真和非线性 失真两部分级联而成,因此对信道的补偿也应该由 线性和非线性补偿器共同完成.基于这种思想和函 数型连接神经网络的优良特点,本文提出了一种横 向滤波器和函数型连接神经网络组合(CFFLNN)的 非线性自适应均衡器.同时,根据较低计算复杂度的 归一化最小均方误差(NLMS)准则,推导出了相应的 自适应算法.

2. CFFLNN 的非线性自适应均衡器

从信号处理的观点来看,在基于混沌通信系统 工程中,从受到噪声或各种非线性干扰的混沌信号 中恢复出混沌信号本质上就是对非线性信道进行补 偿,即信道均衡问题,同时也可以描述成信号重构. 可以从两个角度解释信道均衡器的工作原理:一是 把均衡看成逆滤波过程,通过解卷积运算将收到的 序列恢复出传送的信息;另一种方法是把均衡看成 分类运算,将接收的信号分成发送信号所对应的类 别.无论从哪种角度看待均衡问题,神经网络都有充 分的理由被采用来解决均衡问题,因为一方面神经 网络具有优异的函数逼近能力,同时也可进行复杂 的模式分类处理.因此,当满足 Taken 相空间重构定 理的条件时,基于神经网络理论的非线性均衡器能 够准确地恢复或重构混沌信号,使得基于混沌的通 信系统良好的运行,并且信道的影响最小化.

图 1 基于混沌的通信系统框图

图 1 所示为基于混沌的通信系统框图,其中 *x* (*k*)为混沌调制器所产生的发射信号,*h* 为信道传 输函数,信道的输出 *s*(*k*)被噪声 η 所污染,该噪声 通常建模为加性白高斯过程,*x*(*k*)为均衡器的输出 信号.接收机所收到的信号通过均衡器还原发射信 号,并通过解调器恢复信息信号.*h* 能够建模为非线 性算子,它一般由 s(k) = h(x(k))给出,而均衡器的输入信号为 $r(k) = s(k) + \eta$.

2.1. 函数型连接神经网络

函数型连接神经网络(functional link neural network, FLNN)最先由 Pao 提出^[23],可采用单层神经 网络结构而不需要隐层,使得网络结构简单.与多层 感知器 MLP 不同,函数型连接神经网络通过产生一组线性无关的函数,直接对输入模式进行非线性扩展处理,其作用是将输入模式映射到一个更大的模式空间.模式的增强使学习速度提高和神经网络结构得以简化,而相应性能却没有降低.图2中给出了函数型连接神经网络结构.

图 2 函数型连接神经网络均衡器结构

图 2 中扩展函数可以是正交三角函数基, Legendre 和 Chebyshev 正交基,本文取正交三角函数 扩展并由正交的 sin 和 cos 基函数的子集以及原始 输入信号交叉乘积项组成.例如,考虑输入信号为

 $U(n) = [u_1 u_2]^{T} = [x(n)x(n-1)]^{T}$, 通过使用三角函数,可以得到增强的输入空间为

X(n) =[$1u_1 \cos(\pi u_1) \sin(\pi u_1)$

 $\dots u_2 \cos(\pi u_2) \sin(\pi u_2) \dots u_1 u_2$ ^T,

从而使输入空间增大,增加收敛速度以及非线性处 理能力。

2.2. CFFLNN 的非线性自适应均衡器的结构

在数字通信系统中,非线性信道可以看成线性 失真 L 和非线性失真 N 级联而成(图3),同时由于 函数型神经网络均衡器的稳态误差较低,其非线性 处理能力甚至比传统神经网络(如多层感知机,径向 基神经网络等)更强,而横向滤波器的收敛速度较 快,因此,结合它们各自的优点,构造了一种新型非 线性自适应均衡器——CFFLNN,进一步提高非线性 均衡器的均衡性能,如加快收敛速度,以及降低稳态 误差.CFFLNN结构如图4所示.

图 3 非线性信道模型

图 4 组合神经网络自适应均衡器结构图

文献 28 中已经根据泛函分析中压缩定理证明 了函数型连接神经网络逼近任意函数能力.现根据 函数型连接神经网络逼近能力,考虑一个基函数集 合 $B = \{\varphi_i \in L(A)\}_{i \in I}, I = \{1, 2, ...\},并满足如下$ 性质:

 $1)\varphi_1 = 1;$

2)子集 $B_j = \{\varphi_i \in B\}_{i=1}^{N_1}$, $I = \{1, 2, ...\}$ 是线 性独立的 ,即如果 $\sum_{i=1}^{N_1} w_i \varphi_i = 0$,则 $w_i = 0$, i = 1, 2, ..., N_1 ;

$$3 \operatorname{sup} \left[\sum_{i=1}^{j} \| \varphi_i \|_A^2 \right]^{1/2} < \infty.$$

选择子集 $B_N = \{\varphi_i \in B\}_{i=1}^{N_1}, I = \{1, 2, ...\}$ 作为 图 4 中扩展的基函数 ,有 N_1 个基函数组成新的输 入向量 $X(k) \in B_N$:

$$X(k) = [\varphi_1(k)\varphi_2(k)...\varphi_{N_1}(k)].$$
(1)

设 $RX(k) = [x(k)x(k-1)...x(k-m+1)]^{r}$ $\in A \subset R^{n}$ 是输入向量,函数型连接神经网络的权系 数向量为

$$W_1(k) = [w_1(k)w_2(k) \dots w_{N_1}(k)]^{T}$$

则神经网络的输出为

$$\mathscr{L}(k) = \gamma(k) \cdot S\left(\sum_{i=1}^{N_1} w_i(k)\varphi_i(RX(k))\right)$$
$$= \gamma(k) \cdot S(W_1(k)^T X(k)), \quad (2)$$

其中,参数 $\gamma(k)$ 是用来调整幅度值的变化,而S(u)(k))为非线性函数 tanh 并定义为

$$S(u(k)) = \frac{2}{1 + e^{-\mathcal{L}(k)}} - 1$$
, (3)

显然, *S*(*u*(*k*))∈[-1,1],*S*(*u*(*k*))在 Matlab 中可 用正切函数(tanh)表示,其导数可用正切求导函数 (1-tanh²)表示.

然后考虑横向滤波器部分,如图 4 所示, N₂ = m,此时横向滤波器的输出为

$$z_{1}(k) = \sum_{i=1}^{m} w_{N_{1}+i}(k) x(k-i+1)$$
$$= W_{2}(k)^{T} R X(k), \qquad (4)$$

其中

 $W_{2}(k) = [w_{N_{1}+1}(k)w_{N_{1}+2}(k) \dots w_{N_{1}+m}(k)]^{r}.$

则基于组合神经网络非线性均衡器的输出为

 $y(k) = \lambda(k)(k) + (1 - \lambda(k))z_1(k), (5)$ 其中当 $\lambda(k) = 0$ 和 $1(0 \le \lambda(k) \le 1$)时,该均衡器实际上分别就是横向滤波器和函数型连接神经网络均衡器.当 $\lambda(k)$ 在初始化时取极小值时,这时基本上由 $z_1(k)$ 占主导地位因此均衡器很快收敛.同时,由于 $\lambda(k)$ 自适应调整,逐渐变大,此时,占主导地位的是函数型连接神经网络因此稳态误差继续降低直至稳定.

2.3. 自适应算法

在现有的各种自适应算法中,输入信号和瞬时 误差归一化的 LMS(NLMS)自适应算法具有良好的 自适应性能,且控制收敛的参数选择范围大,能够直 接应用于存在相关和不相关信号背景下的非线性自 适应滤波器.因此利用误差信号 e(k)来抽头系数 $W_1(k), W_2(k)$,幅度 $\gamma(k)$ 以及参数 $\lambda(k)$ 的自适应 变化.

令误差为 d(k) = d(k) − y(k),并定义瞬间代 价函数

$$E(k) = \frac{1}{2}(e(k))^{2}, \qquad (6)$$

而其中均衡器的输出 y(k)重新定义为

$$y(k) = \lambda(k)\chi(k) + (1 - \lambda(k))z_{1}(k)$$

$$= \lambda(k)\gamma(k)S(W_{1}(k)^{T}X(k))$$

$$+ (1 - \lambda(k))W_{2}(k)^{T}RX(k), (7)$$
4f characteristic structure is the structure is th

$$\gamma(k + 1) = \gamma(k) + \eta_3 e(k) (\lambda(k)) \times S(W_1(k)^T X(k)), \quad (14)$$

$$\lambda(k + 1) = \lambda(k) + \eta_4 e(k) \times (z(k) - z_1(k)).$$
(15)

为克服 NLMS 梯度噪声的影响,可以将(12), (13) 武修改为

$$W_{1}(k + 1) = W_{1}(k) + \eta_{1} \epsilon(k) \lambda(k) \gamma(k) \\ \times S'(k) \lambda(k) \frac{1}{(\delta + || X(k) ||^{2})}, (16)$$
$$W_{2}(k + 1) = W_{2}(k) + \eta_{2} \epsilon(k) (1 - \lambda(k))$$

$$\times RX(k) \frac{1}{(\delta + || RX(k) ||^2)}, (17)$$

其中, η_i (*i* = 1,2,3,4)为控制收敛的步长因子; $\delta > 0$,当 $\delta = 0$ 时(16)(17)式分别变成(12)(13)式. 新型结构的非线性自适应均衡器的自适应算法归纳如下:

1)初始化参数.

2)Fork = m: M(m 表示输入信号的维数, M 表 示训练的样本数)

计算输入信号的交叉乘积项;

end

得到扩展输入 X(k);

根据(7)式计算出 y(k)以及 e(k);

 根据(14)(15)(16)以及(17)式更新 γ(k),λ (k),W,(k),W,(k);

end(训练循环结束).

3) 根据训练结果绘制出各种性能图形.

2.4. 自适应算法稳定性分析

根据归一化 LMS 滤波器算法准则,由(12)式计 算得到权系数向量 $\hat{W}_1(k)$ 是对系统的未知参数向 量 W_1 的估计.相应的失配用加权误差向量

$$\varepsilon_1(k) = \hat{W}_1(k) - W_1 \qquad (18)$$

来衡量.因此,从 W1 中减去(12)式,可以得到

 $\varepsilon_1(k+1) = \varepsilon_1(k) - \eta_1 e(k)\lambda(k)\gamma(k)$

× S'(k)X(k)
$$\frac{1}{\|X(k)\|^2}$$
, (19)

而 NLMS 的基本思想是对权系数向量 $\hat{W}_{1}(k+1)$ 强 加约束的条件下对 k 次迭代到 k+1 次迭代的权系 数向量的增量变化 $\hat{W}_{1}(k+1) - \hat{W}_{1}(k)$ 最小化.根据 这个思想,记均方偏差

 $D_1(k) = E[\|\epsilon_1(k)\|^2],$ (20) 并进行 NLMS 算法稳定性分析. 对上式两边取平方 欧氏范数,并取数学期望后可得

$$D_{1}(k+1) - D_{1}(k)$$

$$= \eta_{1}^{2} \lambda(k) (k) S'(k) f E\left[\frac{|e(k)|^{2}}{||X(k)||^{2}}\right]$$

$$- 2\eta_{1} \lambda(k) (k) S'(k) E\left[\frac{e(k) X(k) \varepsilon_{1}(k)}{||X(k)||^{2}}\right]. (21)$$

从上式容易看出,均方偏差 D₁(k)随迭代次数 k 指 数减小,因此 NLMS 均衡器在均方误差意义下是稳 定的(即收敛过程是单调),只要步长参数 η, 的界为

$$0 < \eta_{1} < 2 \frac{E\left[\frac{\epsilon(k)X(k)\epsilon_{1}(k)}{\|X(k)\|^{2}}\right]}{\lambda(k)(k)K(k)E\left[\frac{1}{\|X(k)\|^{2}}\right]} (22)$$

而均方偏差 D₁(k)的最大值在此定义区间的中点得 到 因此 最优步长参数为

$$\eta_{1\text{opt}} = \frac{E\left[\frac{e(k)X(k)\varepsilon_{1}(k)}{\|X(k)\|^{2}}\right]}{\lambda(k)\gamma(k)S'(k)E\left[\frac{|e(k)|^{2}}{\|X(k)\|^{2}}\right]}$$

$$\approx \frac{D_1(k)E[X^2(k)]}{\lambda(k)\gamma(k)S'(k)E[e^2(k)]}.$$
 (23)

同理 ,可以得到系统稳定情况下 ,参数 η_2 的取 值范围

$$0 < \eta_{2} < 2 \frac{E\left[\frac{e(k)RX(k)\varepsilon_{2}(k)}{\|RX(k)\|^{2}}\right]}{(1 - \lambda(k))E\left[\frac{|e(k)|^{2}}{\|RX(k)\|^{2}}\right]} (24)$$

以及最优步长参数为

$$\eta_{2\text{opt}} = \frac{E\left[\frac{e(k)RX(k)\varepsilon_{2}(k)}{\|RX(k)\|^{2}}\right]}{(1 - \lambda(k))E\left[\frac{|e(k)|^{2}}{\|RX(k)\|^{2}}\right]}$$

$$\approx \frac{D_2(k)E[KX(k)]}{(1-\lambda(k))E[e^2(k)]}.$$
 (25)

该均衡器的自适应算法收敛同时也是由参数 λ(k)控制 ,为了取得收敛 ,使 | e(k))→0 ,λ(k)→1 , 当 k→∞.则有

 $\frac{\partial x(k)}{\partial W(k)} = \gamma(k)S'(W(k)^{T}X(k))X(k), (26)$ 遵循文献 29 跲出方法,可以得到

$$| e(k + 1) | \leq |1 - \eta_1 \gamma^2(k) \lambda^2(k) \\ \times [S'(W(k)^T X(k))]^2 \\ \times || X(k) ||^2 || e(k) |, (27)$$

则

$$1 - \eta_1 \gamma^2 (k) \lambda^2 (k)$$

×[S'(W(k)^{*}X(k))]^{*} ||X(k)||² | < 1.(28)</p>
为使该均衡器算法收敛,则下面式子成立:

 $0 < \gamma^2 (k)$

而参数 λ(k)主要控制收敛速度,其初始值应取极小的正值,使横向滤波器占主导地位.同时随着误差的 控制,其逐渐趋近1附近,从而使函数型连接神经网 络占主要地位,控制稳态误差.

3. 计算机仿真以及性能分析

为了验证本文提出的非线性自适应均衡器在混 沌通信系统中的性能.采用 Hénon 映射的混沌系统

$$x_1(k+1) = 1 - \alpha_1 x_1^2(k) + x_2(k)$$
, (30)

$$x_2(k+1) = \alpha_2 x_1(k), \qquad (31)$$

其中,分岔参数 $\alpha_1 = 1.4$, $\alpha_2 = 0.3$.选择 $x_2(k)$ 作为 发射信号,无噪情况下的 Hénon 混沌系统吸引子见 图 5.

图 5 发射信号混沌的吸引子

$$H(z) = 1 + 0.5Z^{-1}$$
, (32)

图 6 混沌信号通过线性信道受到干扰畸变的吸引子图 (a)通过线性信道的畸变混沌信号吸引子 (b)加入10 dB 的噪声的畸变混沌信号吸引子

Hénon 映射发射信号通过该信道的混沌信号的 吸引子见图 f(a),信道输出加上 10 dB 噪声后的混 沌信号吸引子见图 f(b),可见混沌信号通过信道后 发生了严重的畸变.在仿真时,CFFLNN 和 FLNN 分 别取 m = 10,函数扩展阶数取 3 阶;LOPAE(neural legendre orthogonal polynomial adaptive equalizer)取 N_1 = 10, Legendre 多项式部分取 5 阶.采用 2000 个信号 进行训练,1000 个信号进行验证均衡器.在仿真中, CFFLNN 的各个参数取值如下: $\eta_1 = 0.9$, $\eta_2 = 0.9$, η_3 = 0.8, $\eta_4 = 0.8$,且 λ (k)的初始值为 0.00001;而 FLNN 的学习率参数取值为 0.9;NLOPAE 的两个权 系数学习率取值为 0.6 和 0.5.

图 7 无噪声时 信号分别通过三种非线性均衡器的性能图(线性信道)(a)通过 CFFLNN 均衡信号的混沌吸引子(b)通过 FLNN 均衡信号的混沌吸引子(c)通过 NLOPAE 均衡信号的混沌吸引子(d)均方误差(MSE)比较图

当发射信号经过传递函数为(32)式的线性信 道,加入10dB噪声或不加入噪声,分别通过三种非 线性均衡器的性能如图7和8所示(包括各种均衡 器的均衡信号的混沌吸引子以及均方误差(MSE)比 较图).不管是否加入噪声,从图7和8的各种均衡 器的均衡信号的混沌吸引子图可以明显看出, CFFLNN 自适应均衡器能够比较好地恢复出发射信 号,其次是FLNN和NLOPAE.对于MSE比较图也可 以看出,CFFLNN明显比其他两个均衡器收敛快,能 够在100个样本点快速收敛,且稳态误差也较低;而 FLNN和 NLOPAE 的收敛速度和稳态误差相当.因 此,CFFLNN能够有效的消除线性干扰.并且从图7 和8恢复信号的吸引子图也可以看出,噪声的加入, 对混沌信号恢复的质量有一定程度的影响.

3.2. 非线性信道

$$\hat{s}(k) = 0.3482x(k) + 0.8704x(k-1) + 0.3482x(k-2), \quad (33)$$

 $s(n) = \hat{s}(n) + a_1 \hat{s}(n)^2 + a_2 \hat{s}(n)^3$, (34)

其中 $a_1 = 0.2$, $a_2 = -0.1$, 其非线性信道模型如图 9 所示. Hénon 映射发射信号通过该信道的混沌吸引 子见图 10(a),信道输出加上 10 dB 噪声后的混吸引 子见图 10(b).发射信号经过图 9 所示的非线性信 道,在加入 10 dB 噪声或不加入噪声的情况下,分别 得到三种非线性均衡器的性能比较图,如图 11 和 12 所示(包括各种均衡器的均衡信号的混沌吸引子

图 8 当加入 10 dB 噪声时,信号分别通过三种非线性均衡器的性能图(线性信道)(a)通过 CFFLNN 均衡信号的混沌吸引 子(b)通过 FLNN 均衡信号的混沌吸引子(c)通过 NLOPAE 均衡信号的混沌吸引子(d)均方误差(MSE)比较图

以及均方误差比较图).

图 9 非线性信道模型

从图 11 和 12 的各种均衡器的均衡信号的混沌 吸引子图可以明显看出,无论是否加入噪声, CFFLNN 自适应均衡器能够比较好的恢复出发射信 号,其次是 FLNN 和 NLOPAE.对于 MSE 比较图也可 以看出,CFFLNN 明显比其他两个均衡器收敛快,能 够在 200 个样本点快速收敛,且稳态误差也较低;而 FLNN和 NLOPAE 的收敛速度和稳态误差相当.因 此,对于非线性信道,CFFLNN能够较好地重构出发 射信号,并能有效的消除非线性干扰.

3.3. CFFLNN ,FLNN 和 NLOPAE 的计算量和训练 时间比较

从表 1 可以看出,非线性均衡器计算量依次减 少顺序为 CFFLNN,FLNN 和 NLOPAE,但是当输入维 数为 10 时,计算量相差不大,训练所需时间也相当. 因此,可以通过增加少量的计算复杂度为代价,而得 到较理想的均衡效果,且该均衡器的结构简单比较 容易硬件实现.

图 10 混沌信号通过非线性信道受到干扰畸变的吸引子图 (a)通过非线性信道的畸变混沌信号吸引子 (b)加入 10 dB 的 噪声的畸变混沌信号吸引子

图 11 无噪声时,信号分别通过三种非线性均衡器的性能图(非线性信道)(a)通过 CFFLNN 均衡信号的混沌吸引子(b) 通过 FLNN 均衡信号的混沌吸引子(c)通过 NLOPAE 均衡信号的混沌吸引子(d)均方误差(MSE)比较图

图 12 当加入 10 dB 噪声时,信号分别通过三种非线性均衡器的性能图(非线性信道) (a)通过 CFFLNN 均衡信号的混沌 吸引子 (b)通过 FLNN 均衡信号的混沌吸引子 (c)通过 NLOPAE 均衡信号的混沌吸引子 (d)均方误差(MSE)比较图

	· · · · ·			
非线性均衡器	CFFLNN	FLNN	NLOPAE	
加法/次	$m^2 + 7m + 1 = 171$	$m^2 + 5m + 1 = 151$	2 ×(10 + 8 × 8)= 148	
乘法/次	$2m^2 + 6m + 1 = 261$	$2m^2 + 4m + 1 = 241$	$2 \times (10 \times 10 + 6 \times 3) = 236$	
tanh/次	1	1	1	
训练时间/s	3.8550	3.7750	3.5650	

表 1 CFFLNN ,FLNN 和 NLOPAE 的计算量和训练时间比较

注:仿真所使用计算机配置为 CPU, 主频为 1 GHz, 内存为 256 Mbit 的 Pentium 4 系列 PC 机.

4.结 论

本文根据混沌信号 Taken 相空间重构理论,针 对基于混沌的通信系统的非线性信道均衡问题,结 合横向滤波器结构简单、收敛速度快以及函数型连 接神经网络扩展输入空间的各自优点,构造了一种 新型非线性自适应均衡器——横向滤波器与函数型 连接神经网络组合的均衡器,进一步提高混沌通信 系统中非线性均衡器的均衡性能.计算机仿真结果 比较表明:此结构虽然增加了少量横向滤波器的计 算量,但是能够有效的提高均衡性能 较好的重构出 混沌信号,消除线性和非线性干扰,提高收敛速度, 进一步降低稳态误差.并且该非线性结构简单,硬件 容易实现和推广.

- [1] Oppenheim A V, Cuomo K M, Barson R J, Fredman A E 1996 Chaotic , Fractal and Nonlinear Signal processing (New York : AIP Press) p289
- [2] Ciftci M ,Williams D B 1999 ICASSP (Phoenix : IEEE Press) p1301
- [3] Cuomo K M ,Oppenheim A V ,Barron R J 1996 ICASSP (Atlanta : IEEE Press) p1605
- [4] Sharma N ,Ott E 1998 Phys. Lett. A 248 862
- [5] Zhun Z ,Leung H 2001 IEEE Trans (Circuits and Sysmetrms-part I)48 979
- [6] Mathews V J 1991 IEEE Signal Pro. p10
- [7] Schetzen M 1989 The Volterra and Wiener Theories of Nonlinear Systems(Malabar, Florida :Robert E. Krieger Publishing Company)
- [8] Chon Ki H ,Holstein-Rathlou N H ,Marsh D J ,Marmarelis V Z 1998 IEEE Trans On Nerual Networks 9 127
- [9] Zhang J S, Xiao X C 2001 Journal of China Institute of Communications 22 93 (in Chinese)[张家树、肖先赐 2001 通信 学报 22 93]
- [10] Zhang J S Xiao X C 2001 Acta Phys. Sin. 50 2121 (in Chinese) [张家树、肖先赐 2001 物理学报 50 2121]
- [11] Mu J ,Tao C ,Du G H 2003 Chin . Phys . 12 381
- [12] Lu J G Xi Y G 2005 Chin. Phys. 14 274
- [13] Wang B Y 2004 Chin. Phys. 13 329
- [14] Ye M Y , Wang X D , Zhang H R 2005 Acta Phys. Sin. 54 2568 (in Chinese) [叶美盈、王晓东、张浩然 2005 物理学报 54 2568]

- [15] Zhao H Q ,Zhang J h ,Xie M Y ,Zeng X P 2006 ICICIC 2006 (Beijing : IEEE Press) p710
- [16] Deng X H Zhang J S 2005 Journal of Southwest Jiaotong University 40 163 (in Chinese) [邓晓红、张家树 2001 西南交通大学学报 40 163]
- [17] Zhao H Q Zhang J S Zeng X P 2007 Acta Physica Sinica 56 1975 (in Chinese)[赵海全、张家树、曾祥萍 2007 物理学报 56 1975]
- [18] Feng J C ,Lu R 2002 Chin . Phys . Lett . 19 302
- [19] Feng J C ,Tse C K ,Lau C M 2003 IEEE Trans 50 954
- [20] Feng J C , Tse C K 2001 Phys. Rev. 63 026202 :1
- [21] Feng J C ,Qiu Y H 2004 Chin . Phys . Lett . 21 250
- [22] Chen S Gibson G J Cowan C F N 1990 Proc. Inst. Elect. Eng. 137 257
- [23] Pao Y H 1989 MA :Addision-Wesley
- [24] Panda G ,Das D P 2003 IWAWNC '03 Kyoto. Japan p163
- [25] Patra J C ,Pal R N 1995 Signal Process 43 181
- [26] Patra J C ,Pal R N 1999 IEEE Trans . Syst . 29 262
- [27] Patra J C ,Pal R N ,Chatterji B N ,Panda G 1999 IEEE Trans . Syst . 29 254
- [28] Sadegh N 1993 IEEE Trans. Neural Networks 4 982
- [29] Mandie D P , Hanna A I , Razaz M 2001 IEEE Signal Proc. Lett. 8 295

Adaptive nonlinear channel equalization based on combination neural network for chaos-based communication systems *

Zhao Hai-Quan Zhang Jia-Shu

(Key Laborary of Signal and Information Processing of Sichuan Province ,Southwest Jiaotong University ,Chengdu 610031 ,China)
 (Received 15 December 2007 ; revised manuscript received 27 December 2007)

Abstract

For nonlinear channel distortions of chaos-based communication systems based on the analysis of the theory of chaotic signal reconstruction and the characteristics of transversal filter and functional link neural network (FLNN), a novel nonlinear adaptive equalizer with the architecture of combination of transversal filter and functional link neural network (CFFLNN) is proposed in this paper. The novel nonlinear equalizer fully utilizes faster convergence characteristics of transversal filter and the nonlinear approximation capability of FLNN by function expansion due to enhanced input space. Furthermore the performance of the novel nonlinear adaptive equalizer is also improved. Finally the proposed equalizer is designed and its adaptive algorithm is deduced by the low complexity normalized least mean square (NLMS) method. And an analysis of stability and convergence for the derived algorithm is provided. To illustrate the analysis the analysis obtained from the computer simulation are also provided for both linear and nonlinear channels in chaos-based communication system.

Keywords : nonlinear channel , adaptive equalizer , chaotic attractor , neural network PACC : 0545

^{*} Project supported by National Natural Science Foundation of China (Grant No. 60572027) and by the Program for New Century Excellent Talents in University (Grant No. NCET-05-0794).