氟气处理孔洞聚丙烯膜显著改善的电荷存储特性*

安振连† 赵 敏 汤敏敏 杨 强 夏钟福

(同济大学波耳固体物理研究所,上海 200092) (2007年5月10日收到 2007年6月6日收到修改稿)

通过衰减全反射(attenuated total reflection,ATR)红外光谱分析与开路热刺激放电(thermally stimulated discharge, TSD)电流、原位实时电荷 TSD 和电荷等温衰减的测量,研究了氟气对孔洞聚丙烯(PP)膜的氟化改性及氟化改性对 其驻极性能的影响,研究结果表明/尽管在负压状态且较低的氟气分压及较低的反应温度(约60℃)和较短的反应 时间(约15 min)下,氟气能有效地氟化孔洞 PP 膜,更易于氟化预氧化的孔洞 PP 膜,氟化改性的孔洞 PP 膜,尤其是 预氧化后的氟化改性膜的电荷储存热稳定性较原膜得到显著的改善.

关键词:孔洞聚丙烯膜,氟气,氟化改性,电荷稳定性 PACC:7220J,7360R,8160,8140

1.引 言

氟气是极具反应性的一种气体 ,早在上世纪 70 年代人们已发现氟气很容易对聚乙烯、聚苯乙烯、聚 丙烯腈等许多聚合物进行直接氟化改性[12],如当氟 气与碳氢结构(C-H)的聚合物接触时,氟原子取代 聚合物表层的氢原子、发生氟取代化学反应 形成类 似于聚四氟乙烯(PTFE)中的碳氟键(C-F)结构层. 由于这种取代反应过程的不可逆性,反应生成的C-F 结构层与整个聚合物基体以非常稳定的化学键结 合,而聚合物基体本身的特性不发生变化,聚合物氟 气直接氟化的研究至今已取得了许多重要的成 果[3-7] 与其相应的氟化改性技术也已越来越多地 应用于化学品包装、汽车塑料油箱的处理等诸多工 业中,然而,关于氟气氟化对聚合物驻极特性影响等 方面的研究 国内外至今尚未见相关报道.理论和近 年来的实验研究结果表明:经气体压力膨化处理的 孔洞 PP 驻极体膜具有强压电性^{8-10]}. PP 由于易加 工成内部孔洞型结构以及其质轻、声阻抗与水和人 体相匹配等优点,因此孔洞 PP 近年来已迅速发展 成一类具有重要商业价值和应用前景的非极性空间 电荷型孔洞结构的压电材料,在超声传感器和驱动 器、水声传感器及医疗诊断和无损检测所涉及的功

能元器件等方面都显现出诱人的应用前景.然而,由 于 PP 欠佳的电荷热稳定性使得由其制作的压电器 件的工作温度一般不能超过 60℃,从而限制了广泛 的开发应用.另外,PP 作为通用的驻极体空气过滤 材料,同样存在因电荷稳定性欠佳而影响其驻极体 空气过滤器的有效使用寿命和过滤效率的问题.因 此,改善 PP 的储电稳定性是近年来备受关注的 课题.

在我们前期的研究结果中已介绍了一种氧化和 随后氢氟酸处理的氟化改性方法能较显著地改善孔 洞 PP 膜的电荷热稳定性^[11].本文使用强氟化剂氟 气对孔洞 PP 原膜及其氧化膜进行氟化处理,利用 衰减全反射(attenuated total reflection,ATR)红外光谱 分析、热刺激放电(thermally stimulated discharge,TSD) 技术及原位实时电荷 TSD 和电荷等温衰减测量,研 究了氟气对孔洞 PP 薄膜的化学改性及对其电荷存 储热稳定性的影响.

2. 样品的氟气处理及实验

样品为南亚塑胶工业股份有限公司生产的内部 具有微孔洞结构的 PP 合成纸 PQ50 型 ,厚度 50 μm, 密度 550 kg/m³). PP 膜氧化使用的氧化剂为硫酸和 镉酸的混合酸(硫酸、三氧化铬和水的重量比为

^{*} 国家自然科学基金(批准号 50677043)资助的课题.

[†] 通讯联系人. E-mail:zan@mail.tongji.edu.cn

1/1/2) 氧化温度和时间分别为 70℃和 6 h. 孔洞 PP 原膜和氧化膜的氟气处理在扬州亚普汽车部件有限 公司的氟化装置中随汽车油箱的氟化一道完成,氟 化过程中是在氟气和氮气混合气的负压下进行、且 具有较低的氟气分压 反应温度和反应时间分别约 为 60℃和 15 min.用于储电性研究的所有试样(孔洞 PP 原膜和氟化处理膜)被单面蒸镀厚度约为 100 nm 的圆形铝电极(样品的直径约为 40 mm)后,在常温、 常压下利用充电装置(HNCs20000-1 ump,德国 Heinzinger 公司生产)采用栅控恒压负极性电晕充 电,充电的针压、栅压、栅膜间距和充电时间分别为 - 10 kV, - 2 kV 8.5 mm 和 5 min. TSD 电流谱的测量 使用由升温速率约为 3℃/min 的温控线性升温程序 炕 T 5042 EK ,德国 Heraeus 公司) 美国 Keithley 公 司制造的 6514 多功能表和计算机(数据处理)所组 成的自动测量系统完成. 电荷 TSD 和电荷等温衰减 测量采用一种原位实时的测量方法¹¹¹.

3. 结果及讨论

3.1. 氟气处理孔洞聚丙烯膜的红外光谱分析

图 1 曲线 a, b, c 和 d 分别是孔洞 PP 原膜、氧 化膜、原膜氟气处理膜和氧化膜氟气处理膜的衰减 全反射红外(ATR-IR)光谱.其中(a)为整个波数 (4000—675 cm⁻¹)范围内的红外光谱 (b)单独地显 示了波数在 1800—700 cm⁻¹范围的红外谱(为清晰 地比较),作为参考,PTFE的红外光谱(曲线 e)也被 显示在(b)中.我们曾详细比较过孔洞 PP 原膜和氧 化膜的 ATR-IR 光谱(纵坐标放大)¹¹¹,指出了由于 氧化处理产生的氢氧伸缩(3500-3200 cm⁻¹)振动、 碳氧双键的伸缩振动(1710 cm⁻¹附近)及碳氧伸缩 振动与氢氧平面变角振动(875 cm⁻¹附近)的偶合吸 收表明了氧化处理产生含氧官能基团-COOH。 CO cOH.这也被其他研究者的实验结果表明¹².比 较图 1 曲线 a 和 b 尽管在 ATR-IR 完整吸收峰谱中 不能清晰地看到氢氧伸缩振动和碳氧双键伸缩振动 的吸收 但在图 1 曲线 b 中仍可分辨碳氧伸缩振动 与氢氧平面变角振动的偶合吸收(875 cm⁻¹附近). 比较原膜和氧化膜氟气处理后(图1曲线 c 和 d)与 处理前(图1曲线 a 和 b)的 ATR-IR 光谱,可见氟气 处理后不仅波数位于 3050-2750 cm⁻¹范围内的碳 氢伸缩振动吸收明显减弱,而且在1317—1019 cm⁻¹

范围内出现新的强振动吸收峰.如图 1(b)清晰地所 示,这一新的吸收峰与 PTFE 的 C-F 振动特征吸收峰 (图 1(b)曲线 e,1263—1080 cm⁻¹)相对应,表明氟气 处理的孔洞 PP 原膜和氧化膜的表层已被氟化,氟 取代氢或含氧基团生成了碳氟键(C-F).另外,图 1 曲线 d 较 c 中进一步减弱的碳氢伸缩振动吸收(波 数 3050—2750 cm⁻¹)表明预氧化的 PP 膜较原膜更 易于氟化.

图 1 孔洞 PP 驻极体膜的 ATR-IR 光谱(曲线 a 原膜, b 氧化膜, c 原膜氟气处理膜, d 氧化膜氟气处理膜, e PTFE)

3.2. 氟化孔洞聚丙烯膜的电荷存储特性

TSD 电流法是一种研究驻极体宏观和微观规律 及电荷稳定性的快速有效方法.当驻极体处于某一 温度下,与之相应深度能级上的电荷将被激发、脱 阱、并在自身空间电荷电场的作用下向背电极运动, 从而在外电路中形成 TSD 电流.因此,TSD 电流谱直 接反映了驻极体中空间电荷的能量分布,同时也综 合反映了驻极体中陷阱的能量分布和不同能量深度 的陷阱对空间电荷的俘获概率.驻极体中的空间电 荷主要被俘获于其晶区与非晶区的界面态及结构缺 陷能级上.其驻极特性不仅与它的晶相组成和结构 有关,还取决于化学组成.因此,孔洞 PP 膜的氟化 改性应将引起其储电性能的变化.

图 2 中分别显示了栅压为 – 2 kV 电晕充电的孔 洞 PP 驻极体原膜、氧化膜、氟化原膜和氟化氧化膜 的开路 TSD 电流谱. 与原膜的 TSD 电流谱相比,氧 化膜的 TSD 电流谱除了在高温部分稍微变宽外,形 状等几乎没有发生明显的变化,表明氧化仅微弱地 改变了孔洞 PP 驻极体膜的电荷稳定性,但是,氟化 原膜的 TSD 电流谱明显地不同于原膜 出现两个分 别约位于 130℃和 161℃的电流峰(低温峰和高温 峰),两电流峰温位相距较远(约31℃)且高温峰的 强度明显强于低温峰.显然,氟化原膜的 TSD 电流 谱的这种变化起因于氟化产生的组成变化(C-F键 的形成 和可能的结构变化 从而改变了氟化原膜中 电荷陷阱的能量分布或不同能量深度的陷阱对空间 电荷的俘获概率,导致较多的深阱电荷俘获.另外, 特别值得注意的是氟化氧化膜的 TSD 电流谱呈现 与氟化原膜的 TSD 电流谱相似的双峰(低温峰和高 温峰)构造,但两峰的温位(133℃和172℃)进一步向 高温方向漂移,两峰间距(约39℃)和高低温峰强度 比进一步增大.这一结果表明氟化氧化膜 原膜预氧 化后氟化)比氟化原膜(原膜直接氟化)能够产生更 高密度的、更深的陷阱能级,这应起因于 PP 膜预氧 化对氟化的促进作用,如图 1 曲线 d 较曲线 c 中进 一步减弱的碳氢伸缩振动吸收所示.

图 2 孔洞 PP 原膜、氧化膜、氟化原膜和氟化氧化膜的开路 TSD 电流谱

图 3 给出了氟化原膜和氟化氧化膜的原位实时 电荷 TSD 的测量结果,作为比较,原膜的原位实时 电荷 TSD 谱也被显示在图中.从图中清晰可见,在 整个电荷 TSD(线性升温)过程,原膜、氟化原膜和氟 化氧化膜的上电极感应电荷(正比于膜中的电 荷^[11])的衰减规律与图 2 所表明的结果一致,即氟 化氧化膜具有最佳的电荷储存热稳定性、氟化显著 地改善了孔洞 PP 膜的电荷稳定性.例如,当温度升 至 120℃时,原膜中的电荷衰减为初始值的 82%,而 氟化原膜和氟化氧化膜的电荷仍然分别保持为其初 始值的 97%,98%;当温度升至 160℃时,氟化原膜 和氟化氧化膜中的电荷分别保持为其初始值的 47% 59% ,而原膜的相应值已经衰减至 15%.

图 3 孔洞 PP 原膜、氟化原膜和氟化氧化膜的实时电荷 TSD 谱

电荷储存的稳定性是驻极体最重要的质量指标 之一,而电荷等温衰减测量是衡量电荷储存长期稳 定性的更加确切方法.图4为原膜、氟化原膜和氟化 氧化膜在100℃下的原位实时等温电荷衰减曲线. 从图中看出 经过100℃等温电荷衰减4h后,孔洞 PP 原膜的电荷衰减为初始值的约26%,而氟化原膜 的电荷衰减到初始值的39%,氟化氧化膜的电荷仍 然保持在其初始值的52%左右;8h以后,原膜、氟 化原膜和氟化氧化膜的电荷分别衰减至其相应初始 值的20%,31%和41%.因此,电荷等温衰减的结果 进一步表明了氟化改性对改善孔洞 PP 膜电荷稳定性 的意义及氟气氟化前对孔洞 PP 膜预氧化的作用.

图 4 孔洞 PP 原膜、氟化原膜和氟化氧化膜 100℃原位实时等温 电荷衰减

4.结 论

ATR 红外光谱分析结果表明:即使在负压状态

且较低的氟气分压及较低的反应温度(约60℃)和 较短的反应时间(约15min)下,氟气能有效地氟化 孔洞 PP 膜、更易于氟化预氧化 PP 膜;开路 TSD 电 流、原位实时电荷 TSD 和电荷等温衰减的测量结果 初步表明了氟化改性的孔洞 PP 膜,尤其是预氧化 后的氟化改性膜的电荷储存热稳定性得到显著的 改善.

- [1] Lagow R J , Margrave J L 1974 Polym . Lett . 12 177
- [2] Lagow R J , Margrave J L 1970 Proc. Natl. Acad. Sci. 67 8A
- [3] Nazarov V G, Kondratov A P, Stolyarov V P, Evlampieva L A, Baranov V A, Gagarin M V 2006 Polym. Sci. Ser. A 48 1164
- [4] Kharitonov A P ,Kharitonova L N ,Taege R ,Ferrier G ,Durand E , Tressaud A 2006 Actualite Chimique 130-134 Suppl. 301
- [5] Dubois A ,Guerin K ,Giraudet J ,Pilichowski J F ,Thomas P ,Delbe K Mansot J L ,Hamwi A 2005 Polymer 46 6736
- [6] Kharitonov A P , Taege R , Ferrier G , Teplyakov V , Syrtsova D A , Koops G H 2005 J. Fluorine Chem. 126 251
- [7] Kharitonov A P ,Moskvin Y L Syrtsova D A Starov V M ,Teplyakov V V 2004 J. Appl. Polym. Sci. 92 6

- [8] Wada Y ,Hayakawa R 1976 Jpn. J. Appl. Phys. 15 2041
- [9] Qiu X L, Xia Z F, An Z L, Wu X Y 2005 Acta Phys. Sin. 54 402
 (in Chinese)[邱勋林、夏钟福、安振连、吴贤勇 2005 物理学报 54 402]
- [10] Zhang P F ,Xia Z F ,Qiu X L ,Wu X Y 2005 Acta Phys. Sin. 54 397 (in Chinese)[张鹏锋、夏钟福、邱勋林、吴贤勇 2005 物理 学报 54 397]
- [11] An Z L, Tang M M, Xia Z F, Sheng X C, Zhang X Q 2006 Acta Phys. Sin. 55 803 (in Chinese)[安振连、汤敏敏、夏钟福、盛晓 晨、张晓青 2006 物理学报 55 803]
- [12] Tao G L, Gong A J, Lu J J, Sue H J, Bergbreiter D E 2001 Macromolecules 34 7672

Significantly improved charge deposit properties of the cellular polypropylene film modified by gaseous fluorine *

An Zhen-Lian[†] Zhao Min Tang Min-Min Yang Qiang Xia Zhong-Fu

(Pohl Institute of Solid State Physics ,Tongji University ,Shanghai 200092 ,China)
 (Received 10 May 2007 ; revised manuscript received 6 June 2007)

Abstract

Fluorination modification and electret properties were studied on the cellular polypropylene (PP) films modified by gaseous fluorine by attenuated total reflection (ATR) infrared analysis and the measurment of open-circuit thermally stimulated discharge (TSD) current , in situ TSD charge and isothermal charge decay. The results showed that the PP cellular films , especially the preoxidized ones , can be effectively fluorinated by gaseous fluorine , and that charge storage thermal stability of the fluorinated films , especially the fluorinated preoxidized ones , is significantly improved compared with that of the virginal PP film , even under conditions of negative pressure with a low partial pressure of gaseous fluorine , low reaction temperature about 60°C and short reaction time of 15 min.

Keywords : cellular polypropylene film , gaseous fluorine , fluorination modification , charge stability PACC : 7220J , 7360R , 8160 , 8140

 $[\]ast$ Project supported by the National Natural Science Foundation of China (Grant No. 50677043).

[†] Corresponding author. E-mail: zan@mail.tongji.edu.cn