低能电子与氮分子碰撞振动激发动量 迁移截面的研究*

于江周1) 冯 灏2 为卫国1 法

1) 四川大学原子分子物理研究所,成都 610065)
 2) 四川大学物理科学与技术学院,成都 610065)
 (2007年8月30日收到2007年12月4日收到修改稿)

采用作者改进的振动密耦合方法和基于量子力学从头计算的静电势、交换势、相关极化势,研究了低能电子与 N₂ 振动激发散射动量迁移截面.计算结果与试验符合较好.

关键词:动量迁移截面,低能电子,分子碰撞,振动激发 PACC:3480B

1.引 言

低能电子和分子相互作用的研究,已经有半个 多世纪的历史,是了解分子内部结构的重要手段^[1]. 低能电子与 N_2 碰撞,在气体激光器、等离子体、大气 物理等方面都有重要意义^[2-5].相关理论计算方法 很多,比较有代表性的有 Huo 等人的 Schwinger 方 法^[6,7],Weatherford 和 Temkin 的杂化理论^[8],Gillan 等人的 *R* 矩阵方法^[9],Dube 和 Herzenberg 的飞镖模 型^[10],Morrison 和 Saha 等人的密耦合方法^[11-13],都 取得了不错的计算结果.

散射结果可以通过微分截面、积分截面或动量 迁移截面表示出来^[14]. 微分截面(differential cross sections, DCS) 描述不同散射角度(0°—180°)下某一 能量的散射截面 积分截面(total cross sections, TCS) 是坐标空间中总的散射截面;动量迁移截面 (momentum transfer cross sections, MTCS)是在动量空 间中总的散射截面. 试验中直接测量到的是微分截 面,为了便于比较,通常计算结果都是微分截面. 动 量迁移截面能够直接描述动量空间中散射截面随入 射电子能量变化,对于电子分子散射研究有非常重 要的意义. 本文采用作者改进振动密耦合散射方法 和基于量子力学从头计算的静电势、交换势、相关极 化势,计算出低能电子与 N₂ 散射在共振区产生的动 量迁移截面^[15],与试验结果符合较好.

2. 理论计算

振动耦合散射方程^{14]}

$$\left[\frac{d^{2}}{dr^{2}} - \frac{l(l+1)}{r^{2}} - 2V_{vl,vl}^{\Lambda}(r) + k_{v}^{2}\right]u_{vl,v_{0}l_{0}}^{\Lambda}(r)$$

$$= 2\sum_{v', t' \neq v, l} \left[V_{vl,v'}^{\Lambda}(r)u_{v'l',v_{0}l_{0}}^{\Lambda}(r)\right], \qquad (1)$$

非相对论下,电子分子相互作用是电子与分子电子、 电子与原子核的电磁相互作用,具体过程非常复 杂^[16].为了便于计算,通常取一些近似势能代替,如 (1)式中的 V^A_{d,x}(r).势能 V^A_{d,x}(r)可分解为三项: 静电势、交换势、相关极化势,即

 $\hat{V}_{int} = \hat{V}_{st} + \hat{V}_{pol} + \hat{V}_{ex}$, (2) 静电势 \hat{V}_{st} 是入射电子与未发生形变分子电荷分布 之间库仑相互作用,其中包括电子与电子、电子与原 子核相互作用

$$\hat{V}_{st} = V_{ee}(r,R) + V_{en}(r,R),$$
 (3)

其中

$$V_{ee}(\mathbf{r}, \mathbf{R}) = \int \cdots \int_{N_e} |\varphi_{a0}(\mathbf{r}_i, \mathbf{R})|^2$$

^{*}国家自然科学基金(批准号:10504022)资助的课题.

[†] E-mail :ddsteed@163.com

[‡] E-mail : weiguosun@x263.net

$$\times \sum_{i=1}^{N_e} \frac{1}{|\mathbf{r} - \mathbf{r}_i|} d\mathbf{r}_1 ... d\mathbf{r}_{N_e} , \quad (4)$$

$$V_{\text{en}}(\mathbf{r}, \mathbf{R}) = -\sum_{n=1}^{\infty} \frac{Z_n}{|\mathbf{r} - \mathbf{R}_n|}.$$
 (5)

极化势 \hat{V}_{pol} 是分子电子激发态虚激发效应的结果^[17]本文采用 Morrison 等人提出的优于绝热偶极 (better-than-adiabatic-dipole, BTAD)极化势.在 Born-Oppenheimer 近似下,绝热哈密顿算符为

$$H^{AD} = H_{m}^{(e)} + V_{em}$$

$$= \hat{H}_{m}^{(e)} + \sum_{i=1}^{N_{e}} \frac{1}{|r - r_{i}|} - \sum_{n=1}^{N_{n}} \frac{Z_{n}}{|r - R_{n}|} .(6)$$

采用非贯穿近似后

$$\frac{1}{|\boldsymbol{r} - \boldsymbol{r}_i|} = \begin{cases} \frac{r_i}{r^2} \cos\theta , & r_i \leq r \\ 0 & r_i \geq r \end{cases}$$
(7)

交换势 \hat{V}_{ex} 是整个体系反对称化波函数的要求, 本文采用可调自由电子气模型(tune free-electron gas exchange, TFEGE)

$$V_{\rm ex}^{\rm tfege}(\mathbf{r}) = -(2\pi)k_{\rm F}F(\eta),$$
 (8)

$$F(\eta) = \frac{1}{2} + \frac{1 - \eta^2}{4n} \ln \left| \frac{1 + \eta}{1 - \eta} \right| , \qquad (9)$$

$$\eta = [K(\mathbf{r})/k_{\mathrm{r}}(\mathbf{r})], \qquad (10)$$

$$K(\mathbf{r})^2 = k^2 + k_{\rm F}(\mathbf{r})^2 + 2I, \qquad (11)^2$$

$$k_{\rm F}(\mathbf{r}) = [3\pi^2 \rho(\mathbf{r})]^{1/3}$$
, (12)

其中, k 是入射电子能量, p(**r**)是分子体系电荷密度. I 就是模型中的可调参数,与分子核间距和对称性有关.

采用固定核取向(fixed nuclear orientation, FNO) 近似,即固定分子转动,在实验室坐标系中将微分散 射截面向 Legendre 多项式展开

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mid_{\nu_0 \to \nu} \equiv \frac{1}{4k_0^2} \sum_{L=0}^{L_{\mathrm{max}}} B_L (\nu_0 \to \nu) P_L (\cos\theta') ,$$
(13)

其中, θ' 是实验室坐标系下散射角.系数 B_1 (ν_0 → ν)与角度无关,具体表达式如下:

$$B_{\rm L}(\nu_0 \rightarrow \nu) = \sum_{\Lambda \overline{\Lambda}} \sum_{\overline{ll}} \sum_{l_0 \overline{l}_0} d_L(ll_0, \overline{ll}_0; \Lambda \overline{\Lambda}) \times T^{\Lambda}_{ll_{l_0}\nu_0 l_0} T^{\overline{\Lambda}^*}_{\overline{ll}, \nu_0 \overline{l}_0}, \qquad (14)$$

其中 T^{Λ}_{tl,v_0l_0} 为振动散射 BF(Body-Fixed)下 T 矩阵 (转换矩阵)矩阵元

$$T^{A} = K^{A}(1 - iK^{A})^{-1}$$
, (15)
式中 BF下 K 矩阵来自 BF-FNO 径向散射波函数渐

进表达式

$$u_{vl \,v_0 \,l_0}^{\Lambda}(r)_{r \to \infty} \sim \hat{j}_{l_0}(\kappa_0 r) \delta_{l \,l_0} \delta_{v \,v_0}$$
$$+ \left[\frac{\kappa_0}{\kappa_v}\right]^{1/2} \hat{n}_l(\kappa_v , r) K_{vl \,v_0 \,l_0}^{\Lambda}. \qquad (16)$$

其中 C是 CC (Clebsh-Gordan) 係数. 动量迁移截面为

$$\sigma_{\nu_0 \to \nu}^{\rm m} = 2\pi \int_0^{\pi} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \left(1 - \frac{k_v}{k_0} \cos\theta'\right) \sin\theta' \,\mathrm{d}\theta' \,. (18)$$

将(13) 式代入上式,利用 Legendre 多项式正交归一 性得到

$$\sigma_{\nu_0 \to \nu}^{\rm m} = \frac{\pi}{k_0^2} \Big[B_0(\nu_0 \to \nu) - \frac{1}{3} B_1(\nu_0 \to \nu) \Big] .$$
(19)

3. 计算过程和结果讨论

实际计算中,为了方便计算(2)式中各个势能, 首先取 14 个不同的固定核间距 *R*(单位为 *a*₀): 1.60,1.07,1.80,1.85,1.90,1.95,2.00,2.02,2.068, 2.010,2.20,2.30,2.40,2.50,采用相应波函数算出 固定核间距相互作用势;然后对静电势、交换势、相 关极化势耦合,计算出耦合势能.同样为了便于计 算 *將*(16)式中 *T*矩阵按 *Λ* 宇称分块对角化,其中 |*Λ*|=0,1,2,....由于截面随 *Λ* 的增大而迅速减 小 本文在计算中仅选取了前四个对称性(见表 1).

表1 对称性与 A 和 l 的对应关系

对称性	Λ	l
$\Sigma_{ m g}$	0	$l = 0 2 4 \dots$
Σ_{u}	0	$l = 1 \ 3 \ 5 \ \dots$
$\pi_{ m g}$	1	$l = 2 \ A \ 6 \ \dots$
π_{u}	1	$l = 1 \ 3 \ 5 \ \dots$

分别计算出各对称性散射截面后,耦合得到总的散射截面(见图1).

通过图 1 可以看出 , P_g 对称性有一个共振峰 , 决定了总截面的多峰结构 . S_g 对称性相对平缓 ,在

图 1 固定核间距 $R = 2.02a_0$ 时各对称性的散射截面

总的散射能量范围内,贡献都非常大.P_u,S_u虽然 随入射电子能量的增大而有所增大,但对散射截面 的贡献依然较小.

散射过程中存在分子的振动激发,产生散射截 面 0→0 0→1 和 0→2 动量迁移截面(见图 2).

图 2 0→0 0→1 和 0→2 动量迁移截面

从图 2 可以清楚看出,弹性散射截面相对其他 激发截面要大很多,而激发态的散射截面仅仅在共 振区域比较明显.当入射电子能量太低时(< 1.5 eV),不足以引起分子振动激发,也就没有散射截 面;当入射电子能量太高时(>4 eV),振动激发的概 率也会变低,散射截面也较小.

相对于弹性散射,0→1和0→2对截面的贡献 较小,并且衰减较快,因此取0→0,1,...,7,八个振 动态,已经完全可以保证截面收敛.将0→0,...,7 八个振动态截面进行求和,得到总的截面,如表2.

能量/eV	MTCS/ Å ²	能量/eV	MTCS/ Å ²	能量/eV	MTCS/ Å ²	能量/eV	MTCS/ Å ²
1.00	9.793	2.26	27.986	2.88	18.489	3.50	13.258
1.10	9.827	2.28	24.595	2.90	17.879	3.55	12.833
1.20	9.872	2.30	21.980	2.92	17.687	3.60	12.794
1.30	9.949	2.32	20.386	2.94	17.897	3.65	12.787
1.40	10.089	2.34	19.794	2.96	18.460	3.70	12.502
1.50	10.347	2.36	20.137	2.98	19.263	3.75	12.023
1.55	10.550	2.38	21.380	3.00	20.110	3.80	11.568
1.60	10.832	2.40	23.498	3.02	20.749	3.85	11.258
1.65	11.232	2.42	26.373	3.04	20.973	3.90	11.099
1.70	11.828	2.44	29.597	3.06	20.717	3.95	10.988
1.75	12.729	2.46	32.308	3.08	20.067	4.00	10.822
1.80	14.213	2.48	33.422	3.10	19.188	4.05	10.595
1.85	16.820	2.50	32.418	3.12	18.243	4.10	10.356
1.90	21.129	2.52	29.828	3.14	17.348	4.15	10.145
1.92	22.858	2.54	26.707	3.16	16.571	4.20	9.985
1.94	23.672	2.56	23.874	3.18	15.953	4.25	9.867
1.96	22.973	2.58	21.714	3.20	15.511	4.30	9.761
1.98	21.134	2.60	20.332	3.22	15.255	4.35	9.643
2.00	19.179	2.62	19.727	3.24	15.181	4.40	9.514
2.02	17.798	2.64	19.879	3.26	15.270	4.45	9.387
2.04	17.163	2.66	20.762	3.28	15.475	4.50	9.275
2.06	17.219	2.68	22.300	3.30	15.721	4.55	9.182
2.08	17.895	2.70	24.264	3.32	15.913	4.60	9.099
2.10	19.171	2.72	26.183	3.34	15.971	4.65	9.020
2.12	21.071	2.74	27.416	3.36	15.858	4.70	8.940
2.14	23.624	2.76	27.492	3.38	15.589	4.75	8.862
2.16	26.753	2.78	26.433	3.40	15.209	4.80	8.788
2.18	30.057	2.80	24.678	3.42	14.775	4.85	8.720
2.20	32.597	2.82	22.736	3.44	14.333	4.90	8.658
2.22	33.157	2.84	20.959	3.46	13.919	4.95	8.600
2.24	31.305	2.86	19.522	3.48	13.556	5.00	8.545
2 1	8 0 1						

表 2 不同入射能量下的动量迁移截面

注:1Å=0.1 nm.

4.结 论

从图 3 可以看出 ,无论是在振动激发共振区 ,还

是在两端非共振区,试验值和理论计算值都符合较 好. 作者改进的振动密耦合方法,在研究低能电子 分子碰撞时,比较准确、有效. 密耦合方法中,振动 分波数(nl)和振动态(nv)的选取对结果收敛性有一 定影响(1)式中 $V^{A}_{d,a'l}(r)$ 和 $u^{A}_{d,v_{0}l_{0}}(r)$ 是 $nl \times nv$ 散 射矩阵,因此nl,nv的增大会迅速增加计算量,花费 大量计算时间,必须确定合适的数值. 在本文计算 过程中,振动分波nl = 18、振动态nv = 20,完全可以 保证截面收敛性^[19—21]. 静电势、相关极化势和交换 势的计算结果决定最终散射截面的大小,如何进一 步准确计算三项势能,将是研究低能电子与 N₂ 散射 的重要内容.

- Blat t J M, Weisskop V F 1952 Theoretical Nuclear Physics (New York : John Wiley & Sons, Inc.)
- [2] Hoffman K R , Dabaneh M S , Hsieh Y F , Kauppila W E et al 1982 Phys. Rev. A 25 1393
- [3] Liu X M, Shemansky D E, Ciocca M, Kanik I, Ajello J M 2005 American Astronomical Society 623 1
- [4] Brunger M J, Teubner P J O 1990 Phys. Rev. A 41 1413
- [5] Allan M 2005 J. Phys. B 38 3655
- [6] Huo W M, Mckoy V, Lima M A P 1986 Progress in Astronautics and Aeronautics 103 152
- [7] Huo W M, Gibson T L, Lima M A P 1987 Phys. Rev. A 36 1642
- [8] Weatherford C A, Temkin A 1994 Phys. Rev. A 49 2580
- [9] Gillan C J , Nagy O , Burke P G 1987 J. Phys. B : At Mol. Phys.
 20 4858
- [10] Dube L , Herzenberg A 1979 Phys. Rev. A 20 194
- [11] Morrison M A, Saha B C 1986 Phys. Rev. A 34 2796
- [12] Sun W G , Morrison M A , Isaacs W A et al 1995 Phys. Rev. A 52 1229
- [13] Feng H , Sun W G , Morrison M A 2003 Phys. Rev. A 68 062709

- [14] Morrison M A, Sun W G, Isaacs W A, Trial W K 1997 Phys. Rev. A 55 2786
- [15] Sun W G , Morrison M A , Isaacs W A , Trail W K et al 1995 Phys. Rev. A 52 1229
- [16] Hu S D, Sun W G, Ren W Y, Feng H 2006 Acta Phys. Sin. 55 2186 (in Chinese)[胡士德、孙卫国、任维义、冯 灏 2006 物理 学报 55 2186]
- [17] Gibson T L, Morrison M A 1984 Phys. Rev. A 29 2497
- [18] Haddad G N 1984 J. Phys. 37 487
- [19] Shen L, Dai W et al 2006 Chin. J. At. & Mole. Phys. 23 231 (in Chinese)[申 立、戴 伟等 2006 原子与分子物理学报 23 231]
- [20] Yu C R, Huang S Z, Feng E Y et al 2006 Acta Phys. Sin. 55 2215(in Chinese)[余春日、黄时中、凤尔银等 2006 物理学报 55 2215]
- [21] You Y, Liu Y B, Deng L N, Li Q 2007 Acta Phys. Sin. 56 2073 (in Chinese)[游泳、刘义保、邓玲娜、李 群 2007 物理学报 56 2073]

Yu Jiang-Zhou¹) Feng Hao²[†] Sun Wei-Guo¹[‡]

 $1\$) Institution of Atomic and Molecular Physics , Sichuan University , Chengdu $\,$ 610065 , China)

2 X College of Physical Science and Technology , Sichuan University , Chengdu 610065 , China)

(Received 30 August 2007; revised manuscript received 4 December 2007)

Abstract

In this paper, momentum transfer cross sections are obtained using body frame vibrational close-couple method (BFVCC) modified by the authors. Using the static potential, correlation-polarization potential and exchange potential calculated *ab-initio*, the results accord with experiment very well.

Keywords : momentum transfer cross section , low-energy electron , molecular collision , vibration excitation PACC : 3480B

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10504022).

[†] E-mail : ddsteed@163.com

[‡] E-mail:weiguosun@x263.net