[Mg(NH₂)₂]_n(n = 1—5)团簇的 密度泛函理论研究*

陈玉红¹²; 康 龙² 张材荣¹ 罗永春² 马 军¹

1) 兰州理工大学物理系,兰州 730050)
2) 兰州理工大学甘肃省有色金属新材料重点实验室,兰州 730050)
(2007年11月4日收到 2008年3月12日收到修改稿)

用密度泛函理论的杂化密度泛函 B3LYP方法在 6-31G* 基组水平上对 Mg NH₂),],(n = 1-5)团簇各种可能的构型进行几何结构优化,预测了各团簇的最稳定结构.对最稳定结构的振动特性、成键特性、电荷特性等进行了理论研究.结果表明:团簇易形成链状结构,Mg—N 键长为 0.190—0.234 nm,N—H 键长为 0.101—0.103 nm, H—N—H 键角为100.2°—107.5°; 团簇中 Mg 原子的自然电荷在 1.585e—1.615e 之间,N 原子的自然电荷在 -1.551e— -1.651e之间,H原子的自然电荷在 0.369e—0.403e 之间,-NH₂ 基的自然电荷在 -0.784e— -0.845e之间,Mg 原子和—NH₂ 基之间相互作用呈现较强的离子性.团簇结构及光谱与晶体比较表明,--NH₂ 基在团簇和晶体中均保持其完整性.

关键词:[Mg(NH2)](n=1-5)团簇,密度泛函理论,结构与性质,储氢材料 PACC:3640B,7115M,8640K

1.引 言

目前科学界正在探讨多种未来能源技术 科研 和生产实践都已经证明氢能是摆脱对石油依赖的最 为经济有效的能源,氢能发展中最关键的技术难题 之一就是氢的储存,目前已开发和应用的合金储氢 材料虽然综合性能较好,但存在的突出问题是吸氢 量小,合金电极的电化学比容量低,不能很好满足工 业化的要求.2002 年 Chen 等^[1]报道了 M-N-H(M代 表]-\]族和一些过渡族金属)系可作为新的储氢体系 之后 金属络合物因其组成元素原子量低 储氢质量 百分比相对较高,近年来受到科学界的极大关注. Leng 等^{2]}指出 LiNH₂ NaNH₂ ,Mg NH₂) 和 Ca NH₂) 在 M-N-H 系储氢体系中扮演着重要的作用,并对其 合成和分解性质进行了研究. 文献 2 指出,碱金属 或碱土金属氢化物和 NH。 气在室温下可以快速反 应合成高品质的氨基化合物 反应速度快慢顺序为 NaH ,LiH ,CaH₂ ,MgH₂ . Leng 等³]还对 LiNH₂ ,NaNH₂

和 Mg(NH2) 的分解温度进行了研究.近两年,人们 对 Ma(NH,), 的晶体结构^[4]和储放氢反应^[5,6]等进 行了广泛研究,为了理解碱金属和碱土金属氨基化 合物的储氢机理,人们还对其电子结构进行了模拟 计算. Velikokhatnyi 等^[7]用密度泛函理论研究了 Mg(NH2)的储氢行为,对反应物和产物的电子结 构、结构参数、振动光谱和生成焓等进行了计算. Tsumuraya 等^[8]用第一性原理方法研究了Mg(NH,) 晶体的几何结构、电子结构和稳定性 给出了其键长 和键角. Hinchliffe^[9]对 LiNH⁺, LiNH₂和 Li₂NH 成键 特性进行了研究, Yoshino 等^{10]}用平面波赝势方法对 MXH₄(NaAlH₄,LiAlH₄,LiBH₄和LiNH₅)的最稳定晶 体结构进行了模拟,用离散变分的分子轨道计算方 法对其组成离子的局部化学键进行研究 认为 X 和 H通过共价键形成 XH_n 离子,而 M 和 XH_n 之间却 是通过离子键结合的,电荷是从 M 向 XH_a转移. Armstrong 等^{11]}用从头算方法在 6-31G 和 6-31G**基 组水平上对 LiNH₂, Li₃N (LiNH₂), 和(Li₂NH), 进行 研究 给出了不同位置的 Li-N 键和 N-H 键键长.

† E-mail : chenyh@lut.cn

^{*} 国家自然科学基金(批准号:10547007,10647006),甘肃省自然科学基金(批准号 3ZS062-B25-022)和兰州理工大学优秀青年教师培养计划 资助的课题。

文献 12,13]用从头算分子轨道理论方法计算了 $MNH_2(M 代表碱金属)的几何结构和原子的$ Mulliken 电荷,指出 <math>M—N 键是典型的离子键.团簇 结构与性质的研究对理解物质从微观到宏观的过渡 有重要作用^[14—16], $Mg(NH_2)_2$ 作为新型高容量储氢 材料,研究其团簇有助于理解储氢机理.本文用密度 泛函理论的 B3LYP/6-31G^{*}方法对[Mg(NH₂)_], (n = 1—5)团簇的结构与性质进行了探讨.

2. 研究方法

 $M_g(NH_2)$ 晶体的空间群是 *I4l/acd* 四角结构, 其结构单元为 M_g N 原子相间组成的笼状结构(6个 N 原子组成正八面体 $A \land M_g$ 原子组成正四面体), 每个 N 原子周围有 2 个 M_g 原子和 2 个 H 原子 ,每 个 M_g 原子周围有 4 个 N 原子^[4,17]. 根据 $M_g(NH_2)$ 块体的结构特性,设计出可能的团簇模型做为初始

图 1 [M_{g} NH₂),], (n = 1-3)团簇的几何结构、对称性和总能量 E_{T} 的单位为 eV.较小的灰色球为 H 原子 较大的灰色球为 Mg 原 子 黑色球为 N 原子

结构.综合考虑计算量和精度,采用了密度泛函理论 中的杂化密度泛函 B3LYP方法,在 6-31G*基组水平 上,用 Gaussian 03 程序对[Mg NH₂),](n = 1-5)团 簇的结构进行了优化,对最稳定结构的振动特性、成 键特性、电荷特性和稳定性等进行了计算.本文在进 行团簇几何结构优化时自旋多重度均取 1,并且未 加对称性限制,故计算结果对称性均为 C_1 ,文中列 出的是坐标精度为 0.01 nm 时的对称性.

3. 结果与讨论

优化后[Mg(NH₂)](n = 1-5)团簇的各种可能结构如图 1-图 3 所示,图中同时还给出了团簇 的总能量 E_T 和对称性.[Mg(NH₂)](n = 1-5)团 簇最稳定结构的几何参数列于表 1.

3.1. 几何构型

3.1.1. Mg(NH₂),团簇

Mg NH₂) 团簇设计了平面和立体的多种初始 结构,优化后得到了两种稳定结构,包括1种立体构 型和1种平面构型,两种构型均为 N-Mg-N 直线形排 列,仅 H 的位置不同,如图1中的构型 a1 和构型 a2 所示.以总能量为判据,构型 a1 较稳定,其中2个 —NH₂基相互垂直. [Mg NH₂)]团簇尝试了多种初始结构,优化 后得到了4种可能构型,图1按总能量由低到高的 顺序列出构型 b1—构型 b4.以总能量为判据,构型 b1最稳定,其结构为链状结构.

3.1.3. [Mg(NH₂)₂], 团簇

[Mg NH₂)] 团簇尝试了多种初始结构,优化 后得到了 8 种可能构型,图 1 按总能量由低到高的 顺序列出了 6 种能量较低的构型 c1—构型 c6. 以 总能量为判据,构型 c1 最稳定,其结构也为链状 结构.

3.1.4. [Mg(NH₂)] 团簇

[Mg NH₂)]团簇尝试了多种初始结构,优化 后得到了9种可能构型,图2按总能量由低到高的 顺序列出了6种能量较低的可能构型(构型 d1—构 型 d6).以总能量为判据,构型 d1 最稳定,其结构包 含 Mg N 原子相间组成的笼状结构,与晶体的结构 单元具有高度相似性.而链状结构的构型 d2 为次稳 定结构.

3.1.5. [Mg(NH₂)]] 团簇

[Mg NH₂)] 团簇尝试了多种初始结构,优化 后得到了 12 种可能构型 图 3 按总能量由低到高的 顺序列出了构型 e1—构型 e12.以总能量为判据,构

图 2 [Mg NH₂)]团簇的几何结构、对称性和总能量 E_T 的单位为 eV .较小的灰色球为 H 原子 ,较大的灰色球为 Mg 原子 ,黑色 球为 N 原子

团簇	构型	·····································		键角(。)	
Mg(NH ₂)2	al	Mg1—N2	0.190	Mg1—N2—H4	126.3
		N2—H4	0.101	H4—N2—H5	107.5
[Mg(NH ₂))]	b1	Mg1—N3	0.208	N4—Mg1—N5	134.6
		Mg1—N4	0.191	N3—Mg2—N5	89.8
		N3—H7	0.102	Mg1—N3—H7	115.7
				Mg1—N4—H 9	126.5
				H7—N3—H8	103.9
				H10—N4—H9	107.0
[Mg(NH ₂) ₂]	cl	Mg1—N5	0.191	N5—Mg1— N7	133.6
		Mg 1—N7	0.208	N7-Mg1-N9	91.2
		Mg3—N6	0.210	Mg2-N4-H10	126.3
		N4—H10	0.102	Mg3—N6—H14	115.1
				H11—N4—H10	107.0
				H15—N6—H14	104.2
[Mg(NH ₂) ₂] ₄	d1	Mg1—N6	0.207	N7-Mg1-N11	147.8
		Mg1—N7	0.204	N5-Mg2-N10	119.4
		Mg1—N12	0.234	N5-Mg2-N11	116.8
		Mg2—N5	0.215	H13—N5— H14	104.1
		Mg2-N10	0.194	H15—N6—H16	105.4
		Mg2-N12	0.229	H19—N8—H20	106.2
		N5—H13	0.103	H27—N12—H28	100.2
[Mg(NH ₂) ₂] ₃	e1	Mg1-N10	0.211	N7-Mg2-N10	133.5
		Mg1—N15	0.210	N14—Mg1—N15	91.4
		Mg2—N7	0.192	H16—N6—H17	107.0
		Mg2-N10	0.208	H34—N8—H35	104.2

N6-H16

0.102

表1 [M_{s} (NH_{2})](n = 1-5)团簇最稳定构型的几何参数

型 el 最稳定,其结构仍为链状结构.

对优化后[Mg(NH₂),],(n = 1—5)团簇的结构 分析表明:团簇易形成链状结构,其中Mg,N原子相 间形成类似正方形结构;每个N原子周围均包括2 个H原子,形成—NH₂基.团簇中Mg—N键长为 0.190—0.234 nm,其中链状结构中间段正方形结 构中Mg—N键长为 0.208—0.211 nm,与晶体结 构^[17]中Mg—N原子间距0.209 nm完全符合.团簇中 N—H键长为0.101—0.103 nm,H—N—H 键角为 100.2°—107.5°(其中链状结构中间段—NH₂基中 H—N—H键角为103.9°—104.4°),与晶体结构^[17]中 N—H原子间距0.094 nm和H—N—H 键角104.1° 基本符合,说明—NH₂基在团簇和晶体中结构基本 —致.

3.2. [Mg(NH₂)₂] (*n* = 1−−5)团簇的振动光谱

H22-N12-H23

104.4

本文用 B3LYP 方法在 6-31G* 水平上对 [Mg(NH₂),](*n* = 1—5)团簇最稳定结构的振动光 谱进行了计算,其振动光谱和谐振频率见表 2.计 算得到振动频率均为正值,表明各团簇最稳定结构 均为势能面上的极小点.计算结果表明:Mg(NH₂), 团簇共有 15 个振动模式,其红外(IR)谱最强振动 峰在 215.11 cm⁻¹处,是 2 个Mg—N—H键弯曲振动 模式的简并;Raman 最强振动峰在 3540.91 cm⁻¹处, 是 2 个 N—H 键对称伸缩振动模式的简并. [Mg(NH₂),]团簇共有 36 个振动模式,其 IR 最强 振动峰在 752.70 cm⁻¹处,振动模式是Mg—N—H键 的弯曲振动;Raman 最强振动峰在 3522.66 cm⁻¹处,

图 3 [M_{g} NH₂)] 团簇的几何结构、对称性和总能量 E_{T} 的单位为 eV.较小的灰色球为 H 原子 较大的灰色球为 Mg 原子 黑色球 为 N 原子

是 2 个 N—H 键 对称伸缩振动模式的简并. [Mg(NH₂)₂]。团簇共有 57 个振动模式,其 IR 最强振动峰在 731.49 cm⁻¹处,是Mg—N—H键的弯曲振动,Raman 最强振动峰在 3465.93 cm⁻¹处,是 4 个 N—H键对称伸缩振动模式的简并.[Mg(NH₂)₂],团 簇共有 78 个振动模式,其 IR 最强振动峰在 765.34 cm⁻¹处,是Mg—N—H键的弯曲振动;Raman 最强振

动峰在 3461.63 cm⁻¹处 ,是 4 个N—H键对称伸缩振 动模式的简并 [Mg NH₂)]团簇共有 99 个振动模 式 其 IR 最强振动峰在 701.39 cm⁻¹处 ,振动模式 是Mg—N—H键的弯曲振动 ;Raman 最强振动峰在 3464.65 cm⁻¹处 ,是 8 个N—H键对称伸缩振动模式 的简并 . 分析表明 [Mg NH₂)],(*n* = 1—5)团簇的 IR 和 Raman 谱主要集中在 10—815 ,1602—1667 和 3409—3624 cm⁻¹三段,其中各团簇的 IR 最强振动 峰均在 10—815 cm⁻¹段,主要是 Mg—N—H键的弯 曲振动.而 3409—3624 cm⁻¹段全部为N—H键的对 称和反对称伸缩振动,1602—1667 cm⁻¹段各团簇均 存在 2*n* 个较弱的H—N—H键弯曲振动模式,这两 段均为—NH₂基的特征谱.文献[18—20]给出了 Mg(NH₂)₂,NaNH₂和 LiNH₂晶体光谱中均包含 1 个 对称和 1 个反对称的N—H伸缩振动模式,对称的 N—H伸缩振动模式分别位于 3274,3258 和 3259 cm⁻¹,反对称的 N—H 伸缩振动模式位于 3325 和 3313 cm^{-1[19 20]}.文献 21]也给出—NH₂ 基的基本振 动频率为 3212.5,1539.5 和 3263.0 cm⁻¹.本文计算 的团簇振动光谱中同样包含对称和反对称的N—H 伸缩振动,分别位于 3409.34—3541.28 和 3532.59—3623.51 cm⁻¹;利用 B3LYP/6-31G*方法 的频率修正因子 0.9613 修正后,对称和反对称振 动分别位于 3277.40—3404.23 和 3395.88— 3483.28 cm⁻¹,与文献结果基本符合,进一步说明 —NH₂基在晶体中保持其完整性,与团簇中行为 —致.

团簇	谐振频率	IR 强度	Raman 散射活性	团簇	谐振频率	IR 强度	Raman 散射活性
	$/\mathrm{cm}^{-1}$	/arb.units	/arb.units		$/\mathrm{cm}^{-1}$	/arb.units	/arb.units
Mg(NH ₂) ₂	125.32	54.05	3.60		752.24	221.85	8.25
	125.36	54.18	3.58		765.34	489.91	0.20
	215.09	116.05	27.57		3460.70	0.68	30.42
	215.13	116.78	27.51		3461.50	0.00	18.72
	550.14	0.00	24.48		3461.64	0.01	69.32
	550.88	68.35	3.16		3461.70	0.05	367.29
	551.10	69.17	3.17		3461.75	0.18	37.17
	814.54	102.44	1.60		3481.90	0.32	102.24
	3540.54	3.04	33.53		3504.91	3.02	67.19
	3541.28	0.00	273.77		3504.96	4.41	277.89
	3623.50	3.11	97.92		3532.59	0.73	123.92
	3623.51	3.11	97.986		3532.66	1.33	68.25
[Mg(NH ₂) ₂]	306.16	254.27	10.39		3532.72	0.79	32.30
	580.81	309.48	0.04		3532.73	2.07	66.18
	752.70	516.89	0.72		3583.63	2.72	170.21
	3522.63	0.17	18.29	[Mg(NH ₂) ₂] ₅	493.20	210.28	0.08
	3522.69	0.02	368.20		588.35	321.04	1.45
	3603.94	0.20	16.98		592.70	452.44	2.34
	3603.94	0.00	248.10		701.39	1506.68	0.03
[Mg(NH ₂) ₂] ₃	290.34	204.90	22.42		729.29	351.74	1.42
	291.49	105.08	32.58		3463.42	0.39	0.10
	575.73	180.82	1.86		3463.42	0.39	0.05
	580.55	270.73	2.89		3464.04	0.00	0.13
	731.49	1006.14	1.825		3464.48	0.00	228.48
	3466.39	0.08	53.02		3464.65	0.00	4.48
	3466.79	0.03	284.00		3464.80	0.01	16.19
	3522.10	0.48	198.09		3465.68	0.09	222.10
	3522.39	0.48	204.29		3465.87	0.06	280.32
	3604.11	0.03	133.86		3518.92	0.96	214.20
	3604.55	0.03	134.27		3519.45	0.92	214.34
[Mg(NH ₂) ₂] ₄	595.90	360.44	0.31		3536.07	3.15	4.43
	612.49	226.67	0.64		3537.41	0.02	267.39
	745.56	296.57	0.17				

表 2 [Mg NH₂),],(n = 1-5) 团族最稳定构型的振动光谱和谐振频率

3.3. [Mg(NH₂)₂]_n(n = 1-5)团簇的电荷

本文用 B3LYP 方法在 6-31G* 水平上,用自然键 轨道方法对[Mg(NH₂),],(n = 1—5)团簇最稳定结 构的自然电荷布居进行了分析,表 3 给出了团簇中 各原子上的自然电荷分布.可以看出,在原子相互作 用形成团簇的过程中发生了较多的电荷转移,这种 电荷转移的作用使得团簇中 N 原子呈负电性,Mg 原子和 H 原子显正电性. Mg 原子的自然电荷在 1.585*e*—1.615*e* 之间, N 原子的自然电荷在 -1.551e—-1.651e之间, H 原子的自然电荷在 0.369*e*—0.403*e* 之间, --NH₂ 基的自然电荷在 -0.784e—-0.845e之间.说明 Mg(NH₂),], (*n* = 1—5)团簇中 Mg 原子和—NH₂ 基之间相互作用呈现 较强的离子性, 而—NH₂ 基中 N—H 之间呈现共价 键特性.

表 3 [Mg NH2)], (n = 1-5) 团簇最稳定构型中各原子的电荷

团簇	N原子电荷/e	Mg原子电荷/e	H原子电荷/e
Mg(NH ₂)	N – 1.570	Mg 1.595	Н 0.386
[Mg(NH ₂) ₂] ₂	N3 – 1.595	Mg 1.589	Н7 0.397
	N4 – 1.550		H8 0.402
			Н9 0.379
[Mg(NH ₂) ₂] ₃	N4 – 1.551	Mg1 1.586	H10 0.378
	N6 – 1.585	Mg3 1.609	H14 0.393
[Mg(NH ₂) ₂] ₄	N5 – 1.574	Mg1 1.615	H15 0.395
	N6 – 1.588	Mg2 1.590	H19 0.369
	N8 – 1.551		H27 0.403
	N12 - 1.651		
[Mg(NH ₂) ₂] ₃	N6 – 1.551	Mg1 1.608	H16 0.377
	N8 – 1.584	Mg2 1.585	H20 0.387
	N12 - 1.575		H24 0.393

3.4. [Mg(NH₂),],(n = 1-5)团簇的动力学稳定性

动力学稳定性是描述体系的激发、反应等与电 子有关的动力学行为的物理量,主要取决于与电子 结构有关的量,如团簇的电离势 E_{IP} 、能隙 E_g 、总平 均束缚能 E_{BT} 、平均束缚能 E_{av} 和费米能级 E_F 等.用 B3LYP方法在 6-31G^{*} 水平上对[Mg(NH₂)]],(n =1—5)团簇的 E_{IP} , E_g , E_{BT} , E_F 和 E_{av} 进行了计算.所 采用的计算公式为

$$E_{\rm IP} = E_{[\rm Mg NH_2]_2]_n} - E_{[\rm Mg NH_2]_2]_n^+} , \qquad (1)$$

$$E_{\rm g} = E_{\rm HOMO} - E_{\rm LUMO} , \qquad (2)$$

式中 $E_{[M_{g}(NH_{2})_{1}}$ 为[Mg(NH₂),], 团簇的总能量, $E_{[M_{g}(NH_{2})_{1}}$ 为阳离子团簇[Mg(NH₂),], 的总能量; E_{HOMO} 为最高占据轨道的能量, E_{LUMO} 为最低未占据 轨道的能量.定义 E_{F} 为最高占据轨道的能量, E_{BT} 为团簇总能量与团簇中所有原子能量之差, E_{av} 为总 束缚能除以原子数.[Mg(NH₂),],(n = 1-5)团簇的 E_{IP} , E_{g} , E_{BT} , E_{av} 和 E_{F} 的数值列于表 4.

由图 4 所示团簇的 E_{IP} , E_g , E_w 和 E_F 的关系可 以看出 [Mg(NH₂),], (n = 1-5)团簇的 E_F , E_g 和 E_P 随团簇尺寸变化显示出很好的相关性. 与晶体结

表4 [Mg NH₂)₂],(n = 1-5)团簇最稳定构型的 E_{IP} , E_{g} , E_{BT} , E_{av} 和 E_{F}

		- 0. 2.2		5 51 47 1	
	Mg NH2)	[Mg NH ₂)]	[Mg(NH ₂) ₂]	[Mg NH ₂)]	[Mg NH ₂)]
$E_{\rm IP}/{\rm eV}$	7.667	6.872	6.553	5.891	6.262
$E_{\rm g}/{\rm eV}$	4.729	4.372	4.326	3.460	4.377
$E_{\rm BT}/{\rm eV}$	26.601	56.250	85.839	115.492	144.915
$E_{\rm av}/{\rm eV}$	3.800	4.018	4.088	4.125	4.140
$E_{\rm F}/{\rm eV}$	- 5.539	- 5.107	- 4.972	- 4.364	-4.862

- [1] Chen P, Xiong Z, Luo J, Lin J, Tan K L 2002 Nature 420 302
- [2] Leng H Y , Ichikawa T , Hino S , Hanada N , Isobe S , Fujii H 2006 J. Power Sources 156 166
- [3] Leng H Y , Ichikawa T , Isobe S , Hino S , Hanada N , Fujii H 2005 J. Alloys Compd. 404–406 443
- [4] Sørby M H, Nakamura Y, Brinks H W, Ichikawa T, Hino S, Fujii H, Hauback B C 2007 J. Alloys Compd. 428 297
- [5] Liu Y F, Hu J J, Xiong Z T, Wu G T, Chen P, Murata K, Sakata K 2007 J. Alloys Compd. 432 298
- [6] Okamoto K, Tokoyoda K, Ichikawa T, Fujii H 2007 J. Alloys Compd. 432 289
- [7] Velikokhatnyi O I , Kumta P N 2007 Mater . Sci . Eng . B 140 114
- [8] Tsumuraya T, Shishidou T, Oguchi T 2007 J. Alloys Compd. 446-447 323
- [9] Hinchliffe A 1977 Chem. Phys. Lett. 45 88
- [10] Yoshino M , Komiya K , Takahashi Y , Shinzato Y , Yukawa H , Morinaga M 2005 J. Alloys Compd. 404–406 185

构单元相似的[$M_{g}(NH_{2})$]] 团簇有相对较小的电离 势和能隙以及相对较高的费米能级,表明其具有相 对较高的化学活性,而具有链状结构的 $M_{g}(NH_{2})$, [$M_{g}(NH_{2})$][$M_{g}(NH_{2})$]]和[$M_{g}(NH_{2})$]]团簇动 力学稳定性相对较高.

4.结 论

1 **I** Mg(NH₂)₂]_n(n = 1—5)团簇易形成链状结构,其中 Mg—N 键长为 0.190—0.234 nm,N—H 键 长为 0.101—0.103 nm,H—N—H 键角为 100.2°— 107.5°.

2 **1** Mg NH₂)₂]₁(*n* = 1—5)团簇的 IR 和 Raman 谱主要集中在 10—815,1602—1667 和 3409—3624 cm⁻¹三段,其中 1602—1667 和 3409—3624 cm⁻¹两段 均为—NH₂ 基的特征谱.团簇的几何结构和振动光 谱研究均表明,—NH₂ 基在团簇与晶体中行为一致, 说明—NH₂ 基在晶体中保持其完整性.

3) 团簇中 Mg 原子和—NH₂ 基之间相互作用呈 现较强的离子性,而—NH₂ 基中 N—H 呈现共价键 特性.

4)具有与晶体结构单元相似的[Mg(NH₂)]]团 簇有相对较高的化学活性.

感谢甘肃省超级计算中心为本文工作提供计算条件.

- [11] Armstrong D R, Perkins P G, Walker G T 1985 J. Mol. Struc. : Theochem. 122 189
- [12] Burk P , Koppel I 1994 Int . J. Quantum Chem. 51 313
- [13] Wurthwein E U, Sen K D, Pople J A, Schleyer P R 1983 Inorg. Chem. 22 496
- [14] Chen Y H, Zhang C R, Ma J 2006 Acta Phys. Sin. 55 171(in Chinese] 陈玉红、张材荣、马 军 2006 物理学报 55 171]
- [15] Zhao W J, Yang Z, Yan Y L, Lei X L, Ge G X, Wang Q L, Luo Y H 2007 Acta Phys. Sin. 56 2596 (in Chinese)[赵文杰、杨 致、闫玉丽、雷雪玲、葛桂贤、王清林、罗有华 2007 物理学报 56 2596]
- [16] Ge G X , Jing Q , Yang Z , Yan Y L , Lei X L , Zhao W J , Wang Q L , Luo Y H 2006 Acta Phys. Sin. 55 4548 (in Chinese)[葛桂 贤、井 群、杨 致、闫玉丽、雷雪玲、赵文杰、王清林、罗有华 2006 物理学报 55 4548]
- [17] Jacobs H 1971 Z. Anorg. Allg. Chem. 382 97
- [18] Linde G , Juza R 1974 Z. Anorg. Allg. Chem. 409 199

- [20] Bohger J P O , Essmann R R , Jacobs H 1995 J. Mol. Struc. 348 325
- [21] Joseph W N , George C P 1965 Spectrochim . Acta 21 877

Density functional theory study of [Mg(NH₂)₂]_n(n = 1-5) clusters *

Chen Yu-Hong¹⁽²⁾[†] Kang Long²) Zhang Cai-Rong¹) Luo Yong-Chun²) Ma Jun¹)

1 X Department of Physics , Lanzhou University of Technology , Lanzhou 730050 , China)

2) Key Laboratory of Advanced Non-ferrous Metal Materials of Gansu Province , Lanzhou University of Technology , Lanzhou 730050 , China)

(Received 4 November 2007; revised manuscript received 12 March 2008)

Abstract

Possible geometrical structures and relative stabilities of $[Mg(NH_2)_2]_n(n = 1-5)$ clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G^{*} basis sets. For the most stable isomers, the electronic structure, vibrational properties, bond properties and ionization potentials are analyzed. The calculated results show the following tendencies : the Mg and N atom are bonded with each other to form catenulate structures. The bond lengths for $[Mg(NH_2)_2]_n(n = 1-5)$ clusters are about 0.190–0.234 nm for Mg–N, and 0.101–0.103 nm for the N–H bonds, the bond angles of H–N–H are about 100.2°–107.5°. The population analysis suggests that the natural charge of N atoms are about -1.551e--1.651e, that of H atoms are about 0.369e-0.403e, and that of $-NH_2$ are about -0.784e--0.845e, and the bonds between Mg and $-NH_2$ have strong ionicity. The comparative study of structures and spectra of clusters and crystal show that $-NH_2$ keeps the integrity in the crystal and in clusters.

Keywords : [Mg NH₂)], (n = 1-5) clusters , density functional theory , structure and properties , hydrogen storage materials **PACC** : 3640B , 7115M , 8640K

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10547007, 10647006), the Natural Science Foundation of Gansu Province, China (Grant No. 3ZS062-B25-022) and the Outstanding Youth Teachers Training Program of Lanzhou University of Technology, China.

[†] E-mail : chenyh@lut.cn