$(Li_{3}N)_{n}(n = 1-5)$ 团簇结构与性质的密度泛函研究*

陈玉红^{1,2,}* 康 龙¹) 张材荣²) 罗永春¹) 蒲忠胜²)

1)(兰州理工大学,甘肃省有色金属新材料省部共建国家重点实验室,兰州 730050)

2) 兰州理工大学物理系,兰州 730050)

(2007年9月12日收到2007年10月17日收到修改稿)

用密度泛函理论(DFT)的杂化密度泛函 B3LYP 方法在 6-31G * 基组水平上对(Li₃N)_n(n = 1--5)团簇各种可能的构型进行几何结构优化 预测了各团簇的最稳定结构.并对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究.结果表明(Li₃N)_n(n = 1--5)团簇中 N 原子的配位数以 4 $_5$ 较多见 Li-Li 键长为 0.210--0.259 nm ,Li 原子在桥位时 Li-N 键长为 0.185--0.204 nm ,Li 原子在端位时 Li-N 键长为 0.172--0.178 nm ;团簇中 N 原子的平均自然电荷为 + 0.67e;Li₃N (Li₃N) 团簇有相对较高的动力学稳定性.

关键词:(Li₃N),(n = 1--5)团簇,密度泛函理论,结构与性质,储氢材料 PACC: 3640B,7115M,8640K

1.引 言

能源与人类社会休戚相关,目前的化石能源主 要是通过燃烧来利用 使得有限且不可再生的化石 能源快速消耗 同时将大量 CO, 和其他有害气体排 入大气,由此引发大气污染、生态环境破坏和全球性 温室效应 严重威胁着人类的生存和健康, 氢的发 热值高、没有污染、且资源丰富、利用氢能取代以石 化燃料为基础的能源已成为全球的共识,氢能的发 展中最关键的技术难题之一就是氢的储存,目前国 内外已开发和应用的合金储氢材料虽然综合性能较 好 但存在的突出问题是吸氢量小 合金电极的电化 学比容量低,不能很好地满足工业化要求. 2002年 Chen 等¹¹报道了 M-N-H(M 是指 I-IV 族和一些过渡 族金属)系可作为新的储氢体系之后 ,金属络合物因 其组成元素原子量低 储氢质量百分比相对较高 近 年来受到科学界的极大关注, LiaN 的理论最大吸氢 量可达 10.4% 其吸放氢反应式分两步进行:

Li₃N + 2H₂↔Li₂NH + LiH + H₂↔LiNH₂ + 2LiH. 为了改善Li₃N 的吸放氢性能 ,人们用 Ca ,Mg 等部分 替代 L^[2→3],以及通过添加 Ni ,Fe ,Co ,TiCl₃ 等催化

剂 6---8 的方法 ,进行了大量的实验研究 . 为了理解 该储氢体系的储氢机理 ,为替代和添加催化剂研究 提供理论依据,人们对 LiH ,Li, N ,LiNH2 和 Li2NH 的 电子结构计算也进行了许多研究, Bonacic-Koutecky 等^[9]用从头算 CI 方法计算了 Li_n H(n = 1-7)和 $Li_n H_2(n = 2-6)$ 及其阳离子团簇的电子结构和几何 结构 得到了其稳定结构和电离势 预言了它们的性 能. Bertolus 等^[10]用 DFT 和势模型两种方法研究了 $Li_n H_n$ 和 $Li_{n+1} H_n^+$ (n = 1-7)以及 $Li_{14} H_{13}^+$ 团簇 ,认为 团簇中 Li—H 键是完全的离子键,而且团簇的稳定 性与离子键的数目无关. Hinchliffe^[11]对 LiNH⁺, LiNH₂和Li₂NH 成键特性进行了研究.Yoshino 等^[12] 用平面波赝势方法对 MXH_a(NaAlH₄,LiAlH₄,LiBH₄ 和 LiNH。的最稳定晶体结构进行模拟,用离散变分 $(DV) X_{\alpha}$ 分子轨道计算方法对其组成离子的局部 化学键进行研究,认为 X 和 H 通过共价键形成 XH_n 离子,而 M 和 XH,之间却是通过离子键结合的,电 荷是从M向 XH_a 转移. Armstrong 等¹³]用从头算方 法在 6-31G 和 6-31G**基组水平上对 LiNH, ,Li, N, (LiNH,),和(Li,NH),进行研究,给出了不同位置的 Li—N 键、N—H 键键长, Novak 等^{14]}用局域自旋密

^{*} 国家自然科学基金(批准号:10547007,10647006),甘肃省自然科学基金(批准号:3ZS062-B25-022),甘肃省有色金属新材料省部共建国家 重点实验室开放基金(批准号 SKL05008)和兰州理工大学优秀青年培养计划(批准号:Q200317)资助的课题。

[;] 通讯联系人. E-mail:chenyh@lut.cn

度近似 LSDA 方法对 3d 电子金属替代 Li₃N 的 Li₂ [(Li_{1-x} M_x)N](M = Co,Ni,Cu)的电子结构进行了研 究 认为 M 阳离子均为 + 1 价. Gupta 等^[15]用从头 算方法研究了 Cu,Ni 替代 Li 对电子结构和第二步 反应焓的影响,指出 Ni 替代更有效. Schon 等^[16]对 Li_xNa_{6-x}N₂(x = 0,1,...,6)进行了能量优化,并用量 子力学方法对最稳定结构进行了分析,认为 x = 2 A的结构最稳定. Samthein 等^[17]用从头算分子动力学 方法研究了 Li₃N 固体中的缺陷和扩散行为. 团簇 结构与性质的研究对于理解物质从微观到宏观的过 渡具有重要作用^[18-20],Li₃N 作为新型高容量储氢材 料,研究 Li₃N 团簇对于理解该材料的储氢机理非常 重要. 但系统的 Li₃N 团簇研究未见报道,为此本文 用密度泛函理论的 B3LYP/6-31G * 方法对(Li₃N)_n (n = 1—5)团簇的结构与性质进行了探讨.

2. 研究方法

Li3N 的空间群是 P6/mmm ,六方结构 ,N 原子占

据结构单元中心,一个 N 原子周围有 8 个 Li 原 子^[21,22]. 根据 Li₃N 块体的结构特性,设计出可能的 团簇模型做为初始结构. 综合考虑计算量和精度, 采用了密度泛函理论中的杂化密度泛函 B3LYP 方 法,在 6-31G*基组水平上,用 Gaussian 03 程序对 (Li₃N)_n(n = 1-5)团簇的结构进行了优化,对最稳 定结构的振动特性、成键特性和电荷特性等进行了 计算.本文在进行团簇几何结构优化和电子结构计 算时未加对称性限制,故计算结果对称性均为 C_1 , 文中列出的是坐标精度为 0.01 nm 时的对称性.

3. 结果与讨论

优化后(Li₃N)_n(n = 1−−5)团簇的各种可能结构 如图 1、图 2 所示,图中同时还给出了团簇的总能 量.(Li₃N)_n(n = 1−−5)团簇最稳定结构的几何参数 列于表 1.

图 1 (Li₃N)_n(n = 1-3)团簇的几何结构和总能量(eV)

表1 (Li₃N),(n = 1-5)团簇最稳定构型的几何参数

团簇	构型	对称性		键长/nm	键角((°)		
			本文	结果	文献 13]	本文结	果
Li ₃ N	a2	D_{3h}	R(12)	0.175		A(2,13)	120.0
(Li ₃ N) ₂	b1	D_{4h}	R(1,3)	0.194	0.192 0.194	A(3,1,4)	135.0
			R(15)	0.172	0.175 0.177	A(638)	90.1
			R(36)	0.253			
(Li ₃ N) ₃	c6	C_S	R(1 A)	0.203		A(4,18)	162.4
			R(1,10)	0.183		A(429)	132.9
			R(2 A)	0.196		A(539)	134.5
			R(26)	0.174		A(1 A 2)	113.4
			R(29)	0.189		A(5 A ,12)	90.2
			R(35)	0.192			
			R(39)	0.185			
			R(45)	0.231			
			R(4,7)	0.219			
			R(4,12)	0.259			
(Li ₃ N) ₄	d7	C_S	R(15)	0.190		A(5,1,7)	129.7
			R(1,7)	0.192		A(528)	135.0
			R(1,13)	0.176		A(152)	104.6
			R(25)	0.197		A(174)	123.5
			R(29)	0.194		A(283)	106.3
			R(5,10)	0.243			
			R(5,15)	0.216			
			R(7,10)	0.217			
(Li ₃ N),	e6	C_3	R(17)	0.176		A(92,17)	122.3
			R(18)	0.187		A(10,2,20)	159.2
			R(26)	0.204		A(263)	114.7
			R(29)	0.201		A(869)	156.4
			R(2,10)	0.196		A(9,6,16)	112.7
			R(5,12)	0.185		A(293)	117.4
			R(68)	0.225			
			R(69)	0.210			

3.1. 几何构型

3.1.1. Li₃N团簇

团簇设计了直线、平面和立体的多种初始结构, 并尝试了1,3,5,7多种自旋多重度,优化后得到了4 种稳定结构,包括1个直线构型和3个平面构型,如 图1(a1—a4)所示.以总能量为判据,平面构型 a2 (自旋多重度为1)最稳定,其结构与 NH₃的三棱锥 结构完全不同,几何参数如表1所示.

3.1.2. (Li₃N)2 团簇

(Li₃N), 团簇尝试了平面和立体结构的多种可 能构型(自旋多重度均取1),优化后得到了24种可 能构型 图1列出了6种能量较低的可能构型(b1 b6)及其总能量.以总能量为判据(Li₃N),团簇的 稳定性由大到小的顺序为b1>b3>b5>b2>b4> b6 总能量最低的2种构型b1和b3的N原子配位 数分别为 5 和 4 ,构型 b1 最稳定 ,其几何参数如表 1 所示.

3.1.3.(Li₃N),团簇

(Li₃N),团簇尝试了平面和立体结构的多种可 能构型(自旋多重度均取1),优化后得到了14种可 能构型,图1列出了10种能量较低的可能构型 (c1—c10)及其总能量.以总能量为判据(Li₃N),团 簇的稳定性由大到小的顺序为c6>c9>c1>c5>c7 >c8>c2>c3>c10>c4,总能量较低的构型c6的N 原子配位数为5和6构型c9的N原子配位数为5, 构型 c6 最稳定 其几何参数如表 1 所示.

3.1.4.(Li₃N),团簇

(Li₃N), 团簇尝试了平面和立体结构的多种可 能构型(自旋多重度均取1),优化后得到了14种可 能构型,图2列出了8种能量较低的可能构型(d1d8)及其总能量.以总能量为判据(Li₃N),团簇的 稳定性由大到小的顺序为d7>d8>d2>d1>d4>d5 >d3>d6,总能量较低的构型d7的N原子配位数为 4和5,构型d8的N原子配位数为5,构型d7最稳 定,其几何参数如表1所示.

图 2 (Li₃N)(n = 4 5)团簇的几何结构和总能量(eV)

3.1.5.(Li₃N),团簇

(Li₃N)。团簇尝试了平面和立体结构的多种可 能构型(自旋多重度均取1),优化后得到了17种可 能构型,图2列出了8种能量较低的可能构型(e1 e8)及其总能量.以总能量为判据(Li₃N)。团簇的 稳定性由大到小的顺序为e6>e5>e4>e7>e1>e3 >e8>e2,总能量较低的2种构型e6和e5几何结构 相似,N原子配位数都为4和5,构型e6最稳定,其 几何参数如表1所示.

对优化后($Li_{3}N$),(n = 1-5)团簇的结构分析表 明 团簇中 N 原子占据结构单元中心(与晶体类 似) 其配位数为 2-6 其中以配位数 4.5 较多见, 团簇最稳定结构中 N 原子以 5 配位为主. 团簇中 Li-Li 键长为 0.210-0.259 nm ,Li 原子在桥位时 Li-N 键长为 0.185-0.204 nm ,Li 原子在端位时 Li—N 键长为 0.172—0.178 nm. 与 Armstrong 等^[13] 得到的(Li₃N) (LiNH₂) (Li₂NH) 二聚体中 Li 在 桥位时 Li-N 键长为 0.192-0.194 nm, Li 在端位时 Li-N 键长为 0.175-0.177 nm 的结果基本符合 ;与 Li₃N晶体结构^[21 22]中层内 Li—N 间距 0.213 nm ,层 间 Li-N 间距 0.194 nm 比较 团簇中 Li-N 桥键键 长接近层间 Li-N 间距. 特别是(Li,N), 团簇中 Li-N桥键键长已经等于晶体中层间 Li-N 间距, 这说明只有 8 个原子的(Li,N), 团簇在键长方面已 能很好的模拟晶体行为.同时(Li_aN),团簇最稳定 结构 e6 已经显示出晶体的层状结构特性,由 2N, 3N AN 和 Li 原子组成 LiN 层 其中的 N 原子与 Li 层 的 Li 原子相连接,这与晶体结构^{2122]}相符合;层间

10Li—2N 键长 0.196 nm ,与 Li₃N 晶体结构^[21 22]层间 Li—N 间距 0.194 nm 也符合得很好.

3.2.(Li₃N),(n=1-5)团簇的振动光谱

用 B3LYP 方法在 6-31G* 水平上对(Li₃N)(n = 1-5)团簇最稳定结构的红外光谱、拉曼光谱和振动 频率进行了计算. 计算得到振动频率均为正值 ,表 明各团簇结构均为势能面上的极小点.(Li_nN)(n= 1-5)团簇最稳定构型的振动光谱和谐振频率见 表 2. 计算得到 Li₂N 共有 6 个振动模式 ,其 IR 最强 振模式在 89.19 cm⁻¹处 是 Li-N 键的弯曲振动 JR 最强振动峰在 876.88 cm⁻¹处 ,是 2 个 Li-N 键伸缩 振动模式的简并 ;Raman 最强振动峰在 675.80 cm⁻¹ 处,其振动模式是Li-N键的伸缩振动.(Li₃N),共 有 18 个振动模式,其 IR 最强振动模式在 357.62 cm⁻¹处,是 Li—N 桥键的键弯曲振动, IR 最强振动 峰在 250.35 cm⁻¹ 处 ,是 2 个 Li—Li 键伸缩振动模式 的简并 :Raman 最强振动峰在 472.86 cm⁻¹ 处,其振 动模式是Li原子组成的四元环的呼吸振动. (Li,N), 共有 30 个振动模式, IR 最强振动峰在 367.21 cm⁻¹处 其振动模式是 4Li-12Li .7Li-9Li 键 伸缩振动, Raman 最强振动峰在 714.62 cm⁻¹处,其 振动模式是 Li-N 键的伸缩振动.(Li₃N),共有 42 个振动模式 JR 最强振动峰在 675.59 cm⁻¹ 处 其振 动模式是团簇上半部分 Li-N 和 Li-Li 键的伸缩振 动 Raman 最强振动峰在 789.39 cm⁻¹ 处,其振动模 式是 2N—11Li 和 3N—12Li 键的伸缩振动.(Li₃N)。 共有 54 个振动模式 ,IR 最强振动峰在 797.60 cm⁻¹

表 2 (Li₃N)_n(n = 1-5)团簇最稳定构型的振动光谱和谐振频率

团簇	构型	频率(cm ⁻¹)/IR(KM/Mole)/Ramar(Å ⁴ /AMU)
Li ₃ N	a2	89.19/105.914/0.001 , 204.88/26.952/9.122 , 204.89/26.988/9.143 , 675.80/0./2439.236 , 876.88/91.972/15.053 , 876.89/ 92.113/15.523
(Li ₃ N) ₂	b1	118.39/178.805/7.532, 118.83/177.270/2.250, 201.42/0.044/1998.151, 202.50/0.038/2200.035, 250.32/209.322/5.437, 250.39/208.355/3.380, 357.62/273.618/2.321, 472.86/0.010/4900.057, 599.00/0.113/3318.401
(Li ₃ N),	сб	222.74/66.572/1057.089 , 264.27/74.296/149.569 , 363.91/65.394/1065.017 , 367.21/79.788/2572.894 , 477.89/2.285/ 5952.518 ,616.69/26.328/6611.604 ,701.05/0.006/6734.244 ,714.62/2.906/8837.454 540 55/131 142/57 794 , 559 88/29 827/2683 791 , 579 59/162 396/82 764 , 612 03/122 846/122 030 , 624 45/45 822/
(Li ₃ N) ₄	d7	2239.808 ,660.28/83.259/3149.025 ,675.59/219.264/85.295 ,789.39/49.560/5332.668 ,813.78/120.011/1395.991 ,821.29/ 110.827/2987.206
(Li ₃ N),	e6	247.06/130.380/50.377 , 487.894/58.405/1229.402 , 616.14/93.021/1062.645 , 797.60/185.564/454.746 , 798.06/149.696/ 1054.571 , 798.96/66.688/2545.879 , 823.62/144.292/1360.584 , 865.71/159.071/730.362

处 Raman 最强振动峰在 798.96 cm⁻¹ 处,其振动模 式都是 2N,3N 和 4N 参与的 Li—N 键的伸缩振动. 可见,虽然不同尺寸团簇的振动模式存在着较大的 差异,但团簇的 Raman 较强振动均来自 Li—N 键的 伸缩振动,IR 较强振动也主要来自 Li—N 键的弯曲 振动和 Li—Li 键的伸缩振动.

3.3.(Li₃N),(n=1-5)团簇的电荷

本文用 B3LYP 方法在 6-31G* 水平上,用自然键 轨道(NBO)方法对(Li₃N),(n = 1-5)团簇最稳定结 构的自然电荷布居进行了分析. 表 3 给出了 (Li₃N),(n = 1-5)团簇基态结构中各原子上的净电 荷分布. 由表 3 数据可以看出,在 N 和 Li 相互作用 形成团簇的过程中,发生原子间的电荷转移,这种电 荷转移的作用使得团簇中 N 原子呈负电性,Li 原子 显正电性. N 原子的自然电荷在 – 1.61e— – 2.46e之间,平均自然电荷为 – 2.01e;Li 原子的自然电 荷在 + 0.34e— + 0.84e 之间,平均自然电荷为 + 0.67e. 说明(Li₃N),(n = 1-5)团簇中原子间相 互作用呈现较强的离子性.

表 3 ($Li_3 N$)_n(n = 1-5)团簇最稳定构型中各原子的电荷

团簇	构型	原子的电荷/e									
Li ₃ N	a1	1N ÷2.19	2Li 10.73	3Li 10.73	4Li 10.73						
(Li ₃ N) ₂	b1	1N - 1.71	2N ÷1.71	3Li D.58	4Li 0.52	5Li 10.62	6Li	7Li 10.62	8Li D.65		
(Li ₃ N) ₃	c6	1N ÷2.46	2N ÷1.68	3N ÷1.61	4Li 0.52	5Li 10.80	6Li 10.62	7Li 10.63	8Li D.63	9Li 10.86	10Li 10.49
		11Li 0.34	12Li 0.84								
(Li ₃ N) ₄	d7	1N ÷2.09	2N ÷2.10	3N ÷2.10	4N ÷2.10	5Li 10.68	6Li D.68	7Li 10.70	8Li 10.71	9Li 10.69	10Li 10.63
		11Li 0.72	12Li 10.72	13Li 0.71	14Li 0.71	15Li 10.72	16Li 0.71				
(Li ₃ N);	e6	1N ÷2.08	2N ÷2.07	3N ÷2.08	4N ÷2.11	5N ÷2.06	6Li 10.61	7Li 10.73	8Li 10.69	9Li 10.68	10Li 10.66
		11Li 0.74	12Li 0.66	13Li D.66	14Li 10.64	15Li 10.74	16Li 10.72	17Li 10.71	18Li 10.78	19Li 10.75	20Li 10.63

3.4.(Li₃N),(n=1-5)团簇的动力学稳定性

动力学稳定性是描述体系的激发、反应等与电子有关的动力学行为的物理量,主要取决于与电子结构有关的量,如团簇的总束缚能(E_{BT})、电离势(VIE)、能隙(E_{g})、平均束缚能(E_{av})和费米能级(E_{F})等.用 B3LYP 方法在 6-31G^{*} 水平上对($Li_{3}N$)。

图 3 (Li_3N)_n(n = 1-5)团簇的 VIE , E_g , E_{av} 和 E_F 随团簇尺寸 的变化

(n = 1 - 5) 团簇的 VIE, E_g , E_{BT} , E_F 和 E_{ax} 进行了计算. 所采用的计算公式为

$$VIE = E_{(L_{i_3}N)_n} - E_{L_{i_3}N)_n^+}, \qquad (1)$$

 $E_{g} = E(\text{HOMO}) - E(\text{LUMO}), \quad (2)$

其中 $E_{(II_3N)_n}$ 为(Li_3N), 团簇的结合能 , $E_{(II_3N)_n^+}$ 为团 簇同一构型阳离子(Li_3N), 的结合能 ;E(HOMO)为 最高占据轨道的能量 ,E(LUMO)为最低未占据轨道 的能量 . E_F 定义为最高占据轨道的能量 . E_{BT} 为团 簇总能量与团簇中所有原子能量之差 . (Li_3N), (n = 1-5)团簇的 VIE , E_g , E_{BT} , E_{av} 和 E_F 的数值见 表 4.

表4 (Li₃N)_n(n = 1-5)团簇最稳定构型的 VIE, E_g , E_{BT} , E_{av} 和 E_s (eV)

团簇 Li ₃ N (Li ₃ N), (Li ₃ N),	(Li ₃ N) ₄	(Li ₃ N)
构型 a2 b1 c6	d7	e6
VIE 4.528 3.955 3.700	3.783	3.996
<i>E</i> _g 2.011 1.086 1.084	1.482	1.719
<i>E</i> _{BT} 9.427 21.739 34.548	47.216	60.824
<i>E</i> _{av} 2.357 2.717 2.879	2.951	3.041
$E_{\rm F}$ - 2.937 - 2.722 - 2.566	-2.700	-2.875

由图 3 所示团簇的 VIE , E_g , E_x 和 E_F 的关系可 以看出 (Li₃N),(n = 1—5)团簇的 E_F , E_g 和 VIE 随 团簇尺寸变化显示出很好的相关性 ,表明 Li₃N , (Li₃N),团簇有相对较高的动力学稳定性 ,而 (Li₃N),团簇有较好的化学活性.

4.结 论

1. 计算得到的(Li₃N),(n = 1—5)团簇构型中, N原子占据结构单元中心,其配位数以4,5较多见, 团簇最稳定结构中 N 原子以 5 配位为主. 团簇中 Li—Li 键长为 0.210—0.259 nm, Li 原子在桥位时 Li—N 键长为 0.185—0.204 nm, Li 原子在端位时 Li—N 键长为 0.172—0.178 nm.

2. 在 N 和 Li 相互作用形成团簇的过程中,Li 原子向 N 原子有较大的电荷转移.N 原子的平均自 然电荷为 -2.01e,Li 原子的平均自然电荷为 +0.67e.团簇中原子间相互作用呈现较强的离子性.

3.Li₃N(Li₃N),团簇有相对较高的动力学稳 定性。

- [1] Chen P , Xiong Z , Luo J et al 2002 Nature 420 302
- [2] Hino S, Ichikawa T, Leng H Y et al 2005 J. Alloys. Compd 398 62
- [3] Chen Y, Wu C Z, Wang P et al 2006 Int. J. Hydrogen Energy 31 1236
- [4] Liu Y F, Hu J J, Xiong Z T et al 2007 J. Alloys. Compd 432 298
- [5] Keisuke O, Kazuhiko T, Takayuki I et al 2007 J. Alloys. Compd 432 289
- [6] Ichkawa T, Isobe S, Hanada N et al 2004 J. Alloys. Compd. 365 271
- [7] Isob S , Ichikawa T , Hanada N , Leng H Y et al 2005 J. Alloys. Compd. 404-406 439
- [8] Yao J H, Shang C, Aguey-Zinsou K F et al 2007 J. Alloys. Compd. 432 277
- [9] Bonacie-Kouteck V, Gaus J, Guest M F et al 1993 Chemical Physics Letters 206 528
- [10] Bertolus M, Brenner V, Millie P 2001 J. Chem. Phys. 115 4070
- [11] Hinchliffe A 1977 Chem. Phys. Lett. 45 88

- [12] Yoshino M, Komiya K, Takahashi Y et al 2005 J. Alloys. Compd. 404-406 185
- [13] Armstrong D R, Perkins P G, Walker G T 1985 J. Mole. Stru. : THEOCHEM 122 189
- [14] Novak P, Wagner F R 2004 J. Magn. Magn. Mater. 272 e269
- [15] Gupta M , Gupta R P 2007 J. Alloys. Compd. 446-447 319
- [16] Schon J C , Wevers M A C , Jansen M 2000 Solid State Sci . 2 449
- [17] Sarnthein J , Schwarz K , Blochl PE 1996 Phys. Rev. B 53 9084
- [18] Chen Y H, Zhang C R, Ma J 2006 Acta Phys. Sin. 55 171 (in Chinese)[陈玉红、张材荣、马 军 2006 物理学报 55 171]
- [19] Zhao W J, Yang Z, Yan Y L et al 2007 Acta Phys. Sin. 56 2596 (in Chinese)[赵文杰、杨 致、闫玉丽等 2007 物理学报 56 2596]
- [20] Ge G X , Jing Q , Yang Z *et al* 2006 *Acta Phys*. *Sin*. **55** 4548 (in Chinese)[葛桂贤、井 群、杨 致等 2006 物理学报 **55** 4548]
- [21] Schulz H , Thiemann K H 1979 Acta Cryst . A 35 309
- [22] Huq A, Richardson J W, Maxey E R et al 2007 J. Alloys. Compd. 436 256

Density functional theory study of the structures and properties of $(Li_3N)_n(n = 1-5)$ clusters *

Chen Yu-Hong¹⁽²⁾ Kang Long¹ Zhang Cai-Rong² Luo Yong-Chun¹ Pu Zhong-Sheng²

1 🗴 State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials , Lanzhou University of Technology , Lanzhou 730050 , China)

2 X Department of Physics , Lanzhou University of Technology , Lanzhou 730050 , China)

(Received 12 September 2007; revised manuscript received 17 October 2007)

Abstract

Possible geometrical structures and relative stabilities of $(\text{Li}_3 \text{ N})_n$ (n = 1-5) clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G^{*} basis sets. For the most stable isomers of $(\text{Li}_3 \text{ N})_n$ (n = 1-5) clusters, the electronic structure, vibrational properties, bonds properties, ionization potentials are analyzed. The calculated results showed the following tendencies: the coordination number of N are usually 4 or 5; the bond lengths for the most of the optimized ($\text{Li}_3 \text{ N})_n$ (n = 1-5) clusters are about 0.210-0.259 nm for Li—Li and 0.185-0.204 nm for the bridging Li—N bonds, while the terminal Li—N bonds span 0.172-0.178 nm. The outcome of population analysis suggests that the natural charge of N atoms are about -2.01e and that of Li atoms are about +0.67e; the dynamic stabilities of Li₃N and ($\text{Li}_3 \text{ N})_n$ clusters are higher than that of other clusters.

Keywords : $(Li_3 N)_n (n = 1-5)$ clusters , density functional theory , structure and properties , hydrogen storage materials **PACC** : 3640B , 7115M , 8640K

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10547007, 10647006), the Natural Science Foundation of Gansu Province, China (Grant No. 3ZS062-B25-022), the State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology (Grant No. SKL05008) and the Prominent Youth Foundation of LUT (Grant No. 0200317).