基态 S 和 D 原子的低能弹性碰撞及 SD($X^2 \Pi$) 自由基的准确相互作用势与分子常数*

施德恒¹⁾ * 张金平² 》 孙金锋¹ 刘玉芳¹ 朱遵略¹

1) 河南师范大学物理与信息工程学院新乡 453007)
 2) 信阳师范学院物理电子工程学院信阳 464000)
 (2009年1月9日收到2009年2月8日收到修改稿)

使用 Gaussian03 程序包提供的 CCSD(T)理论及 Duning 等的相关一致基 cc-pVnZ 和 aug-cc-pVnZ(n = 2, 3, 4, 5),对 SD($X^2 \Pi$)自由基的平衡核间距、谐振频率及相互作用势进行了计算,并拟合出了相应的光谱常数.在 CCSD(T)aug-cc-pV5Z 理论水平下,光谱常数 D_0 , D_e , R_e , ω_e , α_e , B_0 及 B_e 的值分别为 3.65730 eV, 3.77669 eV, 0.13424 cm⁻¹,1938.372 cm⁻¹,0.09919 cm⁻¹,4.88585 cm⁻¹和 4.8872 cm⁻¹,均与已有的实验结果相符很好.利用在 CCSI(T)aug-cc-pV5Z 理论水平下获得的相互作用势,在绝热近似下通过数值求解双原子分子核运动的径向薛定 谔方程,找到了 J = 0 时 SD($X^2 \Pi$)自由基的全部 23 个振动态,完整地求出了每一振动态的振动能级及相应的经典 转折点、惯性转动常数和离心畸变常数;在 1.0×10^{-11} — 1.0×10^{-4} a.u.的碰撞能区内通过数值求解原子-原子散射 的径向薛定谔方程,研究了基态 S 原子和基态 D 原子沿 SD($X^2 \Pi$)相互作用势的弹性碰撞,计算了这一弹性碰撞 的总截面和各分波截面,分析了各分波截面对总截面的影响.结果表明:总截面的形状主要由 s 分波截面决定,尽管直到 l = 4 的各分波截面均有形状共振存在,但由于其强度都较弱,全部被湮没在较强的总弹性截面中.

关键词:弹性碰撞,总截面,光谱常数,分子常数 PACC:3440,3120C,3520G

1.引 言

SH和 SD 自由基在酸雨形成、气候变化、温室效 应、臭氧层损耗以及石油燃烧过程中都有重要作 用^[1],另外也已发现星际空间中含有较丰富的 SH 自由基^[2].因此,人们有足够的理由期望 SD 自由 基也存在于宇宙空间中.

在过去的几十年里科学工作者对 SH 的光谱性 质进行了大量的理论和实验研究^[3—10],但关于 SD 自由基的研究却较少.仅有的研究都局限于这个自 由基的某些光谱常数和分子常数^[11—15],暂未见有 相互作用势、振动能级、惯性转动常数及离心畸变常 数等的报道,尽管这些常数在计算分子的振-转跃 迁时很有价值;也由于缺乏 SD 自由基的相互作用 势,暂未见有低温下 S 和 D 原子弹性碰撞等方面的 研究结果,尽管这些结果在冷原子的高分辨率光谱

研究中有重要应用.

本文在价态范围内利用耦合簇理论^[16]CCSD(T) 及 Duning 等^[17–19]的相关一致基 cc-pV*nZ* 和 aug-ccpV*nZ*(*n*=2,3,4,5)对 SD($X^2\Pi$)自由基的平衡核 间距、谐振频率及相互作用势进行了计算.利用 CCSD(T) aug-cc-pV5Z 理论水平下获得的相互作用 势,先计算了 SD($X^2\Pi$)自由基的主要光谱常数;接 着在绝热近似下通过求解径向薛定谔方程,找出了 J=0时 SD($X^2\Pi$)自由基的全部振动态,求出了每 一振动态的振动能级及其经典转折点、惯性转动常 数和离心畸变常数;最后在 1.0×10^{-11} — 1.0×10^{-4} a.u.的碰撞能区内通过数值求解原子-原子散射的 径向薛定谔方程,研究了基态 S 和 D 原子沿 SD 自 由基 $X^2\Pi$ 态的相互作用势弹性碰撞时的总截面和 各分波截面.本文得到的大部分结果在以往的文献 中均未见报道.

^{*}国家自然科学基金(批准号:10874064)及河南省高校科技创新人才支持计划(批准号:2008HASTIT008)资助的课题。

[†] E-mail : scattering@sina.com.cn

2. 低能弹性碰撞理论

原子在势场 *V(r)*中散射时的径向薛定谔方程 可写成^[20]

 $\frac{d^{2} u_{l}}{dr^{2}} + \left[k^{2} - \frac{2\mu V(r)}{\hbar^{2}} - \frac{V(l+1)}{r^{2}}\right] u_{l}(r) = 0(1)$ 这里, V(r)是 SD($X^{2}\Pi$)自由基的相互作用势; r是 S 原子和 D 原子的核间距; μ 是碰撞体系(这里是 基态 S 和 D 原子)的约化质量; u_{l} 是第l个分波的 径向波函数; k是波数, 它与碰撞能量间的关系为 $k^{2} = 2\mu E/\hbar^{2}$.

当 $r \rightarrow \infty$ 时,径向波函数 u_i (r)取如下渐进 形式:

 $u_i(r) \propto A_i[j_i(kr) + \tan \delta_i n_i(kr)].$ (2) 这里, $j_i \approx n_i$ 分别是球 Bessel 函数和 Neumann 函数; A_i 是任意振幅; δ_i 是第 l 个分波的散射相移. (2)式可改写为

$$u_l(r) \propto A_l \sin\left(kr - \frac{1}{2}l\pi + \delta_l\right).$$
 (3)

若将振幅 A_i 取为单位值,则径向波函数 u_i (r)应满 足如下的积分方程^{20,21}:

$$\tan \delta_l = \frac{-2\mu}{\hbar^2 k} \int_0^\infty j_l(kr) \mathcal{W}(r) u_l(r) dr. \quad (4)$$

当 l 值分别等于 1, 2, 3, ... 时, 散射波分别被称作

s 波、p 波、d 波....相应于第 *l* 个分波的弹性散射截 面 *σ_l*(*E*)由下式求出^[20,21]:

$$\sigma_l(E) = \frac{4\pi}{k^2} \cdot (2l+1)\sin^2 \delta_l. \qquad (5)$$

将各分波的弹性截面代数相加,便得到总弹性截面 $\sigma_{T}(E)$,

$$\sigma_{\rm T}(E) = \sum_{l=0}^{\infty} \sigma_l(E)$$
$$= \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l.$$
(6)

因此,一旦获得 SD(X² II)自由基的相互作用 势,便可利用边界条件(2)求得方程(1)的解:径向 波函数 u_l(r).径向波函数 u_l(r)一旦确定,就可以 按照(4)式计算出第 l 个分波的相移、进而由(5)式 计算出第 l 个分波的弹性散射截面、由(6)式计算出 总弹性截面.为确保弹性截面的计算精度,l的值 应取得足够大.具体到本文的情况,计算表明 l 大 于 10 的分波就已对总弹性截面无贡献.

3. 相互作用势

平衡核间距及谐振频率是在 Gaussian 03 程序 包^[22]中使用 CCSD(T)理论^[16]和 Duning 等^[17-19]的相 关一致基 cc-pVnZ 及 aug-cc-pVnZ(n = 2, 3, 4, 5) 进行计算的,计算结果如表 1 所列.

表 1 CCSD(T)理论及不同的相关一致基下 SD(X²II)自由基的离解能、平衡核间距和谐振频率

基组	$D_{\rm e}/{\rm eV}$	$R_{\rm e}/{\rm nm}$	$\omega_{\rm e}/{\rm cm}^{-1}$	基组	$D_{\rm e}/{\rm eV}$	$R_{\rm e}/{ m nm}$	$\omega_{\rm e}/{\rm cm}^{-1}$
cc-pVDZ	3.3994	0.13589	1933.489	aug-cc-pVDZ	3.4864	0.13609	1916.652
cc-pVTZ	3.6442	0.13455	1932.113	aug-cc-pVTZ	3.6838	0.13465	1929.510
cc-pVQZ	3.7359	0.13435	1937.535	aug-cc-pV5Z	3.77669	0.13424	1938.372
cc-pV5Z	—	0.13421	1940.191				

各种基组下势能曲线的计算范围都是 0.05— 2.5 nm,计算步长都是 0.02 nm.可以确信的是在这 个范围内 SD(*X*² II)自由基的势能曲线已完全收敛. 为保证拟合精度,平衡位置附近的计算步长取为 0.005 nm.当得到一系列的能量点后,使用如下形 式的 Murell-Sorbie 函数^[23]进行解析拟合,

 $V(\rho) = -D_e(1 + \sum_{i=1}^n a_i \rho^i) \exp(-a_1 \rho).$ (7) 这里 $\rho = r - R_e$; $r \in S$ 和 D 原子的核间距; $R_e \in I$ 其平衡核间距; $D_e \in SD(X^2 \Pi)$ 自由基的离解能. 离解能 D_e 和系数 $a_i(i=3,4,5,...)$ 的值是由拟合 确定的.

使用最小二乘法对(7)式进行拟合.为能得到 满意的结果,本文拟合了n = 3,4,5,6,7,8这6 种情况.结果发现n = 6时的拟合结果最好.n = 6时拟合得到的离解能都列入表1中.

由表 1 不难看出, aug-cc-pV5Z 基组的计算结果 (D_e , R_e 及 ω_e)总体上很接近实验值^[13].因此本文 的后续计算都是在 aug-cc-pV5Z 基组获得的相互作 用势的基础上进行的.为方便使用,将这一相互作 用势列入表 2 中.

表 2 CCSD(T)/aug-cc-pV5Z 理论水平下 SD($X^2\Pi$)自由基相互作用势的解析形式

$D_{\rm e}/{\rm eV}$	$R_{\rm e}/{ m nm}$	$a_1/{\rm nm}^{-1}$	$a_2/{\rm nm}^{-2}$	a_3/nm^{-3}	a_4/nm^{-4}	$a_5/{\rm nm}^{-5}$	$a_6/{\rm nm}^{-6}$	$\Delta E_{\rm RMSE}/{ m eV}$
3.77669	0.13424	35.2333	287.8580	1368.769	- 16073.844	- 185408.748	935587.952	0.0066

为评价表 2 列出的相互作用势的拟合质量,采 用下式来计算拟合过程的方均根误差 ΔE_{RMSE} 即

$$\Delta E_{\text{RMSE}} = \sqrt{\frac{1}{N} \left[\sum_{i=1}^{N} \left(V_{\text{APEF}} - V_{\text{ab initio}} \right)^{2} \right]}.$$
 (8)

这里, V_{APEF} 和 $V_{ab initio}$ 分别是相应点的拟合势能值和 由从头算获得的单点势能值,N是拟合的数据点数 (这里N = 141).n = 6时的方均根误差仅为 0.0066 eV(相当于 0.15279 kcal/mol).显然本文的拟合精 度大大超过了通常所要求的"化学精度"(1.0 kcal/ mol)²⁴¹,因此本文的拟合质量是高的,拟合出的相 互作用势的解析表达式是准确、可靠的.

为检验这一相互作用势的准确性,下面用它来 计算 SD($X^2 \Pi$)自由基的其他光谱常数 α_e , B_e 及 D_0 .利用文献[25]导出的公式计算得到的 α_e , B_e 及 D_0 值连同 D_e , R_e , ω_e 以及与实验结果的比较, 如表 3 所列.

表 3 CCSD(T) aug-cc-pV5Z 理论水平下 SD($X^2\Pi$)自由基的光谱常数及其与实验结果的比较

数据来源	$D_0/{ m eV}$	$D_{\rm e}/{\rm eV}$	$R_{\rm e}/{\rm nm}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$B_0/{\rm cm}^{-1}$	$\alpha_{\rm e}/{\rm cm}^{-1}$
本文工作	3.65730	3.77669	0.13424	1938.372	4.8872	4.88585	0.09919
实验结果[11]	—	—	0.1340	1940	4.956	4.900	0.111
<u>实验结果^[12]</u>	—	—	0.1341	1947.3	4.950	4.80	0.100
实验结果[13]	3.60	3.71594	0.13406	1885.5	4.9003	—	0.100
理论计算[14]	3.49867	3.62	0.1342	1971	4.94	_	0.11
理论计算[15]	_	_	_	1940.2	4.9255	4.8750	0.099

关于 SD($X^2 \Pi$)自由基光谱常数的理论计算结 果非常少,仅有的理论研究是由 Bruna 等^[4]及 Resende 等^[15]进行的.由表3显见,Bruna 等^[4]的离 解能偏离实验结果^[13]较大、且 Bruna 等没有给出该 自由基的相互作用势、也没有计算这个自由基的各 种分子常数;而 Resende 等^[15]更是只计算了少量的 光谱常数.与他们的光谱数据^[14,15]相比,本文的计 算结果则完整得多.同时从表3也可以看出,本文 得到的光谱数据(D_0 , D_e , R_e , ω_e , α_e , B_0 及 B_e) 与实验值^[11-13]能很好地一致,因此本文的计算结 果是准确可靠的.

为进一步检验表 2 所列相互作用势的准确性, 下面计算这一 SI(X²II)自由基的振动能级、经典转 折点、惯性转动常数和离心畸变常数.为此,需在 绝热近似下求解下述径向薛定谔方程:

$$\left[-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{\hbar^2}{2\mu r^2}J(J+1) + V(r)\right]\Psi_{\nu,J}(r)$$

= $E_{\nu,J}\Psi_{\nu,J}(r)$. (9)

这里, V(r)就是表 2 所列的相互作用势; ν 和 J 分 别是振动量子数和转动量子数.某一振动能级下的 $E_{v,I}$ 可以用如下形式的幂级数表示^[26]:

$$E_{\nu,J} = O(\nu) + B_{\nu}[J(J+1)] - D_{\nu}[J(J+1)]^{2}$$

$$+ H_{\nu} [J(J + 1)]^{*} + L_{\nu} [J(J + 1)]^{*} + M_{\nu} [J(J + 1)]^{*} + N_{\nu} [J(J + 1)]^{*} + O_{\nu} [J(J + 1)]^{*}.$$
 (10)

(10)式中的 $C(\nu)$ 就是振动能级, B_{ν} 为转动惯量, D_{ν} , H_{ν} , L_{ν} , M_{ν} , N_{ν} 和 O_{ν} 为离心畸变常数. 利用 龙格-库塔算法和 Fortran 语言编制程序对(9)式求 数值解,找到了 J = 0时 SI($X^2 \Pi$)自由基的全部 23 个振动态,同时也求出了 J = 0时相应于每一振动 态的振动能级及相应的经典转折点、惯性转动常数 和离心畸变常数. 所得结果分别如表 4,表 5 所列.

作者曾利用所编制的 Fortran 程序计算了 Li₂ ($X^{1}\Sigma_{g}^{+}$)和 Li₂($c^{3}\Sigma_{g}^{+}$)分子^[23,25],CH($X^{2}\Pi$)^{27]}和 ND ($X^{3}\Sigma^{-}$)^{28]}自由基等的振动能级、振动经典转折点、

7648

惯性转动常数和离心畸变常数,所得结果与已有的 实验结果都非常相符. 这些计算结果都证明了作者 所编制的 Fortran 计算程序是可靠的. 据此可以推断,表4、表5所列的计算结果也都是可靠的.

表 4 CCSD(T) $y_{aug-cc-pV5Z}$ 理论水平下 SD($X^2\Pi$)自由基(J=0)的振动能级、经典转折点、惯性转动常数

ν	Q(ν)/cm ⁻¹	$R_{\rm min}/{\rm nm}$	$R_{\rm max}/{\rm nm}$	$B_{\nu}/{\rm cm}^{-1}$	ν	Q(ν)/cm ⁻¹	$R_{\rm min}/{\rm nm}$	$R_{\rm max}/{\rm nm}$	B_{ν}/cm^{-1}
0	946.945	0.12533	0.14479	4.885852	12	20471.130	0.10188	0.21305	3.681091
1	2807.896	0.11972	0.15369	4.785451	13	21779.804	0.10115	0.21859	3.564955
2	4629.793	0.11624	0.16048	4.687136	14	23028.340	0.10047	0.22439	3.442797
3	6412.074	0.11363	0.16646	4.590173	15	24213.007	0.09986	0.23052	3.313240
4	8153.930	0.11152	0.17199	4.493908	16	25329.410	0.09930	0.23710	3.174460
5	9854.344	0.10974	0.17727	4.397749	17	26372.249	0.09879	0.24426	3.023929
6	11512.103	0.10820	0.18238	4.301142	18	27334.945	0.09834	0.25220	2.857933
7	13125.812	0.10684	0.18742	4.203551	19	28208.979	0.09794	0.26127	2.670570
8	14693.890	0.10564	0.19242	4.104442	20	28982.620	0.09759	0.27204	2.451352
9	16214.565	0.10456	0.19744	4.003265	21	29637.986	0.09730	0.28581	2.177750
10	17685.855	0.10358	0.20253	3.899431	22	30141.376	0.09708	0.30652	1.775240
11	19105.540	0.10269	0.20771	3.792288					

表 5 CCSD(T) aug-cc-pV5Z 理论水平下 SD($X^2\Pi$)自由基(J=0)的离心畸变常数

ν	$D_{\nu}/10^{-4}{ m cm}^{-1}$	$H_{\nu}/10^{-9}{\rm cm}^{-1}$	$L_{\nu}/10^{-14}{ m cm}^{-1}$	$M_{\nu}/10^{-19}{ m cm}^{-1}$	$N_{\nu}/10^{-22}{ m cm}^{-1}$	$O_{\nu}/10^{-27}{\rm cm}^{-1}$
0	1.314873	2.331362	- 1.393903	- 7.353433	- 1.755596	7.260785
1	1.281218	2.226365	- 3.352637	- 2.198566	- 1.164611	4.036087
2	1.253569	2.102157	- 4.884644	2.057525	- 1.006979	1.352759
3	1.231489	1.964377	- 6.145248	4.734839	- 1.121847	- 0.861273
4	1.214635	1.815122	- 7.261952	5.480475	- 1.433915	- 3.160074
5	1.202767	1.653875	- 8.344576	3.976358	- 1.931999	- 6.341696
6	1.195764	1.477965	- 9.496661	- 0.253148	- 2.661379	- 11.52827
7	1.193633	1.282661	- 10.82817	- 8.017612	- 3.732370	- 20.48157
8	1.196530	1.060914	- 12.47101	- 20.69272	- 5.350779	- 36.25248
9	1.204781	0.802702	- 14.60068	- 40.59859	- 7.884883	- 64.48861
10	1.218927	0.493846	- 17.46950	- 71.67789	- 12.00299	- 116.2017
11	1.239793	0.113981	- 21.46256	- 120.7710	- 18.96025	- 213.9421
12	1.268586	- 0.366899	- 27.19738	- 200.2138	- 31.22335	- 406.4623
13	1.307072	- 0.994486	- 35.71281	- 333.1087	- 53.91532	- 806.0511
14	1.357851	- 1.841208	- 48.84914	- 565.4250	- 98.41007	- 1691.813
15	1.424849	- 3.027590	- 70.06927	- 995.0724	- 192.1161	- 3825.711
16	1.514221	- 4.766623	- 106.3908	- 1849.779	- 408.2552	- 9549.540
17	1.636134	- 7.464659	- 173.4514	- 3723.135	- 970.4886	- 27263.77
18	1.808669	- 11.98008	- 310.8276	- 8419.979	- 2698.415	- 94189.59
19	2.067545	- 20.40595	- 638.5846	- 22788.25	- 9502.850	- 434943.2
20	2.495746	- 39.10797	- 1640.473	- 83775.47	- 49957.60	- 3297069
21	3.349688	- 96.97600	- 6632.698	- 585208.7	- 611734.4	-7.18664×10^{-7}
22	6.277558	- 604.6672	- 135308.8	-4.20715×10^{-7}	-1.56342×10^{-8}	-6.42964×10^{-10}

4. 总弹性截面与各分波截面

利用表 2 给出的相互作用势, 先使用 Numerov 算法在边界条件(2)下求方程(1)的数值解, 得到 第 l 个分波的径向波函数 u_l (r).获得径向波函数 u_l (r)后,再利用(4)式求出基态 S 原子和基态 D 原 子沿 SI($X^2 II$)自由基的相互作用势弹性碰撞时的 各分波相移,进而利用(5)式和(6)式计算各分波的 弹性截面和总弹性截面.在 1.0×10^{-11} — 1.0×10^{-4} a.u.的范围内得到的总弹性截面随碰撞能量的变化 曲线见图 1, s, p, d, f 及 g 分波的弹性截面随碰撞 能量的变化曲线分别见图 2、图 3 和图 4.

由图 1 显见,在很低的能量下基态 S 原子和基态 D 原子沿 SD($X^2\Pi$)自由基的相互作用势弹性碰撞时的总弹性截面的值是很大的.而且当碰撞能量低到一定程度、比如低于 10⁻⁶ a.u.时,这一截面值基本保持为常数.主要是因为在这一能区, s 分波的截面非常大,但 p, d, f 及 g 分波的截面都非常小、甚至为零,因此 s 分波的弹性截面处于绝对控制地位.这可以从图 2、图 3 及图 4 中清楚地看出.

图 2 给出的是 s 分波的弹性截面随碰撞能量的 变化曲线.在这一曲线上除 5.27 × 10⁻⁵ a.u.处有一 很弱的形状共振外,不存在其他共振结构.由于这 一形状共振的强度非常微弱,它被完全湮没在较强 的总弹性截面中.

图 3 给出的是 p 分波的弹性截面随碰撞能量的 变化曲线. 与图 2 不同,这里存在着一处明显的形

图 2 基态 S 和 D 原子沿 SD(*X²* II)自由基的相互作用势碰撞时 的 s 分波截面随碰撞能量的变化曲线

状共振, 位于 1.27×10^{-5} a.u. 处. 由于 s 分波截面 在这一能量处太强且无结构, 从而导致 p 分波的这 一形状共振湮没在较强的 s 分波截面中, 不能在图 1 所示的总截面图中表现出来.

计算表明,当碰撞能量低于 10⁻⁸ a.u.时,只有 s 分波对总截面有贡献;当碰撞能量低于 10⁻⁷ a.u. 时,虽然 p 分波的截面不为零,但与强大的 s 分波 截面相比显得微不足道;当碰撞能量低于 10⁻⁵ a.u.,除 s,p,d 分波外,其他分波对总截面基本无 贡献.这从图 2、图 3 和图 4 中可以清楚地看出.

图 3 基态 S 和 D 原子沿 SD(*X² II*)自由基的相互作用势碰撞时 的 p 分波截面随碰撞能量的变化曲线

图 4 给出了 d , f , g 分波的弹性截面随碰撞能 量的变化曲线.从图 4 可以看出,这些分波在 10⁻⁴—10⁻⁵a.u.能区内的碰撞都存在着一个强度不一、位置略有差异的形状共振.详细的计算表明,这些形状共振分别位于 3.180×10⁻⁵a.u.,5.727×10⁻⁵a.u.及 8.909×10⁻⁵a.u.位置处.相比于总弹性截面,这些形状共振的强度都很弱,因而都没能在图1中表现出来.

图 4 基态 S 和 D 原子沿 SD(*X*² Π)自由基的相互作用势碰撞时 的 d f 和 g 分波截面随碰撞能量的变化曲线

对于高于 g 分波的弹性散射,计算表明在本文 所研究的能区内已无任何共振结构存在;对于 *l* = 10 及其以上分波的弹性散射,其截面的值已接近 零、因而对总弹性截面也无贡献.

作者已利用本文所使用的计算程序研究了低温 及超低温下两个基态 Li 原子沿 Li₂ 分子基态相互作 用势的弹性碰撞²⁹¹,得到的结果与实验结果相当一 致.这说明本文使用的计算程序是准确的.从上面 的分析看,本文得到的 SD(X²II)自由基的相互作 用势也是准确的.因此,尽管没有低温及超低温下 的弹性碰撞实验结果及其他理论计算结果作为比 较,但依据这些分析,作者有理由相信本文在低温 及超低温下得到的总弹性截面及各分波截面数据都 是准确的.

5.结 论

本文利用 CCSD(T)理论及 Duning 等的相关一 致基 cc-pVnZ 和 aug-cc- pVnZ(n=2,3,4,5),对 SD(X² II)自由基的平衡核间距、谐振频率及相互作 用势进行了计算,并在 CCSD(T) aug-cc-pV5Z 理论 水平下仔细计算了 SD(X²Π)自由基的光谱常数 D_0 , D_e , R_e , ω_e , α_e , B_0 及 B_e . 其值分别为 $3.65730~{\rm eV}$, $3.77669~{\rm eV}$, $0.13424~{\rm cm}^{-1}$, 1938.372 cm^{-1} , 0.09919 cm^{-1} , 4.88585 cm^{-1} 和 4.8872 cm^{-1} , 均与已有的实验结果相符很好.利用 CCSD(T)/augcc-pV5Z 理论水平下的相互作用势,通过数值求解 双原子分子核运动的径向薛定谔方程,找到了 J= 0 时 SD(X² Ⅱ) 自由基存在的全部 23 个振动态,完整 地求出了每一振动态的振动能级、振动经典转折点、 惯性转动常数和离心畸变常数,其值均与实验结果 较为相符,通过数值求解原子-原子碰撞的径向薛 定谔方程,首次得到了基态S原子和基态D原子沿 SD(X² Π)自由基的势能曲线弹性碰撞时的总截面 和各分波截面,得出了总弹性截面的形状主要由s 分波截面确定的结论.由于总截面太强而各分波的 形状共振太弱,致使总弹性截面在所研究的能区内 无形状共振存在,同时计算也表明,在所研究的能 量范围内 l = 10 及其以上的分波对总截面已无 贡献.

- [1] Resende S M , Ornellas F R 2001 J. Chem. Phys. 115 2178
- [2] Yamamura I, Kawaguchi K, Ridgway S T 2000 Astrophys. J. 528 L33
- [3] Ram R S, Bernath P F, Engleman R, Brault J W 1995 J. Mol. Spectrosc. 172 34
- [4] Continetti R E , Balko B A , Lee Y T 1991 Chem . Phys. Lett. 182 400
- [5] Bernath P F , Amano T , Wong M 1983 J. Mol. Spectrosc. 98 20
- [6] Senekowitsch J, Werner H J, Rosmus P, Reinsch E A, ONeil S V 1985 J. Chem. Phys. 83 4661
- [7] Hirata S , Yanai T , de Jong W A , Nakajima T , Hirao K 2004 J. Chem. Phys. 120 3297

- [8] Park J K , Sun H 1992 Chem. Phys. Lett. 194 485
- [9] Bruna P J, Hirsch G 1987 Mol. Phys. 61 1359
- [10] Cade P E , Huo W M 1967 J. Chem. Phys. 47 649
- [11] Ramsay D A 1952 J. Chem. Phys. 20 1920
- [12] Pathak C M , Palmer H B 1969 J. Mol. Spectrosc. 32 157
- [13] Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol.4 Constants of Diatomic Molecules (New York : Van Nostrand Reinhold) p 590
- [14] Bruna P J, Hirsch G 1987 Mol. Phys. 61 1359
- [15] Resende S M , Ornellas F R 2001 J. Chem. Phys. 115 2178
- [16] Raghavachari K, Trucks G W, Pople J A, Head-Gordon M 1989 Chem. Phys. Lett. 157 479

- [17] Peterson K A, Kendall R A, Dunning T H 1993 J. Phys. Chem. 99 1930
- [18] Peterson K A , Woon D E , Dunning T H 1994 J. Chem. Phys. 100 7410
- [19] Dunning T H 1989 J. Chem. Phys. 90 1007
- [20] Shi D H , Zhang J P , Sun J F , Liu Y F , Zhu Z L , Ma H , Yang X D 2008 Chin. Phys. B 17 3678
- [21] Côté R , Dalgarno A 1994 Phys. Rev. A 50 4827
- [22] Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Jr Montgomery J A, Vreven T, Kudin K N, Burant J C, Millam J M, Iyengar S S, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson G A, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox J E, Hratchian H P, Cross J B, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Ayala P Y, Morokuma K, Voth G A, Salvador P, Dannenberg J J, Zakrzewski V G, Dapprich S, Daniels A D, Strain M C, Farkas O, Malick D K, Rabuck A D, Raghavachari K,
- Foresman J B , Ortiz J V , Cui Q , Baboul A G , Clifford S , Cioslowski J , Stefanov B B , Liu G , Liashenko A , Piskorz P , Komaromi I , Martin R L , Fox D J , Keith T , Al-Laham M A , Peng C Y , Nanayakkara A , Challacombe M , Gill P M W , Johnson B , Chen W , Wong M W , Gonzalez C , Pople J A 2005 Gaussian 03 Revision D1 (Pittsburgh PA : Gaussian Inc.)
- [23] Shi D H, Sun J F, Zhu Z L, Ma H, Yang X D 2008 Acta Phys. Sin. 57 165 (in Chinese)[施德恒、孙金锋、朱遵略、马 恒、杨 向东 2008 物理学报 57 165]
- [24] Aguado A, Paniagua M 1992 J. Chem. Phys. 96 1265
- [25] Shi D H, Ma H, Sun J F, Zhu Z L, Liu Y F, Yu B H 2007 J. Mol. Struct. (Theochem) 824 71
- [26] Herzberg G 1951 Molecular Spectra and Molecular Structure, Vol.1 (New York: Van Nostrand Reinhold) chapt.3
- [27] Shi D H , Zhang J P , Sun J F , Liu Y F , Zhu Z L , Yu B H 2008 J. Mol. Struct. (Theochem) 860 101
- [28] Shi D H , Zhang J P , Liu Y F , Sun J F , Zhu Z H 2008 Int. J. Quantum Chem. 109 202
- [29] Sun J F , Zhang J C , Wang J M 2006 Chin . Phys. 15 531

7653

Elastic collision between S and D atoms at low temperatures and accurate analytic interaction potential and molecular constants of the SD($X^2 \Pi$) radical *

Shi De-Heng^{1)†} Zhang Jin-Ping²⁾ Sun Jin-Feng¹⁾ Liu Yu-Fang¹⁾ Zhu Zun-Lüe¹⁾

1 X College of Physics & Information Engineering , Henan Normal University , Xinxiang 453007 , China)

2) College of Physics & Electronic Engineering , Xinyang Normal University , Xinyang 464000 , China)

(Received 9 January 2009; revised manuscript received 8 February 2009)

Abstract

The equilibrium internuclear separations , harmonic frequencies and interaction potentials have been calculated by employing the CCSI(T) theory in combination with the series of the correlation- consistent basis sets , cc-pVnZ and aug-cc-pVnZ(n = 2, 3, 4, 5), of Dunning and co-workers. The potential energy curves are all fitted to the Murrell-Sorbie functions , which are used to determine the spectroscopic parameters. At the CCSI(T)/aug-cc-pV5Z level of theory , the values of D_0 , D_e , R_e , ω_e , α_e , B_0 are 3.65730 eV, 3.77669 eV, 0.13424 cm⁻¹, 1938.372 cm⁻¹, 0.09919 cm⁻¹, 4.88585 cm⁻¹ and 4.8872 cm⁻¹, respectively , which conform almost perfectly with the available measurements. With the analytic interaction potential obtained at the CCSI(T)/aug-cc-pV5Z level of theory , a total of 23 vibrational states has been predicted for the first time when the rotational quantum number J is set to equal zero (J = 0) by solving the radial Schrödinger equation of nuclear motion. The complete vibrational levels , classical turning points , inertial rotation and centrifugal distortion constants are reproduced from the SD ($X^2\Pi$) potential when J = 0. The total and various partial-wave cross sections are calculated for the elastic collisions between the ground-state S and D atoms at energies from 1.0×10^{-11} to 1.0×10^{-4} a.u. when the two atoms approach each other along the shape of the total elastic cross sections is mainly dominated by the *s*-partial wave at very low temperatures. Because of the weakness of the shape resonances coming from various partial waves , they are all covered up by the strong total elastic cross sections.

Keywords : elastic collision , total cross section , spectroscopic parameter , molecular constant PACC : 3440 , 3120C , 3520G

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10874064) and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 2008HASTIT008).

[†] E-mail : scattering@sina.com.cn