SH(D)和OH(D)自由基基态的结构与势能函数*

朱吉亮 任廷琦 王庆美

(曲阜师范大学物理工程学院,曲阜 273165) (2008年4月10日收到 2008年9月11日收到修改稿)

采用 QCISI(T) 6-311 + + (C3 df 2pd)和 QCISD/6-311 + + (C3 df 2pd)方法计算优化了 SH(D)和 OH(D)自由基 分子基态 $X^2 \Pi$ 的分子结构和离解能.并采用最小二乘法拟合 Murrell-Sorbie 函数得到了相应的势能函数,由此计算 的振转常数与实验光谱数据符合得相当好.

关键词:SH和OH自由基分子,基态(X²II),Murrell-Sorbie 函数,势能函数 PACC:3110,3120D,3130

1.引 言

分子势能函数是研究原子分子碰撞和分子反应 动力学的基础 也是研究分子稳定性的依据和解释 光谱的数据 激发态分子的势能函数研究十分重要. 分子势能函数的研究早已成为热点,伴随光化学、分 子生物学、天体化学、天体物理、激光物理以及纳米 技术的发展 分子势能函数尤其是双原子分子势能 函数的精确研究早已成为一个重要的研究课 题^{1-6]}, SH(D)和OH(D)均是在天体物理中非常重 要的自由基分子^[78], SH(D)自由基的分子结构和 分子光谱有助于理解硫化学,特别是有助于理解 SH, 的反应机理和反应产物,其精确的基态分子参 数对于 SH(D)自由基的光谱研究是必需的⁸¹,羟基 自由基 OH(D) 是一种非选择性氧化剂,氧化能力 强 反应速度快 氧化效率高 很容易氧化各种有机 物和无机物 还能参与生命活动中氧化代谢过程 也 是很好的有机链反应引发剂 在环境化学、燃烧化学 和大气化学等中有重要的用途,涉及 OH(D)由基分 子的化学反应以及实验研究较多[9-12],特别是近年 来人们从理论和实验上对 SH(D)和 OH(D)自由基 的平均核间距、振转频率、离解能及振动和转动光谱 常数开展了进一步的研究^{13-19]}.对 SH(D)和 OH(D) 自由基势能函数的报道也很少,只有樊晓伟、李权等 人分别于 2005,2006 年报道过 OH 分子的势能函

数^[7,19] ;宋晓书等人^[8]于 2007 年报道过 SH 自由基 的势能函数 ;但均是 Murrell-Sorbie(M-S)函数近似到 *n* = 3.但研究 SD 和 OD 势能函数和光谱常数 ,还未 见报道.

本文使用 QCISI(T)/6-311 + + G(3df,2pd) 和 QCISD/6-311 + + Q(3df 2pd)方法对 SH(D)和 OH (D)自由基单点能进行扫描计算,然后采用 M-S 函 数(近似到 n = 9)进行最小二乘法拟合,并得到相应 电子态的完整势能函数.导出了分子的光谱常数.并 与实验数据进行比较,由此计算的振转常数与实验 光谱数据符合得相当好.说明 M-S 函数(近似到 n =9)完全可以描述 SH(D)和 OH(D)自由基基态性质.

2. 量子化学计算

根据原子分子反应静力学中的分离原子法^[14,15] 基于广义 Wigner-Witner 规则确定可能的电子状态. S ,O 和 H(D)原子的基电子状态分别是³ P_g , ³ P_g 和 ² S_g ,属于 SU(n)群,SH 和 OH 属于 C_{∞_v} 群.当 S(³ P_g),Q(³ P_g)分别和 H(² S_g)形成 SH(D)和 OH(D) 分子时对称性降低,SU(n)群的不可约表示可分解 为 C_{∞_v} 群的不可约表示,即所形成分子的可能电子 状态. S(³ P_g)和 H(² S_g)分别分解为 C_{∞_v} 群的不可约 表示的直和为

$${}^{3}P_{g} = {}^{3}\Sigma^{-} \oplus {}^{3}\Pi , S_{g} = {}^{2}\Sigma^{+} ,$$
 (1)

^{*}国家自然科学基金(批准号 20042801)资助的课题.

[†] E-mail :RTQ@QFNU.EDU.CN

两者直积并约化为

$${}^{A}\Sigma^{-} \oplus {}^{2A}\Pi.$$
 (3)

容易看出结果中含有 SH(D)和 OH(D)分子的² Ⅲ 态,因此两个基态原子的组合可以得到 SH(D)和 OH (D)分子基态.根据微观过程的可逆性原理,这一 过程的逆过程为其合理的离解极限

SH(D)
$$(X^2\Pi) \rightarrow (3P_g) + H(D) (2S_g),$$

OH(D) $(X^2\Pi) \rightarrow (3P_g) + H(D) (2S_g).$ (4)

3. 解析势能函数

M-S函数是一种物理上的解析函数,可表示为

$$V(\rho) = -D_{e}(1 + \sum_{i=1}^{n} a_{i}\rho^{i})\exp(-a_{1}\rho_{i}),$$

$$n = 9.$$
(5)

式中 , D_e 为离解能 ; $\rho = R - R_e$,R 为核间距 , R_e 为 平衡核间距. 在排斥支和吸引支的性质 ,使得三阶 或四阶常数与光谱测定符合 ,特别当 $R \rightarrow \infty$,V = 常 数 ,即有正确的物理渐进行为.此种解析函数已广泛 用于分子碰撞过程 .(5)式中的参数 D_e , a_i 与力常 数的联系为

$$f_{2} = D_{e} (a_{1}^{2} - 2a_{2}),$$

$$f_{3} = -6D_{e} (a_{3} - a_{1}a_{2} + \frac{a_{1}^{3}}{3}),$$

$$f_{4} = 24D_{e} (a_{1}a_{3} - a_{4} - \frac{a_{1}^{2}a_{2}}{2} + \frac{a_{1}^{4}}{8})$$
(6)

$$f_{2} = 4\pi^{2} \mu_{A} \omega_{e}^{2} c^{2} ,$$

$$f_{3} = -\frac{3f_{2}}{R_{e}} \left(1 + \frac{\alpha_{e} \omega_{e}}{6B_{e}^{2}}\right) ,$$

$$f_{4} = \frac{f_{2}}{R_{e}^{2}} \left[15 \left(1 + \frac{\alpha_{e} \omega_{e}}{6B_{e}^{2}}\right)^{2} - \frac{8\omega_{e} \chi_{e}}{B_{e}}\right] .$$
(7)

已知光谱常数 D_e , R_e , ω_e , $\omega_e \chi_e$, B_e 和 a_e , 可以算的 力常数 f_2 , f_3 和 f_4 , 从而解出系数 a_i , 反之, 若有(5) 式得到 a_i ,则可得到光谱常数.本工作通过拟合得 到函数(5)式中的系数 D_e , a_i . 然后再用这些系数 计算各阶力常数和光谱常数,光谱常数与力常数的 关系:

$$B_{e} = \frac{h}{8\pi^{2} \mu c R_{e}^{2}} ,$$

$$\omega_{e} = \sqrt{\frac{f_{2}}{4\pi^{2} \mu c^{2}}} ,$$

$$\alpha_{e} = -\frac{6B_{e}^{2}}{\omega_{e}} \left(\frac{f_{3}R_{e}}{3f_{2}} + 1\right) ,$$

$$\omega_{e} \chi_{e} = \frac{B_{e}}{8} \left[-\frac{f_{4}}{f_{2}} + 15 \left(1 + \frac{\omega_{e}\alpha_{e}}{6B_{e}^{2}}\right)^{2} \right] ,$$

$$D_{e} = \frac{4B_{e}^{3}}{\omega_{e}^{2}} ,$$
(8)

式中 , μ 为分子的约化质量 ,c 为光速 , ω_e 为谐振频 率 , $\omega_e \chi_e$ 为非谐振频率 , B_e 为刚性转动因子 , α_e 为 非刚性转动因子 .

本文利用 Gaussian03 程序包中的 QCISD(T)/6 -311 + + G(3df, 2pd)和 QCISD/6-311 + + G(3df, 2pd)对 SH(D)和 OH(D)自由基分子基态进行优化 计算.计算结果见表 1. 可见利用 QCISD(T)/6 - 311 + + G(3df, 2pd)计算得到的平衡核间距 *R*。和光

分子	电子态	方法	基组	n	$R_{\rm e}/{ m nm}$	$D_{\rm e}/{\rm eV}$	$\omega_{\rm e}/{\rm nm}^{-1}$
HS	$X^2 \Pi$	QCISD ^[m]	6-311 + + Q 3df 2pd)	3	0.13402	3.71113	2907.25
		QCISD ^[m]	6-311 + + Q 3df 2pd)	9	0.13402	3.65025	2723.75
		QCISD(T) ⁿ]	6-311 + + 0(3df 2pd)	3	0.13424	3.74711	2850.07
		QCISD(T∮ ⁿ]	6-311 + + Q 3df 2pd)	9	0.13424	3.69287	2706.9
		Exp t . ^[6]			0.1340614(4)		2696.2475(58)
		Exp t . ^[16]			0.13409		2711.6
НО	$X^2 \Pi$	QCISD ^[m]	6-311 + + Q 3df 2pd)	9	0.09681	4.4952	3803.29
		QCISD(T∮ ⁿ]	6-311 + + Q 3df 2pd)	9	0.09703	4.55588	3757.3
		Exp t. ^[18]			0.0970		3737.76
		文献 19]			0.0971		3717.78

表 1 SH 和 OH 自由基基态的优化计算结果

注[m 表示 QCISD 方法[n 表示 QCISD(T)方法.

谱项 ω_e比利用 QCISD/6-311 + + G(3df ,2pd)与实 验^[6,14,18]符合得要好.

用上述优化的 QCISD(T)/6 - 311 + + G(3df, 2pd)和 QCISD/6-311 + + G(3df, 2pd)方法对 SH (D)和 OH(D)的基态 $X^2\Pi$ 进行单点能扫描计算,得 到不同核间距的一系列单点势能,然后,用最小二乘 法拟合 M-S 函数(5),本文 n 取 9. 表 1 可见 n 取 9 拟合的效果要比 n 取 3 好得多.

图 1 至图 6 给出了 SH(D)和 OH(D)分子基态 ($X^2\Pi$)的势能曲线,图中的离散点为基态的单点理 论计算势能值,实线为这些单点的拟合势能曲线.由 图 1 至图 6 可以看出,能量扫描得到的基态($X^2\Pi$) 的离解能与拟合得到的结果完全一致,其他位置处 的点、线间也符合得很好,这说明拟合出的 M-S 函 数确实正确表达了 SH(D)和 OH(D)分子基态 ($X^2\Pi$)的势能函数.

图 1 SH(D)自由基基态 $X^2 \Pi$ QCISD 方法的势能曲线 n = 3)

图 2 SH(D)自由基基态 $X^2 \Pi$ QCISD 方法的势能曲线 n = 9)

运用表2给出的拟合参数,由(5)--(7)式可计

图 3 OH(D)自由基基态 X² II QCISD 方法的势能曲线

图 5 SH(D)自由基基态 X² II QCISD(T)方法的势能曲线(n=9)

算出 SH(D)和 OH(D)自由基分子基态 $X^2 \Pi$ 振转常数 D_e , R_e , ω_e , $\omega_e \chi_e$, B_e 和 α_e ,见表 3.除利用 QCISD (T)计算得到 SH 的 B_e ,SD 的 $\omega_e \chi_e$,OH 的 α_e 没有利用 QCISD 方法得到的结果理想外 ,本文利用

图 6 OH(D)自由基基态 X² II QCISD(T)方法的势能曲线

QCISI(T)计算得到的光谱常数(*n* = 9)与实验符合 得较好,且,*n*近似到9要明显好于近似到3.

4. 结果与讨论

SH(D)和 OH(D)自由基分子基态 $X^2 \Pi$,我们计 算得到的 SH 的平均核间距 R_e 和光谱项 ω_e 为 0.13424 nm, 2706.9 nm⁻¹和与实验值 0.1340614(4) nn(0.13409 nm) 2696.2475 nm⁻¹(2711.6 nm⁻¹) / 很接 近;OH 的平均核间距 0.09703 nm 和光谱项 ω_e 3757.3 nm⁻¹与实验值 0.0970 nm, 3737.76 nm⁻¹也极 为接近.由表 3 还可以看出,其他光谱数据也与实验 值符合得比较好.并且,由 OH 的光谱数据可见,我 们得到的光谱数据比文献的数据更接近实验数据. 表明,改进后的势能函数(近似到 n = 9)能更好地描 述 SH(D)和 OH(D)自由基的性质.所以,SH(D)和 OH(D)自由基基态的势能函数均可由M-S函数(近

表 2 SH 和 OH 自由基分子的 M-S 势能函数参数

电子态	n	$R_{\rm e}/{ m nm}$	$D_{\rm e}/{\rm eV}$	a_1/nm^{-1}	$a_2/{\rm nm}^{-1}$	$a_3/{\rm nm}^{-1}$	a_4/nm^{-1}
<i>Х² П</i> (HS)	3	0.13402 ^[m]	3.71113	45.26185	618.80538	3504.2242	_
	9	0.13402 ^[m]	3.65025	40.53825	457.00828	2833.70923	6802.05981
	3	0.13424 ^[n]	3.74711	46.35403	718.33713	6256.24237	_
	9	0.13424 ^[n]	3.69287	43.35561	553.8803	3043.31335	29625.91761
<i>Х² П</i> (НО)	9	0.09681 ^[m]	4.4952	63.01096	1424.96218	19599.83537	177188.1424
	9	0.09703 ^[n]	4.55588	55.0767	977.24403	10806.73501	57459.60775

表 3 SH(D)和 OH(D)自由基分子的振转常数

电子态	n	$\omega_{\rm e}/{\rm nm}^{-1}$	$\omega_{\rm e} \chi_{\rm e} / {\rm nm}^{-1}$	$B_{\rm e}/{\rm nm}^{-1}$	$\alpha_{\rm e}/{\rm nm}^{-1}$	$D_{\rm e}/{\rm cm}^{-1}$	
<i>Х² П</i> (HS)	3	2907.25 ^[m]	49.556	9.67904	0.215887	4.896E-04	
	9	2723.75 ^[m]	53.4313	9.60492	0.283256	4.815E-04	
	3	2850.07 ^[n]	49.0134	9.64734	0.226211	4.943E-04	
	9	2706.9 ^[n]	49.0134	9.57347	0.268611	4.872E-04	
Exp t . ^[5]		2696.2475	46.7420	9.6000247	0.27990	4.877E-04	
Exp t . ^[13]		2711.6	59.9	9.4611	0.270	4.80E-04	
$X^2 \Pi$ (DS)	9	1955.89 ^[m]	27.5517	4.95276	0.104884	1.27 E-04	
	9	1943.79 ^[n]	25.2737	4.93654	0.0994615	1.274 E-04	
Exp t . ^[15]		1885.5	30.9	4.9003	0.100	1.35E-04	
<i>Х² П</i> (НО)	9	3803.29 ^[m]	90.2231	18.9706	0.727697	5.571 E-04	
	9	3757.3 ^[n]	82.279	18.8847	0.728701	5.646 E-04	
Exp $t .^{[16]}$		3737.76	84.881	18.911	0.7242	5.726 E-04	
文献 18]		3717.78	79.451	18.880	0.6435	5.716 E-04	
<i>Х² П</i> (DO)	9	2768.91 ^[m]	47.8208	10.055	0.280801	5.30 E-04	
	9	2735.43 ^[n]	43.6102	10.0094	0.281189	5.36 E-04	

似到 n = 9 很好地描述.可用于进一步研究 SH(D)

- 和 OH(D)分子的反应动力学特性.
- [1] Luo D L, Sun Y, Liu X Y, Jiang G, Meng D Q, Zhu Z H 2001 Acta Phys. Sin. 50 1896 (in Chinese)[罗德礼、孙 颖、刘晓 亚、蒋 刚、蒙大桥、朱正和 2001 物理学报 50 1896]
- [2] Luo D L, Meng D Q, Zhu Z H 2003 Acta Phys. Sin. 52 2438 (in Chinese)[罗德礼、蒙大桥、朱正和 2003 物理学报 52 2438]
- [3] Mao H P, Wang H Y, Tang Y J, Zhu Z H, Zheng S T 2004 Acta Phys. Sin. 53 37 (in Chinese)[毛华平、王红艳、唐永键、朱正 和、郑少涛 2004 物理学报 53 37]
- [4] Li Q, Zhu Z H 2008 Acta Phys. Sin. 57 3419 (in Chinese) [李 权、朱正和 2008 物理学报 57 3419]
- [5] Xie A D, Shi D H, Zhu Z L 2005 Chin. J. Chem. Phys. 18 776
 (in Chinese] 谢安东、施德恒、朱遵略 2005 化学物理学报 18 776]
- [6] Ram R S , Bernath P F , Engleman R J , Brault J 1995 J. Mol. Spectrosc 172 34
- [7] Fan X W, Geng Z D, Zhang Y S 2005 Acta Phys. Sin. 54 12 (in Chinese)[樊晓伟、耿振铎、张岩松 2005 物理学报 54 12]
- [8] Song X S, Yang X D, Linghu R F 2007 Journal of Guizhou Normal University (Natural Sciences) 25 1 (in Chinese)[宋晓书、杨向 东、令狐荣锋 2007 贵州师范大学学报(自然科学版) 25 1]
- [9] Vakhtin A B , Lee S , Heard D E , Smith I W M , Leone S R 2001 J. Phys. Chem. A 105 7889

- [10] Su M C , Kumaran S S , Lim K P , Michael J V , Wagner A F , Harding L B , Fang D C 2002 J. Phys. Chem. A 106 8261
- [11] Vakhtin A B, Murphy J E, Leone S R 2003 J. Phys. Chem. A 107 10055
- [12] Krasnoperov L N , Michael J V 2004 J. Phys. Chem. A 108 5643
- [13] Morino I, Kawaguchi K 1995 J. Mol. Spectrosc 170 172
- [14] Zhu Z H 1996 Atomic and molecular Reaction Statics (Beijing: Science Press)(in Chinese)[朱正和 1996 原子与分子反应静 力学(北京:科学出版社)]
- [15] Zhu Z H, Yu H G 1997 Molecular Structure and Molecular Potential Energy Function (Beijing: Science Press)(in Chinese)[朱正和、 俞华根 1997 分子结构与势能函数(北京:科学出版社)]
- [16] Huber K P, Hertzberg G 1979 Molecular Spectrum and Mol lecular Structure (IV). constants of diatomic molecules (New York : Van Nostrand Reinhold Company) 5982600
- [17] Huber K P, Herzberg G 1979 Molecular Spectrum and Molecular Structure (IV) (Princeton : Van Nostrand)
- [18] Xu M, Wang RF, Linghu RF, Yang X D 2007 Acta Phys. Sin. 56 2 (in Chinese)[徐 梅、汪荣凯、令狐荣锋、杨向东 2007 物 理学报 56 2]
- [19] Li Q, Zhu Z H 2006 Acta Phys. Sin. 55 1 (in Chinese) [李 权、 朱正和 2006 物理学报 55 1]

Structure and potential energy function of the ground state of OH(D) and SH(D) *

Zhu Ji-Liang Ren Ting-Qi[†] Wang Qing-Mei

(College of Physics and Engineering, Qufu Normal University, Qufu 273165, China)
 (Received 10 April 2008; revised manuscript received 11 September 2008)

Abstract

The structure and dissociation energy of the ground state of OH and SH are calculated using QCISD(T)/6-311 + + Q 3df, 2pd) method and QCISD(T)/6-311 + + Q 3df, 2pd). Based on the theory of atomic and molecular statics, the reasonable dissociation limit for the ground state ($X^2 \Pi$) of OH is derived. The potential energy curve and relevant optical constants of this state are obtained by least square fitting to the Murrell-Sorbie function. All calculation results are in good agreement with the experimental data.

Keywords : OH and SH molecule , ground state ($X^2 \Pi$), Murrell - Sorbie function , potential energy function **PACC** : 3110 , 3120D , 3130

^{*} Project supported by the National Natural Science Foundation of China(Grant No.20042801).

[†] E-mail :RTQ@QFNU.EDU.CN