# 钐原子的两步激发共振光电离光谱<sup>\*</sup>

赵洪英 戴长建\* 关 锋

(显示材料与光电器件教育部重点实验室,天津 300191)
 (天津理工大学理学院,天津 300384)
 (2008年5月6日收到 2008年6月6日收到修改稿)

采用两步激发共振光电离技术研究了 Sm 原子的偶宇称高激发态光谱.实验采用了两条激发路线:1)第一束激 光的波长固定在 478.44 nm 以便将 Sm 原子从 4f<sup>6</sup>6s<sup>2</sup>[<sup>7</sup>F<sub>1</sub>]态激发至 4f<sup>6</sup>6s6p[<sup>7</sup>D<sub>1</sub>]态,再用第二束激光使其波长从 480 nm 扫描至 530 nm ,将 Sm 原子进一步激发至待测的高激发态;2)第一束激光的波长固定在 574.81 nm 以便将 Sm 原子从 4f<sup>6</sup>6s<sup>2</sup>[<sup>7</sup>F<sub>2</sub>]态激发至 4f<sup>6</sup>6s6p[<sup>5</sup>G<sub>3</sub>]态,再用第二束激光使其波长从 460 nm 扫描至 470.5 nm ,将 Sm 原子进一 步激发至待测的高激发态.最后利用第三束激光通过光电离技术对处于上述高激发态上的 Sm 原子进行探测.通 过对光电离光谱的详细分析,测定了第一电离限以下分别处于 39465—39932 cm<sup>-1</sup>和 40000—42010 cm<sup>-1</sup>这两个能量 范围内的 26 个和 76 个偶宇称高激发原子态.报道了它们的能级位置和相对光谱强度,还对其光谱归属进行了讨 论.通过与文献值进行比对,发现所测定的 51 个原子态数据与文献相一致,而其余 51 个原子态则为本实验首次 发现.

关键词:Sm原子,光谱,分步激发,共振电离 PACC:3280,3270F,3690

## 1.引 言

近年来 随着激光器件和技术的进步 原子高激 发态的光谱研究取得了很大的进展,其中 激光分步 激发,共振电离技术[12]是研究多电子原子高激发态 光谱的有效方法,单光子吸收和发射光谱技术<sup>[34]</sup>是 早期探测原子低能级位置的常用手段,但是这种方 法在研究原子高激发态时存在着很大缺陷:1)不能 获得与基态宇称相同原子态的相关信息 2)由于原 子吸收单光子跃迁至高激发原子态的跃迁概率很 小 导致高激发原子态上的原子数目较少 因此测到 的高激发原子态光谱信号很弱,而激光分步激发, 共振电离技术克服了上述传统光谱测量的困难 ,是 一种测量原子高激发态光谱的有效方法,采用此方 法可以将原子从基态或任何热布居的低能级沿设定 的激发路线激发到任何宇称的高激发原子态,并且 激发截面相对较大 ,之后再采用光电离或场电离技 术使原子电离成离子/电子对,再利用微通道板 (MCP)收集离子、电子信号,高增益、快响应微通道

板的应用进一步增强了探测信号的灵敏度.

稀土元素具有许多优异性能,在科技和生产的 许多方面都有着重要的应用,稀土元素由于未满的 4f 支壳层,其高激发态光谱中不仅存在类似于碱土 金属的最外层电子被激发的高激发态[5-8],而且存 在 4f 支壳层电子被激发的高激发态,其原子光谱非 常复杂 因此稀土元素原子光谱的研究工作更具难 度与挑战性,目前国际上光谱研究的焦点已从碱土 金属原子转移到了这些能级结构更加复杂的稀土原 子上,国际上对于稀土原子 Gd Lu 及 Yb 高激发态 光谱的研究报道较多<sup>[9-13]</sup>,然而人们对于 Sm 原子 高激发态的光谱报道却较少,至今对 Sm 原子态的 了解仍很不完整. Martin 等人<sup>[14]</sup>给出 31200 cm<sup>-1</sup>能 域以下 58 个偶宇称的能级位置以及 35200 cm<sup>-1</sup>能 域以下 404 个奇宇称能级位置 ;Jia 等人[15]给出在 35700-37100 cm<sup>-1</sup>能域内的 7 个偶宇称的能级位 置 ;Javasekharan 研究小组<sup>[16,17]</sup>报道了 32000—45519  $cm^{-1}$ 能域内共 600 多个偶宇称的原子态数据; Gomonai 等人<sup>[18]</sup>用单色三光子共振电离光谱技术对 34713.1—40526.7 cm<sup>-1</sup>能量范围内能级位置进行了

<sup>\*</sup>国家自然科学基金(批准号:10574098,10674102)和天津市自然科学基金(批准号:05YFJMJC05200)资助的课题。

<sup>†</sup> 通讯联系人. E-mail:daicj@126.com.

研究,又观测到15个偶宇称新能级.

虽然在上述能域发现了大量的 Sm 原子高激发 态,但是由复杂原子的光谱简并性可知,若采用不同 的激发路线则会在这些能域中发现许多不同的原子 状态.换句话说,即使在同一能域内只要所采用的激 发路线不同,则可以将 Sm 原子从不同的初态激发 到相应的终态.具体的结果取决于光谱的谱线强度 和相关的跃迁选择定则.根据上述调研结果和光谱 学原理,本文采用了与文献 17 J所不同的激发路线 并利用两步共振光电离方法,测定了大量的处于第 一电离限以下的具有偶宇称的高激发原子态,不但 验证了一批文献发表的光谱数据,还通过许多新实 验数据进一步地丰富了 Sm 原子的能级结构数据和 光谱信息.

2. 实验原理与装置

2.1. 实验原理

Sm 原子具有多个价电子,基态存在多个精细 结构 分 裂,原 子 态 为 4f<sup>6</sup>6s<sup>2</sup>[<sup>7</sup>F<sub>1</sub>],总 角 动 量 J = 0 - 6, 拱 7 个,能级分别为 0 cm<sup>-1</sup>(<sup>7</sup>  $F_0$ ),292.58 cm<sup>-1</sup>(<sup>7</sup>  $F_1$ ),811.92 cm<sup>-1</sup>(<sup>7</sup>  $F_2$ ),1489.55 cm<sup>-1</sup>(<sup>7</sup>  $F_3$ ), 2273.09 cm<sup>-1</sup>(<sup>7</sup>  $F_4$ ),3125.46 cm<sup>-1</sup>(<sup>7</sup>  $F_5$ )和 4020.66 cm<sup>-1</sup>(<sup>7</sup>  $F_6$ ).因此在所用的加热温度下,不可避免地 同时布居上述七个态,各原子态上布居的原子数目 服从热力学玻尔兹曼分布.很显然,激发起始态在不 同的能级上布居给实验造成了两个严重后果:其一 处于激发起始态(7个原子态之一)上的原子数目显 著减少,从而减弱了跃迁的信号强度;其二由于激发 起始态不能确定,使第一步激发的唯一性遭到了破 坏,给后续的光谱识别带来巨大的不确定性.表1给 出原子炉设定温度 T 在 700,750,800 K 时<sup>7</sup>  $F_{J=0-6}$ 各 原子态上布居的原子数目百分比.

从表 1 可以看出,在各个温度下绝大多数 Sm 原子集中在<sup>7</sup> F<sub>0</sub><sup>7</sup> F<sub>1</sub> 和<sup>7</sup> F<sub>2</sub> 三个原子态上,因此若选 择这三个态作为第一步激发的初态则有可能获得比 较强的光谱信号,本实验采用两条激发路线探测 Sm 原子态,分别选择<sup>7</sup> F<sub>1</sub> 和<sup>7</sup> F<sub>2</sub> 作为两条激发路线的第 一步原子跃迁的初态.

表1 在不同温度下各原子态上的热布居(原子数占总数的百分比)

| 温度/K | $^{7} F_{0}$ | $^{7}F_{1}$ | $^{7}F_{2}$ | $^{7}F_{3}$ | $^{7}F_{4}$ | $^{7}F_{5}$ | $^{7}F_{6}$ |
|------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 800  | 21.67        | 38.42       | 25.16       | 10.41       | 3.27        | 0.86        | 0.20        |
| 750  | 23.18        | 39.67       | 24.41       | 9.31        | 2.66        | 0.63        | 0.13        |
| 700  | 24.88        | 40.90       | 23.44       | 8.15        | 2.09        | 0.44        | 0.08        |

本实验采用二台染料激光器激发和探测 Sm 原 子高激发态. 一台 Nd :YAG 固体脉冲激光器输出波 长为 532 nm 绿光及 355 nm 紫外激光分别抽运两台 染料激光器,其中一台染料激光器输出固定波长激 光λ<sub>1</sub>,另一台染料激光器输出波长连续变化的激光 λ<sub>2</sub>.为避免两束激光的重叠,控制光路使第二束激光 延迟第一束激光 8 ns 进入真空室.本实验选取的激 发路线为

$$4f^{6}6s^{2}[^{7}F_{1}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[^{7}D_{1}]$$

$$\xrightarrow{\lambda_{2}} [J = 0, 1, 2] \xrightarrow{\lambda_{2}} Sm^{+}, I$$

$$4f^{6}6s^{2}[^{7}F_{2}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[^{5}G_{3}]$$

$$\xrightarrow{\lambda_{2}} [J = 2, 3, 4] \xrightarrow{\lambda_{2}} Sm^{+}, I$$

$$I$$

在第一条激发路线中  $\lambda_1 = 478.44$  nm,在第二条激发路线中  $\lambda_1 = 574.81$  nm.下面以激发路线  $\bot$  为例说明

Sm 原子的激发电离过程.图1为激发路线 Ⅱ 的示意图.



图 1 激发路线 [示意图(两步共振激发光电离)

Sm 原子先吸收一个  $\lambda_1$  光子从  $4f^66s^2[^7F_1]$ 态 (能级为 292.58 cm<sup>-1</sup>)共振跃迁到  $4f^66s6p[^7D_1]$ 态,

其能级为 21193.68 cm<sup>-1</sup>,再依次吸收两个  $\lambda_2$  光子, 第一个  $\lambda_2$  光子使 Sm 原子共振跃迁至要探测的高 激发态,其能级为 E = 292.58 cm<sup>-1</sup> +  $\omega_1$  +  $\omega_2 =$ 21193.68 cm<sup>-1</sup> +  $\omega_2$ , $\omega_1$  为  $\lambda_1$  光子能量, $\omega_2$  为  $\lambda_2$  光 子能量,然后第二个  $\lambda_2$  光子作为探测光使 Sm 原子 跃迁到电离限以上,将 Sm 原子光电离成离子/电子 对,电子/离子信号被 MCP 探测器接收并经过 BOXCAR 积分平均放大后输入计算机,得到光电离 光谱.对于第二条激发路线,中间态 4f<sup>6</sup>6s6p[<sup>5</sup>G<sub>3</sub>]能 级为 18208.97 cm<sup>-1</sup>,因此相应的待探测高激发原子 态能级 E = 18208.97 cm<sup>-1</sup> +  $\omega_2$ . 值得注意的是,在光电离光谱中并不是所有的 共振峰都对应一个高激发态能级,这是因为由于基 态具有复杂的精细结构分裂(7个原子态),热布居 将原子分散在基态的七个子能级上,在固定第一束 激光的波长 $\lambda_1$ 而扫描第二束激光的波长 $\lambda_2$ 时,各 个热布居的基态 Sm 原子有可能不吸收 $\lambda_1$ 光子而 靠吸收多个 $\lambda_2$ 光子使其光电离,即通过单色多光子 激发过程也可产生电离信号,对于这种情况实验中 必须予以去除.单色多光子激发电离过程包括 $\lambda_2$ +  $2\lambda_2$ 或 $2\lambda_2$ + $\lambda_2$ ,激发路线如图2所示.



图 2 单色多光子激发共振电离示意图  $(a)\lambda_2 + 2\lambda_2$   $(b)2\lambda_2 + \lambda_2$ 

在图  $\chi$  a )中基态 Sm 原子先吸收一个  $\lambda_2$  光子, 跃迁至一低激发态,然后再同时吸收两个  $\lambda_2$  光子并 被电离,探测到的共振电离峰对应低激发原子态能 级  $E = 基态^7 F_{J=0-6} + \omega_2$ ;在图  $\chi$  b )中基态 Sm 原子 先同时吸收两个  $\lambda_2$  光子,跃迁至一高激发态,然后 再吸收一个  $\lambda_2$  光子被电离,探测到的共振电离峰对 应高激发原子态能级  $E = 基态^7 F_{J=0-6} + 2\omega_2$ .在本 实验中,我们需要采取手段,认真辨别和消除这些 只由第二束激光产生的单色多光子跃迁所导致的干 扰峰.

#### 2.2. 实验装置

本实验所采用的实验装置如图 3 所示:包括激 光系统、原子束产生系统、信号采集和分析系统.激 光系统包括一台 Quanta System 公司生产的 Nd:YAG 固体激光器和两台染料激光器.Nd:YAG 固体激光 器输出频率为 20 Hz 的 1064 nm 的基频脉冲激光 ,经 倍频、和频及分束后可输出 532 nm 与 355 nm 脉冲 激光,用于抽运两台染料激光器.所用激光染料包括 Rhodamine6G(532 nm 激光抽运),Coumarin480(355 nm 激光抽运)和 Coumarin460(355 nm 激光抽运).激 光线宽为 0.1 cm<sup>-1</sup>.

图 3 中圆周线内的部分包括原子束产生装置、 光子-原子作用区及离子/电子探测装置.这些装置 都处于真空环境中,其真空度可达 10<sup>-4</sup> Pa.将 Sm 原 子置于不锈钢坩埚中,用钼丝线圈进行电加热,一般 将加热炉温度控制在 800 K 以下,以便使光子-原子 作用区的 Sm 原子数密度为 10<sup>8</sup> 原子/cm<sup>3</sup>.Sm 原子 束经准直孔到达作用区并与通过石英玻璃窗口进入 的激光束垂直相交.当 Sm 原子被光电离后,可用高 增益(可达 10<sup>8</sup>) 快响应 MCP 探测器接收并经美国 AMETEK 公司 Model 4100 Boxcar 积分平均器处理后 送入计算机.利用 Acquire 数据采集和分析软件,便 可对所获得的光谱信息进行实时显示以及后续的分 析和处理.另外,为避免 Stark 效应对光谱的影响,采 用 AMETEK 公司的 9650A 型脉冲延迟发生器控制 收集电场的脉冲,使其比光脉冲延迟 500 ns.



图 3 实验装置示意图

实验中 利用空心阴极灯的标准谱线对扫描的 激光波长进行了绝对定标,而用 F-P 标准具对光电 离光谱进行了相对定标,以便消除光谱测量过程中 的系统误差.同时,本文对同一波段进行了多次扫 描,然后对其进行平均,以减小测量过程中的随机误 差.经过对所有光谱测量的误差分析和估算,本实 验中激光波长的不确定度为±0.01 nm.

### 3. 理论依据

本实验通过测量分析激光两步共振光电离光 谱 探测 Sm 原子偶宇称高激发原子态.光谱中每条 谱线(共振峰)对应一个原子态(待测高激发态),若 光谱中某一谱线的强度较弱,则有可能被噪声淹没, 那么通过此光谱就探测不到对应的原子态.光电离 光谱谱线强度

$$I \propto N_{Ja} W (\alpha_a J_a , \alpha_b J_b)$$
  
=  $N_{Ja} | \alpha_b J_b | \mathbf{r} | \alpha_a J_a |^2$ , (1)

式中  $N_{J_a}$ 表示待测高激发态上的原子数密度 ,J 为总 角动量 , $\alpha$  表示除总角动量之外的其他量子数 ,脚标 a 代表跃迁初态 ,这里为待测高激发态 ,b 代表跃迁 终态 ,这里为电离态 , $W(\alpha_a J_a, \alpha_b J_b)$ 表示原子由待测 高激发态  $|\alpha_a J_a$  到电离态  $|\alpha_b J_b$  的跃迁概率.

对于一个给定的激发路线

 $A \xrightarrow{\lambda_1} B \xrightarrow{\lambda_2} X \xrightarrow{\lambda_2} O(Sm^+),$ 

激发起始态为 A 态 吸收一个  $\lambda_1$  光子跃迁至 B 态, 吸收一个  $\lambda_2$  光子跃迁至 X 态(要探测的高激发态),再吸收一个  $\lambda_2$  光子原子被光电离至 C 态(电 离态),设激发路线的每一步都满足电偶极跃迁选择 定则  $\Delta J = 0$ , ± 1( $0 \rightarrow 0$ ).

现假设由不同的激发路线探测同一个高激发 *X* 态 因为电离态为连续态 ,属于非共振电离 ,不同激 发路线下由 *X* 态向电离态的跃迁概率可近似相等 , 所以在不同激发路线下获得的光电离光谱中 *X* 态 对应的共振峰的谱峰强度均取决于各自 *X* 态上的 原子数密度 *N<sub>x</sub>* ,而很显然 *X* 态上的原子数密度正比 于布居在基态 *A* 上的原子数密度 ,同时正比于每一 步激发的原子跃迁概率 .在某个激发路线下 ,若由 *B* 态向 *X* 态的跃迁概率很小或跃迁禁戒 ,那么在光电 离光谱中就不会出现 *X* 态对应的共振峰 ,反之由 *B* 态向 *X* 态的跃迁概率大 ,光电离光谱中就会有 *X* 态 对应的共振峰 ,因此激发路线不同 ,在同一能域能检 测出的原子态也很可能不相同.

#### 4. 结果与讨论

按照激发路线 I,第一台激光器输出固定波长  $\lambda_1 = 478.44 \text{ nm}$ 激光,使 Sm 原子由 4f<sup>6</sup>6s<sup>2</sup>[<sup>7</sup>F<sub>1</sub>]跃迁 至 4f<sup>6</sup>6s6f[<sup>7</sup>D<sub>1</sub>]态,第二台激光器输出连续波长  $\lambda_2$ 激光, $\lambda_2$  从 480 nm 扫描至 530 nm,在测量的两步激 发共振光电离光谱中共出现 82 个共振峰.同样,按 照激发路线 II,第一台激光器输出固定波长  $\lambda_1 =$ 574.81 nm 激光,使 Sm 原子由 4f<sup>6</sup>6s<sup>2</sup>[<sup>7</sup>F<sub>2</sub>]跃迁至 4f<sup>6</sup>6s6f[<sup>5</sup>G<sub>3</sub>]态,第二台激光器输出的激光波长  $\lambda_2$ 从 460 nm 扫描至 470.5 nm,光电离光谱中共出现 33 个共振峰.图 4 展示了 Sm 原子的两步激发共振光



图4 Sm 原子两步激发共振电离谱图 (a)调谐 λ<sub>1</sub> 波长为 478.44 nm, λ<sub>2</sub> 在 480—490 nm 范围扫描 (b)调谐 λ<sub>1</sub> 波长为 574.81 nm, λ<sub>2</sub> 在 460—470 nm 范围扫描

根据 Sm 原子两步激发共振电离谱图可确定每 一个峰所对应的  $\lambda_2$  波长,由激发路线 [获得的光谱 显示 82 个共振谱峰,相应地得到 82 个  $\lambda_2$  波长值, 由激发路线 []获得的光谱显示 33 个共振谱峰,相应 地得到 33 个  $\lambda_2$  波长值.

然而这些  $\lambda_2$  波长值数据可能包含  $\lambda_2$  单色多光 子电离干扰峰波长值数据,我们采取了如下措施将 其排除 通过示波器观察共振峰,如果是两光子分步 激发光电离共振峰,则挡住  $\lambda_1$  激光,示波器上的共 振电离信号消失;反之,挡住  $\lambda_1$  激光,示波器上的共 振电离信号不消失,则此峰肯定为  $\lambda_2$  单色多光子电 离干扰峰.通过此辨别方法,我们确定出两条激发路 线探测的光谱中共有 13 个谱峰为单色多光子共振 电离峰,对应的  $\lambda_2$  波长值分别为 460.32 nm 461.79 nm 462.91 nm 464.77 nm 466.16 nm 467.00 nm , 468.39 nm 484.95 nm 488.49 nm 491.21 nm 494.70 nm 504.53 nm 和 526.70 nm ,在讨论分步激发共振 电离探测高激发原子态时应该去除.

由此得出在激发路线 [下测得的光谱 82 个共 振电离峰中有 76 个,在激发路线 ][下测得的光谱 33 个共振电离峰中有 26 个属于两步激发共振光 电离.

采用分步激发共振电离技术探测高激发原子 态 根据共振峰对应波长  $\lambda_2$  求出第二束激光光子能 量  $\omega_2$  ,在激发路线 [下,按照 E = 21193.68 cm<sup>-1</sup> +  $\omega_2$  计算能级 ,得到 40000—42010 cm<sup>-1</sup>能量域内 76 个高激发原子态 ,详见表 2.

表 2 采用激发路线 Ⅰ 所探测到的钐原子高激发态的能级位置 E、 谱线的相对强度 I 及其可能的总角动量 J

| 序号   | <b>能级</b> /cm <sup>-1</sup> | 总角动量  | 相对强度 |
|------|-----------------------------|-------|------|
| 1    | 42003.60                    | 2     | w    |
| 2#   | 41975.74                    | 0,12  | m    |
| 3 #  | 41944.68                    | 0,1,2 | w    |
| 4    | 41907.70                    | 2     | w    |
| 5    | 41887.76                    | 1     | w    |
| 6#   | 41872.99                    | 0,12  | \$   |
| 7    | 41853.34                    | 1     | m    |
| 8 #  | 41833.71                    | 0,1,2 | \$   |
| 9    | 41819.66                    | 1     | w    |
| 10   | 41805.20                    | 1     | w    |
| 11   | 41789.49                    | 2     | m    |
| 12   | 41765.16                    | 12    | m    |
| 13 # | 41753.06                    | 0,1,2 | m    |
| 14   | 41702.03                    | 12    | \$   |
| 15   | 41694.04                    | 2     | w    |
| 16   | 41685.64                    | 2     | w    |
| 17   | 41647.48                    | 1     | m    |
| 18 # | 41637.03                    | 0,12  | w    |
| 19#  | 41606.84                    | 0,1,2 | w    |
| 20 # | 41588.11                    | 0,12  | m    |
| 21 # | 41563.60                    | 0,12  | w    |
| 22#  | 41558.73                    | 0,12  | w    |
| 23 # | 41528.80                    | 0,1,2 | m    |
| 24   | 41516.51                    | 1 ,2  | w    |
| 25   | 41508.25                    | 12    | w    |
| 26#  | 41481.45                    | 0,1,2 | m    |
| 27   | 41434.21                    | 2     | m    |
| 28 # | 41417.76                    | 0,1,2 | m    |
| 29   | 41393.72                    | 2     | \$   |

歩表っ

| 续表 2            |                     |       |      |
|-----------------|---------------------|-------|------|
| 序号              | 能级/cm <sup>-1</sup> | 总角动量  | 相对强度 |
| 30 *            | 41344.81            | 0,1,2 | w    |
| 31 #            | 41329.39            | 0,1,2 | m    |
| 32              | 41324.94            | 2     | m    |
| 33 #            | 41302.71            | 0,1,2 | w    |
| 34              | 41293.81            | 2     | w    |
| 35 #            | 41273.19            | 0,1,2 | w    |
| 36              | 41235.38            | 2     | \$   |
| 37              | 41223.32            | 0     | w    |
| 38              | 41161.72            | 2     | w    |
| 39 *            | 41130.26            | 0,1,2 | \$   |
| 40              | 41108.42            | 1     | w    |
| 41              | 41060.93            | 1 2   | m    |
| 42#             | 41049.13            | 0,1,2 | w    |
| 43              | 40996.00            | 1 2   | m    |
| 44              | 40968.97            | 1     | w    |
| 45 #            | 40956.07            | 0,1,2 | w    |
| 46 #            | 40948.26            | 0,1,2 | w    |
| 47 #            | 40923.38            | 0,1,2 | w    |
| 48 #            | 40890.74            | 0,1,2 | w    |
| 49 #            | 40845.84            | 0,1,2 | w    |
| 50 #            | 40839.94            | 0,1,2 | m    |
| 51 #            | 40819.89            | 0,1,2 | \$   |
| 52              | 40761.49            | 2     | m    |
| 53 <sup>#</sup> | 40740.45            | 0,1,2 | w    |
| 54 #            | 40725.18            | 0,1,2 | m    |
| 55 <sup>#</sup> | 40662.42            | 0,1,2 | w    |
| 56#             | 40621.34            | 0,12  | w    |
| 57 #            | 40616.06            | 0,1,2 | w    |
| 58 <sup>#</sup> | 40588.94            | 0,1,2 | m    |
| 59#             | 40572.77            | 0,1,2 | w    |
| 60 #            | 40568.64            | 0,1,2 | w    |
| 61 #            | 40510.81            | 0,12  | w    |
| 62#             | 40508.02            | 0,1,2 | w    |
| 63 <sup>#</sup> | 40489.18            | 0,12  | w    |
| 64 #            | 40474.88            | 0,1,2 | w    |
| 65 #            | 40422.97            | 0,1,2 | w    |
| 66 #            | 40415.35            | 0,1,2 | w    |
| 67              | 40379.57            | 0     | s    |
| 68 #            | 40367.06            | 0,1,2 | m    |
| 69              | 40297 81            | 2     | s    |

| ₹2   |                     |       |      |  |
|------|---------------------|-------|------|--|
| 序号   | 能级/cm <sup>-1</sup> | 总角动量  | 相对强度 |  |
| 70   | 40217.38            | 2     | w    |  |
| 71 # | 40207.70            | 0,12  | m    |  |
| 72#  | 40159.72            | 0,1,2 | w    |  |
| 73   | 40115.16            | 0     | w    |  |
| 74 # | 40091.20            | 0,1,2 | w    |  |
| 75   | 40084.77            | 1     | w    |  |
| 76   | 40076.97            | 2     | w    |  |

在激发路线 [[下,按照 E = 18208.97 cm<sup>-1</sup> + ω<sub>2</sub> +算能级,得到 39465—39932 cm<sup>-1</sup>能量域内 26 个 高激发原子态 ,详见表 3 .根据电偶极跃迁选择定则 ΔJ=0,±1(0→0),在激发路线 [下探测的原子态 总角动量应为 J=0,1,2,在激发路线 [[下探测的原 子态总角动量应为 J=2 3 A.根据原子跃迁的宇称 守恒定律 ,可确定两条激发路线下探测的原子态宇 你都为偶宇称.另外 表2与表3还给出了在本实验 殳定的两条激发路线下获得的各个光谱谱线的相对 虽度,按照信号强弱划分为 w(强度为 0—0.3), m 强度为 0.3-0.6) 和 《强度为 0.6-1).

表 3 采用激发路线 Ⅱ 所探测到的钐原子高激发态的能级 位置 E、谱线的相对强度 I 及其可能的总角动量 J

| 序号   | 能级/cm <sup>-1</sup> | 总角动量         | 相对强度 |
|------|---------------------|--------------|------|
| 1    | 39927.89            | 2            | w    |
| 2    | 39909.98            | 3 A          | w    |
| 3    | 39905.74            | 3 A          | w    |
| 4    | 39897.73            | 2            | w    |
| 5    | 39829.25            | 2            | \$   |
| 6#   | 39817.10            | 2 <i>3 A</i> | w    |
| 7 #  | 39787.25            | 2 <i>3 A</i> | m    |
| 8    | 39753.77            | 2            | w    |
| 9 *  | 39731.50            | 2 <i>3 A</i> | w    |
| 10   | 39725.48            | 3            | \$   |
| 11 # | 39711.60            | 2 <i>3 A</i> | \$   |
| 12   | 39667.75            | 2            | w    |
| 13   | 39664.53            | 3 A          | \$   |
| 14   | 39657.62            | 2            | \$   |
| 15 # | 39642.91            | 2 <i>3 A</i> | \$   |
| 16#  | 39612.62            | 2 <i>3 A</i> | \$   |
| 17   | 39598.42            | 2            | \$   |
| 18 # | 39573.74            | 2 <i>3 A</i> | \$   |
| 19   | 39568.26            | 4            | \$   |

续表

| 序号 | 能级/cm <sup>-1</sup> | 总角动量 | 相对强度 |
|----|---------------------|------|------|
| 20 | 39560.96            | 3    | m    |
| 21 | 39539.55            | 3    | w    |
| 22 | 39536.36            | 4    | m    |
| 23 | 39522.72            | 3    | m    |
| 24 | 39497.31            | 3    | m    |
| 25 | 39485.53            | 4    | \$   |
| 26 | 39473.31            | 2    | \$   |
|    |                     |      |      |

将表 2 与表 3 中高激发原子态数据与文献 17 1 进行比对 发现表 2 中有 32 个、表 3 中有 19 个原子 态在文献 17]也被探测到了,经分析并且参考文献 [17 部分地确定了这些态的总角动量,在表 2 中有 44 个原子态 表 3 中有 7 个原子态为本次实验首次 发现,已发表文献中没有这些原子态的报道,本实验 新发现的原子态,其序号在表2与表3中以"#"号 标出.再有,我们还发现文献17 列出的某些原子态 本实验未能检测到,如能级为 39608.98 cm<sup>-1</sup>, 40336.32 cm<sup>-1</sup>和 41581.60 cm<sup>-1</sup>的原子态.

本实验探测 Sm 原子高激发态所用的激发路线 与文献 17 不同 文献 17 的激发路线为

$$4f^{6}6s^{2}[^{7}F_{1}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[^{7}F_{0}]$$

$$\xrightarrow{\lambda_{2}} [J = 1] \xrightarrow{\lambda_{2}} Sm^{+}, \qquad (I)$$

$$4f^{6}6s^{2}[^{7}F_{1}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[J = 1]$$

$$\stackrel{\lambda_2}{\longrightarrow} [J = 0, 1, 2] \stackrel{\lambda_2}{\longrightarrow} \mathrm{Sm}^+ , \qquad ( \mathrm{II} )$$

$$4f^{6}6s^{2}[^{7}F_{1}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[^{7}F_{2}]$$

$$\xrightarrow{\lambda_{2}} [I_{1} ] \xrightarrow{\lambda_{2}} 2I \xrightarrow{\lambda_{2}} S \xrightarrow{I}$$

$$\xrightarrow{} \begin{bmatrix} J = 1 & 2 & 3 \end{bmatrix} \xrightarrow{} \text{Sm}^{+}, \qquad ( \text{ III } )$$

$$4f^{6}6s^{2}[^{7}F_{2}] \xrightarrow{\lambda_{1}} 4f^{6}6s6p[^{7}F_{3}]$$

 $\xrightarrow{\lambda_2} [J = 2 3 A] \xrightarrow{\lambda_2} Sm^+,$ (W) 正是由于激发路线选取的不同,导致所能探测的原 子态并不完全相同,对同一能域原子态的检测,有一

些本实验与文献 17 都检测出来了,有一些在文献 [17] 中被发现,而我们未能检测到,还有一些在文 献<sup>17]</sup>中未被发现,而为本实验首次发现,在所给定 的激发路线下 对于那些未能被检测的原子态 我们 认为有两个原因:1 Sm 原子由第一步激发后的中间 态向待测原子态的跃迁为禁戒跃迁 因此无法探测 到这些原子态 2)Sm 原子由第一步激发后的中间态 向待测原子态的跃迁虽然符合选择定则,但是待测 原子态上的原子数密度太小,这导致光电离谱线的 强度太弱并被噪声所淹没.

在本实验中,采用激发路线 | 在 40000-42010 cm<sup>-1</sup>能域内共检测到 44 个新的原子态,采用激发路 线Ⅱ在 39465—39932 cm<sup>-1</sup>能域检测到 7 个新的原 子态 这说明我们对激发路线的设计是成功的。

#### 5.结 论

综上所述 本实验采用两步激发共振光电离技 术 使 Sm 原子按照本实验设定的两条激发路线被 激发电离 根据测量的光电离光谱分析 Sm 原子的 高激发原子态,对所获得的 Sm 原子光谱进行了详 细的分析 剔除了由第二束激光产生的单色多光子 共振电离干扰峰,分别检测出在 39465—39932 cm<sup>-1</sup> 能域内的 26 个,在 40000—42010 cm<sup>-1</sup>能域内的 76 个偶宇称高激发原子态 给出了它们的能级数据 并 且分析了它们的总角动量,另外,本实验还给出两条 激发路线下获得的两步激发共振光电离光谱谱峰的 相对强度 同时分析了激发路线不同可能导致在同 一能域检测出不同原子态的原因。

通过与发表文献的比对,我们确认了通过激发 路线 ⊺ 获得的高激发原子态中有 44 个 通过激发路 线 Ⅱ获得的高激发原子态中有7个为本实验首次发 现,丰富了Sm原子能级结构数据,实验结果证实我 们的理论分析是正确的 选用本实验设定的激发路 线探测 Sm 原子高激发原子态是成功的.

- Verma R D , Chanda A 1988 J. Opt. Soc. Am. B 5 86 [1]
- [2] Jayasekharan T, Razvi A N M, Bhale G L 2000 J. Phys. B: At. Mol. Opt. Phys. 33 3123
- Garton W R S , Codling K 1960 Proc. Phys. Soc. London 75 87 [3]
- Blaise J, Morillon C, Schweighofer M G, Verges J 1969 [4] Spectrochim. Acta B 24 405
- Liu H P , Quan W , Li S 2007 Phys. Rev. A 76 013412 [5]
- LiuY P, Dai C J, Li S B 2005 J. Electron Spectrosc. and Related [6] Phen. 142 91
- Zhang Y , Dai C J , Li S B 2005 J. Electron Spectrosc. and Related [7] Phen. 148 11
- [8] Li S B , Dai C J 2007 Chin . Phys. 16 2

- [9] Bushaw B A, Nortershauser W, Blaum K, Wendt K 2003 Spectrochimica Acta B 58 1083
- [10] Blaum K, Geppert C, Schreiber W G, Hengstler J G, Muller P, Nortershauser W, Wendt K, Bushaw B A 2002 Anal. Bioanal. Chem. 372 759
- [11] Dai Z W, Jiang Z K, Xu H L 2003 J. Phy. B: At. Mol. Opt. Phys. 36 479
- [12] Biemont E, Quinet P, Dai Zhen-wen 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4743
- [13] Biemont E, Garnir H P, Lokhnygin V 2001 J. Phys. B: At. Mol. Opt. Phys. 34 1869

- [14] Martin W C, Zalubas R, Hagan L, 1978 Atomic energy levels-the rare earth elements (Washington: U. S. Government Printing Office) p162
- [15] Jia L J , Jing C Y , Zhou Z Y , Lin F C 1993 J. Opt. Soc. Am. B 10 1317
- [16] Jayasekharan T , Razvi M A N , Bhale G L 1996 J. Opt. Soc. Am. B 13 641
- [17] Jayasekharan T, Razvi M A N, Bhale G L 2000 J. Opt. Soc. Am. B 17 1607
- [18] Gomonai A I, Plekan O I 2003 J. Phys. B: At. Mol. Opt. Phys. 36 4155

# Two-step resonant photoionization spectra of Sm atom \*

Zhao Hong-Ying Dai Chang-Jian<sup>†</sup> Guan Feng

(Key Laboratory of Display Materials and Photoelectric Devices, Ministry of Education, Tianjin 300191, China) (School of Science, Tianjin University of Technology, Tianjin 300384, China)

(Received 6 May 2008; revised manuscript received 6 June 2008)

#### Abstract

Resonant ionization spectra of Sm atom are studied with a two-step photoexcitation and photoionization method. Two different excitation paths are carried out as the following : In the path 1, the first laser whose wavelength is fixed at 478.44 nm excites the Sm atom from the  $4f^66s^2[\ ^7F_1]$  state to the  $4f^66s_1[\ ^7D_1]$  state *i*, and then the second laser whose wavelength  $\lambda_2$  is scanned from 480 nm to 530 nm excites it further to the high-lying state with even parity. In the path 2, the first laser whose wavelength is fixed at 574.81 nm excites the Sm atom from the  $4f^66s^2[\ ^7F_2]$  state to the  $4f^66s_1[\ ^5G_3]$  state *i*, and then the second laser whose wavelength  $\lambda_2$  is scanned from 460 nm to 470.5 nm excites it further to the high-lying state with even parity. These Sm atoms in the high-lying state are probed by photoionization via the third laser. All together 26 and 76 states of Sm atom in the 39465—39932 cm<sup>-1</sup> and the 40000—42010 cm<sup>-1</sup> energy region , respectively , have been detected below the first ionization limit. The energy levels and relative strengths of these states have been determined. Among them , 51 states are newly discovered , while the rest agree well with the values published in literature. In addition , efforts are also made to determine their spectral designation.

**Keywords**: Sm atom , spectrum , stepwise excitation , resonant ionization **PACC**: 3280 , 3270F , 3690

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant Nos. 10574098, 10674102) and the Natural Science Foundation of Tianjin, China (Grant No.05YFJMJC05200).

<sup>†</sup> Corresponding author. E-mail: daicj@126.com