本征约瑟夫森结跳变电流分布的量子修正*

崔大健120 林德华1% 于海峰20 彭智慧20 朱晓波20 郑东宁20 景秀年20 吕 力20 赵士平20

1)重庆大学物理系,重庆 400044)
2)中国科学院物理研究所,北京 100190)
(2007年12月26日收到2008年1月19日收到修改稿)

在约瑟夫森结跳变电流统计分布的理论拟合过程中,通常考虑的是宏观量子隧穿与热激活这两种过程.对 Bi₂Sr₂CaCu₂O₈₊₈表面本征约瑟夫森结的结果分析表明,在宏观量子隧穿与热激活的交界区域内,若考虑量子修正能 使实验曲线与理论曲线符合得更好.这种较为完整的拟合方法,对研究本征约瑟夫森器件中的宏观量子现象及其 在超导量子比特中的应用具有积极的意义.

关键词:约瑟夫森结,跳变电流分布,量子修正 PACC:7450,7430F,0365

1.引 言

随着量子物理、凝聚态物理的发展 随着量子信 息学的建立和现代技术(包括微加工技术、量子态测 量、极低温技术等)的突飞猛进,宏观量子现象以及 量子计算的理论和实验研究正在国际物理学界迅速 展开.近年来,量子计算无论在理论还是在实验方 面,都取得了迅速的发展.目前已有不少物理系统 被用来作为研究量子比特的载体.以约瑟夫森结为 核心的超导量子系统是一种基于超导宏观量子效应 的固态器件,在极低温下,可构造出具有超导特性 的、能展示宏观量子现象的一个双能级的量子体系. 这一体系不但具有很好的量子相干性,而且易于通 过电路参数和外场来调控,可成为极理想的量子比 特或一个研究宏观量子现象的载体.

电流偏置的约瑟夫森结是一种最简单的超导量 子系统.我们在 25 mK 至 1 K 温度区间内系统测量 了单个 Bi₂Sr₂CaCu₂O₈₊。表面本征约瑟夫森结¹¹跳变 电流的统计分布,并用宏观量子隧穿(MQT)和经典 热激活(TA)两种模型对结果进行了理论拟合.我 们发现在两种模型的交界区域,采用量子修正理论 能使实验与理论更加符合,这一结果对研究本征约 瑟夫森结系统中的宏观量子现象及其在超导量子比 特中的应用具有积极的意义。

2. 电流偏置的约瑟夫森结的动力学

电流偏置的约瑟夫森结可以描述成质量为 $m = Q(\Phi_0/2\pi)^3 - 0$ 一个相位粒子在一维的搓衣板势中 具有阻尼 1/RC 的运动(如图 1) 其运动方程可以表 示为

$$m\ddot{\varphi} + \frac{1}{RC}\dot{\varphi} + \frac{\partial U(\varphi)}{\partial \varphi} = 0 , \qquad (1)$$

其中 $\Phi_0 = h/2e$, $U(\varphi) = -E_J(\gamma\varphi + \cos\varphi)$, $E_J = I_c \Phi_0/2\pi$, $\gamma = I_b/I_c$, I_b 和 I_c 是结的偏置电流和临界 电流, C和 R 是结电容和等效电阻, φ 为结两侧的 位相差.在 $\gamma < 1$ 时, $U(\varphi)$ 势阱高度为

$$\Delta U = 2E_{f} \left[\sqrt{1 - \gamma^{2}} - \gamma \arccos(\gamma) \right].$$

当
$$\gamma$$
→1 时 $\Delta U \approx \frac{4\sqrt{2}}{3} E_{f} (1 - \gamma)^{3/2}$.

† E-mail : lindehua_ cn@yahoo.com.cn

^{*}国家自然科学基金(批准号:10474129,10534060,10604064)和国家重点基础研究发展计划(973)项目(批准号:2006CB601007, 2006CB921107)资助的课题.

图1 约瑟夫森结的势能曲线

变现象与结的动力学过程紧密相关,下面通过测量 约瑟夫森结跳变电流的统计分布来分析研究约瑟夫 森结的热激活、宏观量子隧穿等特性.

3.约瑟夫森结跳变电流分布的测量 原理

在某一温度下,在约瑟夫森结两端加一直流偏 置,该直流以 d1/dt 的速率逐渐增大. 在 to 时刻,偏 置电流从0开始增大 同时观察结两端的电压 当结 电压从 0 跳变到一个有限值时,记下这一瞬间的对 应时刻 t_1 ,对应的跳变电流 $I_{SW} = \frac{dI}{dt}\Delta t = \frac{dI}{dt}(t_1 - t_2)$ t₀) 接着将偏置电流降为 0 使结恢复到初始态 要 获得跳变电流的统计分布,需重复上述过程50000 次,对 Isw进行统计分布,得到一组分布 P(I). 再改 变温度 重复上述过程 得到另外一组 P(1).

4. 约瑟夫森结跳变电流分布的理论 拟合

4.1. 热激活和量子隧穿的理论描述

的温度称为交叉温度,可表示成

观

理论上的 P(I) 值可以由下面的公式算出:

$$P(I) = \frac{\Gamma(I)}{dI/dt} \exp\left(-\frac{1}{dI/dt}\int_{0}^{t} \Gamma(I') dI'\right), (2)$$

其中 Γ 为位相粒子从势阱中逃逸出来的概率 ,它在
温度较高时由热激活过程决定 ,而在温度较低时 ,宏
观量子隊穿则起主导作用 两种效应的转变点对应

 $T^* = \hbar \omega_{\rm p} [(1 + \alpha^2)^{1/2} - \alpha] / 2\pi k_{\rm B}$ 其中 $\omega_{\rm p} = \omega_0 [1 - \gamma^2]^{1/4}$, $\omega_0 = (2\pi I_c / \Phi_0 C)^{1/2}$, $\alpha =$

1/2Q, $Q = \omega_P RC$ 为品质因子. 在热激活过程中, 逃 逸概率是温度的函数 表示为[2]

$$\Gamma_{t} = \frac{\omega_{\rm p}}{2\pi} a_{t} \exp\left(-\frac{\Delta U}{k_{\rm B}T}\right) , \qquad (3)$$

其中 $a_t = 4(\sqrt{1 + Qk_B T/1.8\Delta U} + 1)^{\circ}$ 是和温度与 结阻抗相关的因子. 在量子隧穿过程中,逃逸概率 不依赖于温度 可表示为[3]

$$\Gamma_{q} = \frac{\omega_{p}}{2\pi} a_{q} \exp\left[-\frac{7.2\Delta U}{\hbar\omega_{p}}\left(1 + \frac{0.87}{Q}\right)\right] , \quad (4)$$

其中 $a_{g} \approx [120\pi (7.2\Delta U/\hbar\omega_{p})]^{1/2}$.

4.2. 利用热激活和量子隧穿理论拟合 P(I)

实验样品是尺寸为 1.6 μm × 1.6 μm 的表面本 征约瑟夫森结 结的临界电流密度为 503 A/cm².测 量温度范围 25 mK 到 1 K. 我们用 Fortran 语言编写 数据处理的热激活和量子隧穿公式,并用 Origin 拟 合得到表面结的在 25 mK 到 1 K 范围内的转变电流 分布及理论拟合曲线。

如图 2 所示,我们可以看到温度为 25 mK 时实 验数据可以用量子隧穿理论很好地拟合,而热激活 理论可拟合高温段实验数据(参数为 I_{e} = 12.87 μ A, C = 180 fF, R = 200 Ω),但从 700 mK开始,理论 曲线与实验曲线开始出现很大的偏差。为消除这些 偏差原因 我们考虑了下述的量子修正理论^[3].

图 2 表面结在 25 mK 到 1 K 范围内的跳变电流分布以及理论 拟合曲线

4.3. 量子修正理论

图3给出了不同温区内的主导逃逸机理,随着

图 3 不同温区内的主导逃逸机理

温度的降低,经典逃逸率需进行一定的量子修正. 量子涨落会增加逃逸的发生,因为它在亚稳态的势 阱里面增加了粒子的平均能量,或对于一个粒子,可 以通过热激发到一定的能量高度,然后再通过隧穿 逃出势垒.考虑到这些因素,热激活理论(3)式中的 *a*,被下式替代^[4]:

$$a_{c} = \left[\left(1 + \alpha^{2} \right)^{1/2} - \alpha \right] \frac{\sinh(\pi \eta)}{\sin(\pi \eta)} \exp(D\alpha),$$

其中

$$D = \eta [\Psi (1 + \eta) + \Psi (1 - \eta) - \Psi (1 + i\eta) - \Psi (1 - i\eta)],$$

 $\eta = \hbar \omega_{\rm p} / 2\pi k_{\rm B} T$, Ψ 是 digamma 函数. 考虑了量子修 正后 表面结在 25 mK 到 1 K 范围内的转变电流分 布以及理论拟合曲线如图 4 所示,可以看出,这时的 理论曲线和实验结果符合很好.

图 4 表面结在 25 mK 到 1 K 范围内的跳变电流以及考虑量子 修正的理论拟合曲线

5.结 论

通过考虑量子修正理论,对在 25 mK 至 1 K 温 度区间内系统测量的单个 Bi₂Sr₂CaCu₂O₈₊表面本征 约瑟夫森结的跳变电流的统计分布进行了理论拟 合.我们发现在 MQT 和 TA 这两种模型的交界区 域,采用量子修正理论能使实验与理论更加符合,这 一结果为进一步研究表面本征约瑟夫森结系统中的 宏观量子现象及其在超导量子比特中的可能应用提 供了一个有效的分析方法.

- [1] Zhu X B , Wei Y F , Zhao S P et al 2004 Chin . Phys. 13 529
- [2] Kramers H A 1940 Physica (Utrechit) 7 284

- [3] Caldeira A O , Leggett A J 1981 Phys. Rev. Lett. 46 211
- [4] Grabert H , Olschowski P , Weiss U 1987 Phys. Rev. B 36 1931

Quantum corrections in fitting the switching current distributions of intrinsic Josephson junction *

Cui Da-Jian^{1,2}) Lin De-Hua^{1,†} Yu Hai-Feng²) Peng Zhi-Hui²) Zhu Xiao-Bo²)

Zheng Dong-Ning²) Jing Xiu-Nian²) Lü Li²) Zhao Shi-Ping²)

1) Department of Physics , Chongqing University , Chongqing 400044 , China)

2 X Institute of Physics , Chinese Academy of Sciences , Beijing 100190 , China)

(Received 26 December 2007; revised manuscript received 19 January 2008)

Abstract

In the process of theoretical fitting the switching current distributions of Josephson junction ,macroscopic quantum tunneling (MQT) and thermally activated process are usually considered. Analysis of the results for a $Bi_2 Sr_2 CaCu_2 O_{8+\delta}$ surface intrinsic Josephson junction (SIJJ), quantum corrections are considered at the intermediate areas between MQT and thermally activated process. It is found that quantum corrections lead to a perfect fit to the experimental data, which may be useful for the future studies of MQT in SIJJs and their possible applications as a superconducting qubit.

Keywords : Josephson junction , switching current distribution , quantum corrections PACC : 7450 , 7430F , 0365

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 10474129, 10534060, 10604064) and the National Basic Research Program of China (Grant Nos. 2006CB601007, 2006CB921107).

[†] E-mail : lindehua_ cn@yahoo.com.cn