Ca_2SiO_4 :Dy³⁺材料的制备及其发光特性*

王志军¹,[†] 李盼来¹) 王 刚² 杨志平¹) 郭庆林¹)

1) 河北大学物理科学与技术学院,保定 071002)
2) 河北大学国际交流与教育学院,保定 071002)
(2007年10月26日收到2007年12月5日收到修改稿)

采用高温固相法制备了 $Ca_2 SiO_4 :Dy^{3+}$ 发光材料.在 365 nm 紫外光激发下,测得 $Ca_2 SiO_4 :Dy^{3+}$ 材料的发射光谱为 一多峰宽谱,主峰分别位于 486 nm 575 nm 和 665 nm 处;监测 575 nm 发射峰,测得材料的激发光谱为一多峰宽谱,主 峰分别位于 331 nm 361 nm 371 nm 397 nm 435 nm 461 nm 和 478 nm 处.研究了 Dy^{3+} 掺杂浓度对 $Ca_2 SiO_4 :Dy^{3+}$ 材料发 射光谱及发光强度的影响结果显示,随 Dy^{3+} 浓度的增大,黄、蓝发射峰强度比(Y/B)逐渐增大利用 Judd-Ofelt 理论 解释了其原因 随 Dy^{3+} 浓度的增大, $Ca_2 SiO_4 :Dy^{3+}$ 材料发光强度先增大,在 Dy^{3+} 浓度为4 mol%时到达峰值,而后减 小 根据 Dexter 理论其浓度猝灭机理为电偶极-电偶极相互作用.研究了电荷补偿剂 Li^+ , Na^+ 和 K^+ 对 $Ca_2 SiO_4 :Dy^{3+}$ 材料发射光谱的影响结果显示,不同电荷补偿剂下,随电荷补偿剂掺杂浓度的增大, $Ca_2 SiO_4 :Dy^{3+}$ 材料发射光谱强 度的演化趋势相同,即 $Ca_2 SiO_4 :Dy^{3+}$ 材料发射峰强度先增大后减小,但不同电荷补偿剂下,材料发射峰强度最大处 对应的补偿剂浓度不同,对应 Li^+ , Na^+ 和 K^+ 时,浓度分别为4 mol% A mol%和3 mol%.

关键词:白光 LED, Ca₂SiO₄:Dy³⁺,发光特性,电荷补偿 PACC:7855

1.引 言

1997年,日本日亚化学公司用蓝光 GaN 管芯抽 运 YAG :Ce³⁺ 黄色荧光粉,研发出了白光 LED(light emitting diode),自此,白光 LED 用荧光材料成为功能 材料新的研究热点. 总体而言, 白光 LED 用荧光材 料可分为三类:被蓝色 GaN 管芯激发发射黄光的荧 光材料,如 YAG:Ce^{3+[1]},Sr₃SiO₅:Eu^{2+[2]}等材料;被 近紫外(370-410 nm)InGaN 管芯激发发射红、绿、蓝 光的三基色荧光材料,如 CaMoO4 :Eu^{3+[3]},Ba2 SiO4: Eu^{2+[4]} Ca₃SiO₅:Eu^{2+[5]}等材料;被近紫外光激发发 射白光的单一基质的荧光材料,如 Ca,SiO,Cl, Eu²⁺, $\mathrm{Mn}^{^{2+[\,6\,]}}$,Ba_3 MgSi_2 O_8 $:\!\mathrm{Eu}^{^{2+[\,7\,]}}$,Sr_3 MgSi_2 O_8 $:\!\mathrm{Eu}^{^{2+}}$ $\!\pi\,$ Sr_3 MgSi₂O₈:Eu²⁺,Mn^{2+[8]}等材料,可以看出,上述研究 多采用 Eu²⁺ 或 Eu³⁺ 作为激活剂 以化学稳定性较好 的硅酸盐材料作为基质 ,合成材料可以被近紫外-蓝 光有效激发,且发光亮度较高.然而,上述材料在其 激发光谱范围内多发射一种特定颜色的可见光。在 与各色激发管芯组合形成白光时,需调节驱动电压

才能获得较好的白光发射,造成材料的适用范围较 窄.为解决上述问题,本工作组以 Dy³⁺ 作为激活剂, 以 Ca₂SiO₄为基质,制备了一种通过改变激活剂浓度 即可获得蓝色光、黄色光及白光发射的 Ca₂SiO₄: Dy³⁺材料,研究结果为白光 LED 的发展提供了参考 和帮助.

2. 实 验

采用高温固相反应方法在空气中制备样品.原料 有 $CaCO_3(99.9\%), SiO_2(99.9\%), Dy_2 O_3(99.9\%),$ $Li_2CO_3(99.9\%), Na_2CO_3(99.9\%)$ 和 $K_2CO_3(99.9\%).$ 按所设计的化学计量比 称取以上原料,在玛瑙研钵 中混合均匀并充分研磨,装入刚玉坩埚,于 1300℃灼 烧 6 h 制得 Ca_2SiO_4 Dy^{3+} 材料.

采用美国 XRD6000 型 X 射线衍射仪(辐射源为 Cu 靶的 K_{α} ,工作条件为 40 kV,40 mA, λ = 1.5406 nm)分析样品的物相组成;美国 SPEX-1404 双光栅光 谱仪测量发射光谱,扫描范围 400—700 nm;日本岛 津 RF-540 紫外分光光度计测量材料的激发光谱(激

^{*}河北省科学技术发展基金(批准号 51215103b),河北大学青年基金(批准号 2006Q06)资助的课题.

^{*} 通讯联系人.E-mail:wangzhijunmail@yahoo.com.cn;lipanlai@sohu.com

发光源为 150 W 氙灯),扫描范围 200—500 nm; PR1980B亮度仪测量材料的色坐标;L88C 彩色亮度 计测量材料的发光强度.

3. 结果与分析

3.1. Ca₂SiO₄ Dy³⁺材料的晶体结构

图 1 为 Ca₂ SiO₄ :Dy³⁺ 材料 X 射线粉末衍射图 (XRD),Dy³⁺ 掺杂浓度为 2 mol%.通过与标准粉末 衍射卡片对比,其 XRD 衍射峰数据与 JCPDS No.24-0034 卡片数据一致,表明合成样品为 γ -Ca₂ SiO₄,即 少量 Dy³⁺ 的加入并未影响晶体结构. γ -Ca₂ SiO₄ 属于 单斜晶系,具有 *Pnam*(62)空间群结构,晶格常数为 a = 1.1371 nm, b = 0.6782 nm, c = 0.5091 nm.

图 1 Ca₂SiO₄:Dy³⁺材料 XRD 图

3.2. Ca₂SiO₄ Dy³⁺材料的激发与发射光谱

图 2 3 分别为 Ca₂SiO₄:Dy³⁺材料的发射与激发 光谱,Dy³⁺掺杂浓度为 2 mol%.在常温下,以 365 nm 紫外光为激发源,测得 Ca₂SiO₄:Dy³⁺材料的发射光 谱呈多峰发射,主发射峰为 486 nm,575 nm 和 665 nm,分别对应 Dy³⁺的⁴ $F_{9/2} \rightarrow^{6} H_{15/2}$, $^{6} H_{13/2}$ 和⁶ $H_{11/2}$ 跃 迁.监测 575 nm 发射峰,测得 Ca₂SiO₄:Dy³⁺材料的激 发光谱为一多峰宽谱,主峰为 331 nm,361 nm,371 nm,397 nm,435 nm,461 nm 和 478 nm,分别对应于 Dy³⁺的⁶ $H_{15/2} \rightarrow^{4} D_{7/2}$, $^{6} P_{7/2}$, $^{6} M_{21/2}$, $^{4} G_{11/2}$, $^{4} I_{15/2}$ 和 ⁶ $F_{9/2}$ 跃迁.可以看出,Ca₂SiO₄:Dy³⁺材料既适于蓝色 光激发,也适于紫外光激发.紫外光激发时可发射 蓝、黄、红光,即可以呈现较好的白光发射,是很好的 近紫外光激发下发射白光的单一基质荧光粉.值得 注意的是,当 Dy³⁺作为激活剂时,一些材料的荧光 寿命较长^[9,10],其量级约为 10⁵—10⁶ ns,因此,需要 我们对合成材料的荧光寿命作更深一步的研究,为 白光 LED 的发展提供帮助.

图 2 Ca₂SiO₄:Dy³⁺材料的发射光谱

图 3 Ca₂SiO₄:Dy³⁺材料的激发光谱

3.3. Dy³⁺ 浓度对 Ca₂ SiO₄:Dy³⁺ 材料发射光谱的 影响

表 1 Dy³⁺ 发射的 Y/B 值与 Dy³⁺ 浓度的关系

$x_{\rm Dy}/{ m mol}$	0.25	0.5	1	2	4	6	8	10	15	20
Y/B	0.54	0.73	0.82	0.99	1.11	1.21	1.31	1.37	1.49	1.57

以 365 nm 紫外光作为激发源,在 0.25—20 mol%范围内改变 Dy³⁺浓度,研究 Dy³⁺浓度对 Ca₂ SiO₄ :Dy³⁺材料发射光谱的影响,结果显示,材料的 蓝色发射峰强度变化较小,但材料的黄色发射峰强 度变化较明显.实验测定了 Ca₂ SiO₄ :Dy³⁺ 材料黄 (Y) 蓝(B)发射峰强度,计算了 Y/B值 结果见表 1. 由表中数据可以看出,随着 Dy^{3+} 浓度的增大,Y/B 逐渐增大.分析认为,一般情况下, Dy^{3+} 在可见光范 围的特征发射为 486 nm(${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$)蓝发射和 575 nm(${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$)的黄发射,其中 ${}^{4}F_{9/2} \rightarrow {}^{6}H_{15/2}$ 的蓝色 发射为磁偶极跃迁,基本上不受配位环境的影响,其 跃迁的选择规律 $\Delta l = 0 \ \Delta s = 0 \ \Delta L = 0 \ \Delta J = \pm 1$,是 宇称选择规则允许的,因此,改变 Dy^{3+} 掺杂浓度时, 材料的蓝色发射峰强度改变很小. ${}^{4}F_{9/2} \rightarrow {}^{6}H_{13/2}$ 的黄 色发射属电偶极跃迁,其 $\Delta J = 2$,为超灵敏跃迁,根 据 Judd-Ofelt 理论^[11,12],稀土离子 4f—4f 跃迁强度 $I_{i \rightarrow i}$ 与强度参数有下述关系:

$$I_{i \to j} \propto \sum_{\lambda = 2.4} \Omega_{\lambda} [U^{(\lambda)}]_{i \to j}^2$$

式中的强度参数只与基质及稀土离子有关,约化矩 阵元[$U^{(\lambda)}$]_{→j}和能级|i|j有关,其中 Ω_2 受基质 影响最大,对于 Dy^{3+} 离子, $F_{9/2} \rightarrow^6 H_{13/2}$ 跃迁的 [$U^{(2)}$]数值最大,因此, $F_{9/2} \rightarrow^6 H_{13/2}$ 跃迁产生的发 射峰强度受 Dy^{3+} 离子所处的结晶学环境影响比较 大.当 Dy^{3+} 浓度较大时,合成材料的 X 射线衍射分 析结果显示,其晶体结构发生了一些变化,因此,晶 格常数将随之发生变化.如前述那样, Dy^{3+} 的跃迁强 度,即黄色发射的强度也会因 $Ca_2 SiO_4$ 晶格常数的变 化而变化,从而造成 $Ca_2 SiO_4 : Dy^{3+}$ 材料黄发射与蓝 发射强度之比会随 Dy^{3+} 浓度的变化而变化.同时, 由激发光谱可以看出, $Ca_2 SiO_4 : Dy^{3+}$ 材料在 486 nm 附近有较强的吸收,随 Dy^{3+} 浓度的增大,材料对蓝 光再吸收将增强,这也会导致 Y/B 值的逐渐增大.

图 4 InGaN 基 Ca2SiO4: Dy3+ 的色坐标

由上可以看出,当改变 Dy³⁺浓度时,这两种跃 迁产生的发射强度比(Y/B)将会发生变化,即通过 改变 Dy³⁺浓度,可以使 Ca₂SiO₄:Dy³⁺材料显示不同 的发光颜色. 基于此,在相同的驱动电压下,利用 370 nmInGaN 管芯分别激发 Dy³⁺ 浓度为 1 mol%,2 mol% *A* mol%和 6 mol%时所得 Ca₂SiO₄:Dy³⁺材料, 测量其色坐标,结果如图 4 所示.可以看出,改变 Dy³⁺浓度时,Ca₂SiO₄:Dy³⁺材料表现出了不同的发 光颜色,研究结果为获得性能更好的白光 LED 提供 了帮助.

3.4. Dy³⁺ 浓度对 Ca₂SiO₄ Dy³⁺ 材料发光强度的影响

在 0.25—20 mol% 范围内改变 Dy³⁺ 浓度,测量 各 Dy³⁺ 浓度下,Ca₂SiO₄ Dy³⁺ 材料的发光强度,结果 如图 5 所示.荧光粉的发光强度主要取决于掺入稀 土离子的含量,即发射中心的多少,因此,Dy³⁺ 浓度 是影响 Ca₂SiO₄ :Dy³⁺ 材料发光强度的主要因素.从 图 5 可以看出,随 Dy³⁺ 浓度的增大,Ca₂SiO₄ :Dy³⁺ 材 料发光强度先增大,原因是发光中心的数量在增多, 故发光强度增大,在 Dy³⁺ 浓度为 4 mol%时,强度最 大;当 Dy³⁺ 浓度继续增大时,强度开始减小,即出现 了浓度猝灭现象,其原因可能是激活剂 Dy³⁺ 的浓度 增大到一定程度时,Dy³⁺ 位置相互靠近,处于激发态 的激活剂离子间发生相互作用,从而增加了新的能 量损耗^[13].

图 5 Dy³⁺ 浓度对 Ca₂SiO₄:Dy³⁺ 材料发光强度的影响

下面对 Dy³⁺ 浓度大于 4 mol % 时 ,Ca₂ SiO₄ :Dy³⁺ 材料发光强度出现的浓度猝灭效应进行探讨 :根据 Dexter 的理论^[14] 非导电性无机材料中激活剂离子的 浓度猝灭机理属于电多极相互作用 ,当激活剂离子浓 度 *x* 足够大时 材料的发光强度 *I* 与浓度 *x* 的关系可 由公式 $I/x \propto (\beta x^{\theta/3})^{-1}$ 或 lg(I/x)= $c - (\theta/3)$ lg*x* 决 定 式中 β 为常数 , $\theta = 6.8$,10 时 ,分别代表电偶极- 偶极、电偶极-四极、电四极-四极相互作用.测定当 Dy³⁺浓度大于 4 mol %时,各浓度下 Ca₂SiO₄ Dy³⁺材料 发光强度 *I*,描绘 lg(*I*/*x*)·lg*x* 的关系曲线,如图 6 所 示.由图中直线部分的斜率求得 $\theta \approx 6$,说明自身浓度 猝灭的机理为电偶极-电偶极相互作用.

图 6 lg(I/x)与 lgx 的关系

3.5. 电荷补偿对 Ca₂SiO₄ Dy³⁺ 材料发射光谱的影响

在 Ca, SiO₄:Dy³⁺ 材料中,Dy³⁺ 离子取代基质中 的 Sr²⁺ 离子 但是 由于电荷价态不匹配可能会对合 成材料的发光性能产生影响 因此 ,引入 Li⁺ 作为电 荷补偿剂来使电荷匹配 观测电荷补偿剂对合成材 料发射光谱强度的影响,结果如图 7 所示,其中 Li* 掺杂浓度为 1---6 mol%, Dy3+掺杂浓度为 2 mol%.可 以看出 随电荷补偿剂浓度的增大 ,Ca,SiO4 :Dy3+ 材 料发射光谱强度先增大、后减小 发射光谱强度最大 处对应的电荷补偿剂浓度为 4 mol %. 分析认为,当 电荷补偿剂进入基质晶格后 晶格产生了畸变 使得 Dy³⁺的跃迁发射概率得到提高,材料的发射光谱强 度增大,但材料的发射光谱强度并未随补偿剂浓度 的增大而一直增大,这说明只有部分的掺入电荷可 以作为电荷补偿剂出现,当掺杂量达到或超过 Dv³⁺ 浓度时,多余的电荷将占据 Sr²⁺ 的位置,产生额外的 负电荷 造成发射光谱强度下降^{15]}.

进一步引入 Na⁺和 K⁺作为电荷补偿剂来使电 荷匹配,观测电荷补偿剂对 Ca₂SiO₄:Dy³⁺材料发射 光谱强度的影响,发现随电荷补偿剂浓度的增大, 其演化趋势与掺入 Li⁺情况相同,但发射光谱强度 最大处对应的电荷补偿剂浓度略有不同,对应 Na⁺,K⁺时浓度分别为4mol%和3mol%.比较三种 情况下,获得的最大峰值强度所对应的发射光谱 图 ,如图 8 所示 ,可以看出 ,发射光谱强度略有不同 , 以加入 Li⁺ 情况最为明显 ,其原因可能是相较于 Na⁺和 K⁺的离子半径 ,Li⁺ 半径最小(0.059 nm),更 容易进入基质晶格 ,产生晶格畸变 ,对 Dy³⁺的跃迁 发射概率的提高较明显 ,故对材料发射峰强度的提 高最大.

图 7 Li⁺对 Ca₂SiO₄:Dy³⁺材料发射光谱的影响

图 8 电荷补偿剂对 Ca₂SiO₄:Dy³⁺材料发射光谱的影响

4.结 论

采用高温固相法在空气中制备了 $Ca_2 SiO_4 : Dy^{3+}$ 材料.材料的发射与激发光谱均为多峰宽谱 ,发射光 谱主峰位于 486 nm ,575 nm 和 665 nm 处 ;监测 575 nm 发射峰 ,所得激发光谱主峰分别为 331 nm ,361 nm ,371 nm ,397 nm ,435 nm ,461 nm 和 478 nm ,对应于 Dy^{3+} 的 $^{6}H_{15/2} \rightarrow ^{4}D_{7/2}$, $^{6}P_{7/2}$, $^{6}P_{5/2}$, $^{6}M_{21/2}$, $^{4}G_{11/2}$, $^{4}I_{15/2}$ 和 $^{6}F_{9/2}$ 跃迁.研究表明随 Dy^{3+} 掺杂浓度的增大 , Ca_2 SiO₄ : Dy^{3+} 材料的黄蓝发射峰强度比 Y/B 逐渐增大 ; 且发光强度先增大后减小 ,其自身浓度猝灭机理为 电偶极-电偶极相互作用.加入电荷补偿剂 Li⁺ ,Na⁺ 和 K⁺ 均提高了 Ca₂SiO₄: Dy^{3+} 材料的发射峰强度,其

- [1] Yao G Q , Duan J F , Ren M , Yu H D , Lin J H 2001 Chin . J. Lumin . 22 (Suppl)21
- [2] Park J K , Kim C H , Park S H , Park H D , Choi S Y 2004 Appl. Phys. Lett. 84 1647
- [3] Hu Y S , Zhuang W D , Ye H Q , Wang D H , Zhang S S , Huang X W 2005 J. Alloys. Compd. 390 226
- [4] Lim M A, Park J K, Kim C H, Park H D 2003 J. Mater. Sci. Lett. 22 1351
- [5] Yang Z P, Liu Y F 2006 Acta. Phys. Sin. 55 4946 (in Chinese) [杨志平、刘玉峰 2006 物理学报 55 4946]
- [6] Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta. Phys. Sin. 56 546 (in Chinese] 杨志平、刘玉峰、王利 伟、余泉茂、熊志军、徐小岭 2007 物理学报 56 546]
- [7] Kim J S , Jeon P E , Choi J C , Park H L , Mho S I , Kim G C 2004 Appl. Phys. Lett. 84 2931

- 中以 Li⁺ 的情况最明显.
- [8] Kim J S , Jeon P E , Park Y H , Choi J C , Park H L , Kim G C , Kim T W 2004 Appl. Phys. Lett. 85 3696
- [9] Lu X A , You Z Y , Li J F , Zhu Z J , Jia G H , Wu B C , Tu C Y 2005 J. Phys. Chem. Solids. 66 1801
- [10] Lu X A , You Z Y , Li J F , Zhu Z J , Jia G H , Wu B C , Tu C Y 2007 J. Lumin. 126 63
- [11] Ofelt G S 1962 J. Chem. Phys. 37 511
- [12] Judd B R 1962 Phys. Rev. 127 750
- [13] Yang Z P, Guo Z, Zhu S C, Wang W J 2004 Spectro. Spec. Analy. 24 150(f) in Chinese J 杨志平、郭 智、朱胜超、王文杰 2004 光谱学与光谱分析 24 1506]
- [14] Dexter D L , Schulman J H 1954 J. Chem. Phys. 22 1063
- [15] Sun L D , Qian C , Liao C S , Wang X L , Yan C H 2001 Solid State Commu 119 393

Preparation and luminescence characteristics of Ca₂SiO₄ :Dy³⁺ phosphor *

Wang Zhi-Jun¹)[†] Li Pan-Lai¹) Wang Gang²) Yang Zhi-Ping¹) Guo Qing-Lin¹)

1 X College of Physics Science & Technology ,Hebei University ,Baoding 071002 ,China)

2 X College of International Education and Exchange , Hebei University , Baoding 071002 , China)

(Received 26 October 2007; revised manuscript received 5 December 2007)

Abstract

The Ca₂SiO₄ Dy^{3+} phosphor was synthesized by high temperature solid-state method. The emission spectrum of Ca₂SiO₄ : Dy³⁺ shows bands at 486 nm 575 nm and 665 nm under the 365 nm excitation. The excitation spectrum for 575 nm emission has excitation bands at 331 nm ,361 nm ,371 nm ,397 nm ,435 nm ,461 nm and 478 nm. The effect of Dy³⁺ concentration on the emission spectrum and luminescent intensity of Ca₂SiO₄ Dy^{3+} was investigated. The result shows that the ratio (Y/B) of yellow emission (575 nm) to blue emission (486 nm) increases with increasing Dy³⁺ concentration , and the reason was explained by Judd-Offelt theory. The luminescent intensity firstly increases with the increasing Dy³⁺ concentration , then decreases , and the concentration self-quenching mechanisms are the d-d interaction according to the Dexter theory. The effect of Li⁺ ,Na⁺ and K⁺ on the emission spectra of Ca₂SiO₄ :Dy³⁺ phosphor was studied. The results show that the emission spectrum intensity of Ca₂ SiO₄ :Dy³⁺ phosphor is greatly influenced by Li⁺ ,Na⁺ and K⁺ , and the evolvement trend is the same for different charge compensations ,i. e. ,the emission spectrum intensity firstly increases with increasing charge compensation concentration ,then decreases. However , the charge compensation concentration corresponding to the maximum emission intensity is different for different charge compensations , and the concentration corresponding to the maximum emission intensity is different for different charge compensations , and the concentration same 4 *A* and 3 mol% for the Li⁺ , Na⁺ and K⁺ , respectively.

Keywords : white LED , $Ca_2\,{\rm SiO_4}\,$:Dy^{3\,+} $\,$, luminescent characteristics , charge compensation PACC : 7855

^{*} Project supported by the Hebei Provincial Technology Development Foundation (Grant No.51215103b), and the Science Foundation of Hebei University (Grant No.2006Q06).

[†] E-mail : wangzhijunmail@yahoo.com.cn; lipanlai@sohu.com