# $Si_m C_n(m + n \leq 7)$ 团簇的密度泛函研究<sup>\*</sup>

李 兵<sup>1</sup><sup>\*</sup> 杨传路<sup>2</sup> 齐凯天<sup>1</sup> 张 岩<sup>1</sup> 盛 勇<sup>1</sup><sup>\*</sup>

1)(四川大学材料科学与工程学院,成都 610065)
 2)(鲁东大学物理与电子工程学院,烟台 264025)
 (2008年7月15日收到,2008年9月22日收到修改稿)

使用密度泛函理论 DFT 的杂化密度泛函 B3LYP 方法在 6-31G \* 基组水平上对 Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ )团簇各种可能 的构型进行几何结构优化,预测了各团簇的最稳定结构.并对最稳定结构的平均结合能( $E_b$ )二阶能量差分( $\Delta_2 E$ ) 和能隙( $E_g$ )等进行了理论研究.结果表明 随着原子个数的增加,SiC 二元团簇的结构由线性转变为平面,再转变 为三维立体结构,原子数小于 5 时 除 Si<sub>5</sub> 和 Si<sub>4</sub>C 外其他所有的团簇都是平面结构 随着 C 原子增加,Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ )团簇的平均单点能不断增加,说明富 C 簇要比富 Si 稳定,对 Si<sub>n</sub> 团簇掺杂 C 原子可以提高团簇的稳定性;C<sub>n</sub>, SiC<sub>n</sub> 和 Si<sub>2</sub>C<sub>n</sub> 团簇表现出明显的'奇-偶'振荡和'幻数'效应 Si<sub>2</sub>C Si<sub>3</sub>C ,Si<sub>5</sub>C SiC<sub>2</sub> Si<sub>4</sub>C<sub>2</sub> 和 SiC<sub>4</sub> 团簇比其他团 簇更稳定.

关键词:Si<sub>m</sub>C<sub>n</sub>(m + n ≤ 7)团簇,密度泛函理论,结构与性质 PACC: 3640, 3640B, 3120A

# 1.引 言

团簇结构与性质的研究对于理解物质从微观到 宏观的过渡具有重要作用,由于其特殊的物理化学 性质,团簇研究已引起物理、化学和材料等领域的广 泛兴趣.硅作为一种非常重要的电子材料,决定了电 子产业领域发展的速度和尺度.同时电子元件小型 化的趋势愈演愈烈,这就使微电子元件的性能和特 征必将要达到一个原子团簇的尺寸级别.所以对于 硅团簇以及含硅原子团簇的电子结构和几何结构的 研究一直是实验和理论研究的重要研究方向之一. 多年以来,各国的研究人员对含硅团簇的物理及化 学性质进行了实验和理论研究<sup>12]</sup>.

虽然 C 和 Si 在元素周期表中都为第四主族元 素,但是它们化学性能和结合键有很大的不同,C 经 常形成单键和双键,而 Si 则常形成多向性单键,这 种性能上的差异在纯 Si 和纯 C 团簇表现得比较明 显,对于小型的 C<sub>n</sub>( $n \leq 10$ )团簇而言,n为奇数时 团簇为线性结构,而偶数时团簇则为环状结构<sup>[3-5]</sup>.

\*国家自然科学基金(批准号:10674114)资助的课题.

不同的是当  $m \ge 5$  时 Si<sub>m</sub> 团簇倾向于形成立体结 构<sup>[6—9]</sup> C 和 Si 二者巨大的差别也表现在块体上,例 如对于硅来说并不存在石墨状结构.我们研究富 Si 和富 C 团簇主要目的就是要找到一个从" 类碳 "性 能到" 类硅"性能转变的过渡态.这已经在试验上得 到了证实<sup>[10—13]</sup>.

在理论方面文献[14]应用 B3LYP/6-311C(3df) 方法对 Si<sub>m</sub> C<sub>n</sub>( $m + n \le 5$ )团簇的结构,键能,能隙, 键长,电离能,振动频率等进行了系统的理论研究, Froudakis 等<sup>[15]</sup>用 MP2/6-31G 方法对 Si<sub>n</sub> C<sub>m</sub>(n = 2— 3,n + m = 6)团簇的结构进行了研究,Gordon 等<sup>[16]</sup> 又用 CCSD(T)/cc-pVTZ 等方法研究了 SiC<sub>4</sub>和 SiC<sub>6</sub> 线状团簇的结构.Ding 等<sup>[17,18]</sup>用 B3LYP/cc-pVDZ 方 法研究了 SiC<sub>7</sub>,SiC<sub>9</sub>线状团簇的结构和振动光谱. 文献 19 ]应用 B3LYP/6-31G \* 方法对 Si<sub>2</sub>C<sub>m-2</sub>(m =4—15 )团簇的结构和稳定性进行了系统的理论研 究,得到了 Si<sub>2</sub>C<sub>m-2</sub>(m = 4—15 )团簇的基态结构,弄 清了 m = 4—15 范围内 Si<sub>2</sub>C<sub>m-2</sub>团簇的幻数规律.尽 管已经有许多文献报道了 SiC 二元团簇,但对其多

<sup>†</sup> E-mail :libingnc@qq.com

非 通讯联系人. E-mail shengyong69@163.com

原子系统研究少见报道,为了进一步探讨 SiC 二元 团簇的稳定性规律,本文用密度泛函理论的 B3LYP/ 6-31G \* 方法对 Si<sub>m</sub> C<sub>n</sub>( $m + n \le 7$ )团簇的结构与性质 进行了深入探讨,既有助于对 SiC 二元团簇的进一 步研究,同时也有助于对 Si 材料中掺杂 C 的团簇结 构、性质以及它们的形成机理提供理论参考.

### 2. 研究方法

首先用 Gview 软件设计出所有可能的团簇模型 作为初始结构.综合考虑计算量和精度,采用了密度 泛函理论中的杂化密度泛函 B3LYP(由 Becke 建议 的杂化交换函数和 Lee-Yang-Parr 相关函数组 成)<sup>20 21]</sup>方法,收敛精度为  $10^{-6}$  a.u.,在 6-31G \* 基 组水平上用 Gaussian 03 程序对 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团 簇的结构进行了优化.对最稳定结构的振动特性、 成键特性和电荷特性等进行了计算.在进行团簇几 何结构优化和电子结构计算时未加对称性限制.

# 3. 结果与讨论

优化后 Si<sub>m</sub> C<sub>n</sub>( $m + n \le 7$ )团簇的各种所有可能 结构 限于篇幅 本文在图 1 中只给出各团簇的最稳 定结构 深色球代表 C 原子 浅色代表 Si 原子.表 1 给出了 Si<sub>m</sub>C<sub>n</sub>( $m + n \le 7$ )团簇基态分子的对称性, 键长和自旋多重度.由文献 14 ]得到 SiC 二元团簇 的实验数据 :C-C 原子间距 1.312Å; C-Si 原子间距 1.731Å; Si-Si 原子间距 2.246Å.本文对 Si<sub>2</sub>,SiC 和 C<sub>2</sub> 二聚体作了几何优化和频率分析.得到 Si<sub>2</sub> 二聚 体的 Si-Si 键长为 2.287Å SiC 二聚体的 Si-C 键长为 1.724Å C<sub>2</sub> 二聚体的 C-C 键长为 1.311Å.这三组数 据与试验数据符合得较好.说明我们选用的方法比 较合适.

#### 3.1.几何构型

3.1.1. Si<sub>m</sub>C<sub>n</sub>(m + n = 2)团簇

从图 1 可知  $Si_2$  是线性结构属于  $D_{\infty h}$ 群 ,优化 平衡结构的键长为 2.287Å ,这与得到的实验值 2.246Å 一致.  $Si_2$  自旋多重度为 3 ,振动频率为 488.1723 cm<sup>-1</sup>. SiC 团簇的自旋多重度为 3 ,属于  $C_{\infty v}$ 点群.优化平衡结构的键长为 1.724Å ,这与实验 值 1.731Å 符合 ,其振动频率为 971.2357 cm<sup>-1</sup>. 同理 C<sub>2</sub> 最稳定结构与 Si<sub>2</sub> 的最稳定结构相同 ,属于  $D_{\infty h}$ 点群 ,其自旋多重度也为 3 ,但由于 C-C 的键能强于 Si-Si 的键能 ,且碳碳原子之间常为双键 ,而 Si-Si 键 则常为单键.C<sub>2</sub> 双键的键长为 1.311Å ,与得到的试 验值 1.312Å 相同 ,其振动频率为 1702.4311 cm<sup>-1</sup>.

| $\overline{\alpha}$   $S_{1,m}$ $U_{m}$ $(m + n \leq / M)$ 成本 $\overline{\alpha}$ $\overline{\alpha}$ $\overline{\beta}$ $\overline{\alpha}$ | 重度 | .键长和自旋多 | 子的对称性 | 团簇基态分 | $m + n \leq 7$ | Si., C.( | 表 1 |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-------|-------|----------------|----------|-----|
|----------------------------------------------------------------------------------------------------------------------------------------------|----|---------|-------|-------|----------------|----------|-----|

| 团簇                        | 对称性            | 类型                  | 键长/Å  | 类型                  | 键长/Å  | 多重度 |
|---------------------------|----------------|---------------------|-------|---------------------|-------|-----|
| Si <sub>2</sub>           | $D_{\infty h}$ | Si-Si               | 2.287 |                     |       | 3   |
| SiC                       | $C_{\infty v}$ | Si-C                | 1.724 |                     |       | 3   |
| $C_2$                     | $D_{\infty h}$ | C-C                 | 1.311 |                     |       | 3   |
| Si <sub>3</sub>           | $D_{3h}$       | Si-Si               | 2.300 |                     |       | 3   |
| $\operatorname{Si}_2 C$   | $D_{\infty h}$ | Si-C                | 1.699 |                     |       | 1   |
| $SiC_2$                   | $C_{\infty v}$ | C1-C2               | 1.290 | Si3-C2              | 1.700 | 1   |
| C3                        | $D_{\infty h}$ | C-C                 | 1.297 |                     |       | 1   |
| $Si_4$                    | $D_{2h}$       | Si1-Si3             | 2.430 | Si-Si               | 2.330 | 1   |
| Si <sub>3</sub> C         | $C_{2v}$       | C4-Si1(Si3)         | 1.766 | Si2-Si1(Si3)        | 2.455 | 1   |
|                           |                | Si2-C4              | 1.949 |                     |       |     |
| $\operatorname{Si}_2C_2$  | $D_{\infty h}$ | Si1(Si2)-C3(C4)     | 1.744 | C3-C4               | 1.281 | 3   |
| $SiC_3$                   | $C_{\infty v}$ | Si4-C3              | 1.735 | C2-C3               | 1.292 | 3   |
|                           |                | C1-C2               | 1.313 |                     |       |     |
| $C_4$                     | $D_{\infty h}$ | C1( C4 )-C2( C3 )   | 1.315 | C2-C3               | 1.294 | 3   |
| Si <sub>5</sub>           | $C_{2v}$       | Si2-Si4( Si5 )      | 2.421 | Si2-Si3(Si1)        | 2.350 | 1   |
|                           |                | Si3(Si1)-Si4(Si5)   | 2.255 |                     |       |     |
| Si <sub>5</sub>           | $D_{3h}$       | Si5-Si4( Si1 ,Si2 ) | 2.432 | Si3-Si4( Si1 ,Si2 ) | 2.432 | 1   |
|                           |                | Si1-Si2(Si4)        | 2.472 |                     |       |     |
| $\mathrm{Si}_4\mathrm{C}$ | $C_1$          | C1-Si5( Si4 )       | 1.779 | Si3-Si4             | 2.398 | 1   |
|                           |                | Si2-Si3             | 2.334 | Si2-Si5             | 2.398 |     |
| $Si_3C_2$                 | $C_{2v}$       | Si1-C2(C3)          | 1.941 | C2-C3               | 1.368 | 1   |

续表1

| 团簇                                       | 对称性            | 类型                  | 键长/Å  | 类型                    | 键长/Å  | 多重度 |
|------------------------------------------|----------------|---------------------|-------|-----------------------|-------|-----|
|                                          |                | C2( C3 )-Si4( Si5 ) | 1.726 |                       |       |     |
| $\operatorname{Si}_2 \operatorname{C}_3$ | $D_{\infty h}$ | Si5( Si4 )-C1( C3 ) | 1.692 | C1( C3 )-C2           | 1.293 | 3   |
| $SiC_4$                                  | $C_{\infty v}$ | C1-C2               | 1.284 | C2-C3                 | 1.302 | 1   |
|                                          |                | C3-C4               | 1.278 | C4-Si5                | 1.700 |     |
| C <sub>5</sub>                           | $D_{\infty h}$ | C1( C5 )-C2( C4 )   | 1.292 | C3-C2(C4)             | 1.287 | 1   |
| Si <sub>6</sub>                          | $C_1$          | Si2(Si4)-Si1(Si3)   | 2.531 | Si2-Si6               | 2.522 | 3   |
|                                          |                | Si2-Si3             | 2.529 | Si2( Si4 )-Si6( Si5 ) | 2.538 |     |
|                                          |                | Si1-Si2             | 2.370 | Si1-Si6               | 2.375 |     |
|                                          |                | Si3-Si6             | 2.374 | Si3-Si5               | 2.371 |     |
|                                          |                | Si4-Si1             | 2.528 | Si4-Si6               | 2.525 |     |
| Si <sub>5</sub> C                        | $C_2$          | C5-Si4( Si2 )       | 1.853 | C5-Si1                | 1.954 | 1   |
|                                          |                | Si5-Si3( Si1 )      | 2.395 | Si5-Si4( Si2 )        | 2.570 |     |
| $\mathrm{Si}_4\mathrm{C}_2$              | $C_1$          | C5-Si1              | 1.808 | C5-Si3                | 1.807 | 1   |
|                                          |                | C6-Si4( Si2 )       | 1.808 | Si1( Si3 )-Si2        | 2.601 |     |
|                                          |                | Si1-Si4             | 2.608 | Si4-Si3               | 2.605 |     |
| $\mathrm{Si}_3\mathrm{C}_3$              | $C_1$          | Si6-C1              | 2.069 | Si6-C5                | 2.128 | 1   |
|                                          |                | Si6-C2              | 2.129 | Si6-Si3( Si4 )        | 2.591 |     |
|                                          |                | C1-Si4( Si3 )       | 1.870 | Si3(Si4)-C2(C5)       | 1.892 |     |
|                                          |                | C2-C5               | 1.318 |                       |       |     |
| $\mathrm{Si}_2\mathrm{C}_4$              | $D_{\infty h}$ | Si6(Si5)-C1(C4)     | 1.729 | C1( C4 )-C2( C3 )     | 1.279 | 3   |
|                                          |                | C2-C3               | 1.300 |                       |       |     |
| $SiC_5$                                  | $C_{\infty v}$ | C1-C3               | 1.301 | C3-C4                 | 1.292 | 3   |
|                                          |                | C4-C2               | 1.287 | C2-C5                 | 1.283 |     |
|                                          |                | Si6-C5              | 1.727 |                       |       |     |
| C <sub>6</sub>                           | $C_{2v}$       | C6-C1( C3 )         | 1.328 | C1(C3)-C2(C5)         | 1.328 | 1   |
|                                          |                | C4-C5(C2)           | 1.328 |                       |       |     |
| Si <sub>7</sub>                          | $D_{5h}$       | Si1-Si2(Si3 ,Si4)   | 2.488 | Si1-Si5(Si6)          | 2.488 | 1   |
|                                          |                | Si7-Si2(Si3,Si4)    | 2.488 | Si7-Si5(Si6)          | 2.488 |     |
|                                          |                | Si2(Si5)-Si3(Si4)   | 2.504 | Si6-Si5(Si2)          | 2.504 |     |
|                                          |                | Si4-Si3             | 2.504 |                       |       |     |
| $Si_6C$                                  | $C_{5v}$       | Si1-Si2(Si3,Si4)    | 2.622 | Si1-Si5(Si6)          | 2.622 | 1   |
|                                          |                | C7-Si2(Si3 Si4)     | 2.061 | C7-Si5(Si6)           | 2.061 |     |
|                                          |                | Si2(Si5)-Si3(Si4)   | 2.362 | Si6-Si5(Si2)          | 2.362 |     |
|                                          |                | Si4-Si3             | 2.362 |                       |       |     |
| $Si_5C_2$                                | $C_s$          | C6-Sil( Si5 )       | 1.769 | C7-Si2(Si4)           | 1.758 | 1   |
|                                          |                | Si3-Si5(Si1)        | 2.563 | Sil( Si5 )-Si2( Si4 ) | 2.526 |     |
| $Si_4C_3$                                | Cs             | Si5-C1              | 1.737 | Si5-Si3               | 2.351 | 1   |
|                                          |                | Si6-C2              | 1.804 | Si7-C2                | 1.887 |     |
|                                          |                | Si7-C4              | 1.766 | C2-C4                 | 1.557 |     |
|                                          |                | C1-C4               | 1.341 | Si6-Si3               | 2.259 |     |
| $\mathrm{Si}_3\mathrm{C}_4$              | $C_s$          | Si5-Si3             | 2.278 | Si5-C4                | 1.826 | 1   |
|                                          |                | C1-Si3              | 1.798 | C1-C2                 | 1.281 |     |
|                                          |                | Si7-C6              | 1.807 | Si7-C2                | 1.884 |     |
|                                          |                | C4-C6               | 1.283 | C4-Si3                | 2.042 |     |
| $\mathrm{Si}_2\mathrm{C}_5$              | $D_{\infty h}$ | Si7( Si6 )-C1( C5 ) | 1.698 | C1( C5 )-C2( C4 )     | 1.289 | 1   |
|                                          |                | C3-C2(C4)           | 1.284 |                       |       |     |
| $SiC_6$                                  | $C_{\infty v}$ | Si7-C6              | 1.704 | C1-C2                 | 1.286 | 1   |
|                                          |                | C2-C3               | 1.300 | C3-C4                 | 1.268 |     |
|                                          |                | C4-C5               | 1.292 | C5-C6                 | 1.280 |     |
| C <sub>7</sub>                           | $C_s$          | C6-C4( C5 )         | 1.328 | C4( C5 )-C2( C7 )     | 1.347 | 1   |
|                                          |                | C3-C7               | 1.402 | C1-C2                 | 1.401 |     |
|                                          |                | C1-C3               | 1.267 |                       |       |     |



图 1 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇的稳定结构示意图

#### 3.1.2. Si<sub>m</sub>C<sub>n</sub>(m + n = 3)团簇

优化得到的  $Si_m C_n (m + n = 3)$ 团簇均为平面结构,其中  $C_3 SiC_2$ 和  $Si_2C$ 为线性结构,自旋多重度均为1,且碳碳和碳硅键均为双键.  $C_3$ 团簇属于  $D_{\infty h}$ 

群,优化平衡结构的键长为 1.297 Å,其振动频率均为正值,说明该结构为稳定结构,且最强振动频率为 2164.3373 cm<sup>-1</sup>. SiC<sub>2</sub> 团簇属于  $C_{\infty_v}$ 点群,相当于是 在 C<sub>2</sub> 团簇的增加了一个 Si 原子,平衡结构的碳硅

双键键长为 1.290 Å, 碳碳双键的键长为 1.700 Å, 最 强振动频率为 1930.2750 cm<sup>-1</sup>. Si<sub>2</sub>C 则与 SiC<sub>2</sub> 的形 成机理不同  $Si_2C$  相当于是在 SiC 团簇的 C 原子上 加上一个 Si 原子, 而不是在 Si<sub>2</sub> 团簇的基础加上一 个 C 原子,这主要是由于 C-C 键的键能大于 Si-C 键 和 Si-Si 键的键能.Si<sub>2</sub>C 团簇属于  $D_{\infty h}$ 群,平衡结构 的 Si-C 双键的键长为 1.699 Å, 最强的振动频率为 1396.1103 cm<sup>-1</sup>.Si<sub>3</sub> 团簇与其他三种团簇的结构有 所不同,其结构属于  $D_{3h}$ 点群,为正三角形结构, 而 不像 Si<sub>m</sub>C<sub>n</sub>(m + n = 3)团簇中其他团簇为线性结 构,优化平衡结构的 Si-Si 单键的键长为 2.330 Å. 3.1.3. Si<sub>m</sub>C<sub>n</sub>(m + n = 4) 团簇

优化得到的  $Si_m C_n(m + n = 4)$ 团簇均为平面结 构 其中  $Si_2 C_2$  , $Si C_3$  和  $C_4$  均为线性结构 ,并且除这 三种团簇的自旋多重度为 3 以外 ,其他团簇的自旋 多重度均为 1. $Si_4$  团簇属于  $D_{2h}$ 群 ,相当于在  $Si_3$  团 簇的基础上增加一个对称的 Si 原子 ,键长变为 2.330 Å ,这与文献 22 ]所报道的结构相符合 .  $Si_3 C$ 团簇属于  $C_{2v}$ 点群 ,与  $Si_4$  的四边形结构相似 ,相当 于 C 原子取代了 Si 原子 .  $C_4$  和  $Si_2 C_2$  属于  $D_{\infty h}$ 群 . SiC<sub>3</sub> 和  $Si_2 C_2$  团簇的线性结构相当于 C<sub>3</sub> 和  $C_2$  团簇 的端部添加 Si 原子得到的 .

3.1.4.  $Si_m C_n(m+n=5)$ 团簇

与前面几种团簇相同 ,优化得到的 Si\_ C\_( \_ + n=5 团簇除 Si<sub>s</sub> 均为平面结构 Si<sub>s</sub> 团簇有两种比 较稳定的结构,如图所示,前一种为平面结构,属于  $C_{2v}$ 点群,后一种为 $D_{3v}$ 点群,为三维立体结构,这一 结构与文献 22 沪得到的 Si。 团簇的结构相同 ,前者 比后者的能量低 0.016 eV. 两者的能量差别很小, 可 以将这两种团簇都认为是比较稳定的结构.Si<sub>4</sub>C团 簇属于  $C_1$  点群 ,其空间结构可以看成是由  $Si_5$  的  $D_{3k}$ 点群构型变形得到的. 与文献 14 报道的  $C_{2k}$ 点 群的平面扇形结构不同,经过计算发现 C2, 点群的 平面结构比 $C_1$ 点群的空间结构高 0.641 eV,所以我 们认为 C<sub>1</sub> 点群的空间结构才是最稳定的结构.  $Si_3C_2$ 属于  $C_{2n}$ 点群 和  $Si_5$ 的  $C_{2n}$ 点群相同都是扇形 平面结构,由于Si-C键要强于Si-Si键,所以两个C 原子位于团簇的中央位置.对于 Si<sub>2</sub>C<sub>3</sub> 和 SiC<sub>4</sub> 这两 种富 C 团簇来说 ,由于 C-C 键较强 ,它们表现出较 强的纯碳团簇的性能 "Si₂C,和 SiC₄ 均为与 C,相类 似的线性结构,可以看成是 Si 原子取代 C, 团簇边

缘的 C 原子得到. SiC<sub>4</sub> 团簇的线性结构与文献 16] 所报道的结构相同,本文得到的键长(1.284Å, 1.302Å,1.278Å,1.700Å)与文献报道的实验值 (1.274Å,1.30Å,1.28Å,1.682Å)非常接近,进一步说

明了我们选用的方法比较合适. 3.1.5. Si<sub>m</sub>C<sub>n</sub>(m + n = 6)团簇

随着 Si 原子的不断增加 富 Si 团簇逐渐由平面 结构转变为三维空间结构 Sig 团簇属于 C1 点群 其 结构是由正八面体变形而来,为类八面体结构.Si<sub>s</sub>C 和 Si<sub>4</sub>C, 团簇则是由 C 原子取代 Si<sub>6</sub> 团簇的顶部 Si 原子得到.并且  $Si_4C_2$  团簇属于  $C_1$  点群 ,与文献 [15] 报道的  $C_{2x}$ 点群不同 经过计算发现  $C_{2x}$ 点群的 Si<sub>4</sub>C<sub>2</sub> 团簇存在虚频,并不是稳定的结构.Si<sub>3</sub>C<sub>3</sub> 属于  $C_1$  点群,其结构由五棱锥结构的 Si<sub>6</sub> 团簇 Si 原子被 C原子取代变形而来.随着 C原子的不断增加,C。 不再像前面几种纯 C 团簇为线性结构,其结构为两 种不同的平面环状结构<sup>[3—5]</sup>,均属于  $C_{2}$ 点群 ,SiC<sub>5</sub> 和 Si<sub>2</sub>C<sub>4</sub> 两种团簇均为线性结构,可以看成是分别 由 C<sub>5</sub>和 C<sub>4</sub> 团簇的端部添加 Si 原子得到的. Si<sub>2</sub>C<sub>4</sub> 团簇的线性结构与文献 15,19 所报道的结构相同, 本文得到的键长(1.729 Å 1.279 Å 1.300 Å)比文献 [19] 报道的键长(1.69 Å,1.27 Å,1.29 Å) 略长.

3.1.6.  $Si_m C_n(m+n=7)$ 团簇

对于  $Si_m C_n (m + n = 7)$  团簇而言 ,随着 C 原子 的不断增加 团簇由富硅性转变为富碳性 其空间结 构也由三维空间结构转变为平面结构和线性结构.  $Si_7 Si_6C$ 和  $Si_5C_2$  团簇为三维空间结构.  $Si_7$  团簇属 于 D<sub>51</sub>点群,其结构为双五棱锥型.Si<sub>6</sub>C 团簇是由一 个 C 原子取代五棱锥顶部的 Si 原子而来,其属于  $C_{5v}$ 点群.Si<sub>5</sub>C<sub>2</sub> 逐步摆脱了 Si<sub>7</sub> 团簇的框架 属于  $C_{s}$ 点群.Si<sub>4</sub>C,和Si<sub>3</sub>C,团簇为平面结构,均属于C,点 群,所得到的优化结构与文献 23 相符合 对于富 C 团簇而言 Si<sub>2</sub>C<sub>5</sub> 和 SiC<sub>6</sub> 团簇为线性结构,可以看成 是分别由  $C_s$  和  $C_s$  团簇的端部添加 Si 原子得到的. SiC。团簇的线性结构与文献[16]所报道的结构相 同,本文得到的键长(1.286Å,1.300Å,1.268Å, 1.292Å, 1.280Å, 1.704Å)比该文献报道的键长 (1.284Å, 1.297Å, 1.264Å, 1.290Å, 1.276Å, 1.699Å) 略长.同时与该文献报道的实验值(1.277Å,1.300Å, 1.256Å, 1.29Å, 1.282Å, 1.689Å)非常接近. C7 团簇 与 C。 团簇类似,同样为环状结构,属于 C。 点群.

为了进一步研究  $Si_m C_n (m + n \leq 7)$ 团簇的稳定性,我们对该团簇的平均键能( $E_b$ )和二阶差分能 ( $\Delta_2 E$ )进行计算,我们考虑如下化学反应的能量 变化:

$$\operatorname{Si}_{m} \operatorname{C}_{n} \to m \operatorname{Si} + n \operatorname{C}$$
, (1)

$$\mathscr{L}\operatorname{Si}_{m} \mathbb{C}_{n} \rightarrow (\operatorname{Si}_{m} \mathbb{C}_{n+1}) + (\operatorname{Si}_{m} \mathbb{C}_{n-1}), \quad (2)$$

 $(X Si_m C_n) \rightarrow (Si_{m+1}C_n) + (Si_{m-1}C_n)$  (3) 定义(1)式的能量变化为  $E_b = [E(Si_m C_n) - mE(Si) - nE(C)](m+n)$ 即团簇的平均键能 (2)式表示 C 原子数目 n 发生变化时的能量变化  $\Delta_2 E_n = E_{n+1} + E_{n-1} - 2E_n$ .(3)式与(2)式类似 表示 Si 原子数目 m 变化时的能量变化  $\Delta_2 E_m = E_{m+1} + E_{m-1} - 2E_m$ .这 两个定义式均表示 Si\_m C\_n(m+n ≤ 7)团簇能量的二 阶差分值.

图 2 中列出了(m,n)与平均键能( $E_b$ )的关系. 从图中可以看出,对于 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇来说 原子数相同的情况下,平均原子键能随着 C 原子的 增加而增加,这就进一步指出,C-C 键的键能比 Si-Si 键的键能要强,随着 C 原子增加,Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ ) 团簇也逐渐由立体结构转变为线性结构,与文献 [16—19]报道的 SiC<sub>4</sub>,SiC<sub>6</sub>,SiC<sub>7</sub>,SiC<sub>9</sub>和 Si<sub>2</sub>C<sub>n</sub>( $n \leq$ 11)的线性结构一致.富 C 的 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇 比富 Si 的稳定性要强.



图 2 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇的平均结合能  $E_b$  随团簇尺寸的 变化

能量二阶差分  $\Delta_2 E$  是反映团簇稳定性的一个 很敏感的物理量,能量二阶差分值越大,说明团簇的 稳定性越高.为此我们计算了  $Si_m C_n (m + n \leq 7)$ 团 簇的能量二阶差分,为了研究增加C原子和增加Si 原子对团簇稳定性的影响,分别计算增加C原子的 Si<sub>m</sub>C<sub>n</sub>( $m + n \le 7$ )团簇的能量二阶差分能 $\Delta_2 E_n$ 和增 加Si原子的二阶差分能 $\Delta_2 E_n$ .由图3和表2可知, C<sub>3</sub>,C<sub>5</sub>,SiC<sub>2</sub>,SiC<sub>4</sub>,Si<sub>2</sub>C,Si<sub>2</sub>C<sub>3</sub>,Si<sub>3</sub>C,Si<sub>3</sub>C<sub>2</sub>,Si<sub>4</sub>C<sub>2</sub>及 Si<sub>5</sub>C团簇的能量二阶差分 $\Delta_2 E_n$ 均为正值,这就意 味着这些团簇的稳定性较高;并且对于C<sub>n</sub>,SiC<sub>n</sub>和 Si<sub>2</sub>C<sub>n</sub>团簇表现出明显的"奇-偶"振荡和"幻数"效 应,团簇的原子数为奇数性要比偶数时的稳定性高.



图 3 Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ )团簇的二阶差分能  $\Delta_2 E_n$  随 C 的原子的 变化



图 4 Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ )团簇的二阶差分能  $\Delta_2 E_m$  随 Si 的原子的 变化

表 2  $\operatorname{Si}_m \operatorname{C}_n(m+n \leq 7)$ 团簇二阶差分能

| 团簇                          | $\Delta_2 E_m$ | 团簇                        | $\Delta_2 E_n$ |
|-----------------------------|----------------|---------------------------|----------------|
| ${\rm SiC}_4$               | 2.001          | $\mathrm{Si}_4\mathrm{C}$ | - 0.359        |
| $\mathrm{Si}_2\mathrm{C}_4$ | 1.165          | ${\rm Si}_4{\rm C}_2$     | 0.789          |
| ${\rm SiC}_5$               | - 1.039        | $\mathrm{Si}_5\mathrm{C}$ | 3.665          |

同理由图 4 和表 2 可知 ,Si<sub>4</sub> ,Si<sub>2</sub>C ,Si<sub>3</sub>C , Si<sub>5</sub>C , SiC<sub>2</sub> ,Si<sub>2</sub>C<sub>2</sub> ,Si<sub>3</sub>C<sub>2</sub> ,Si<sub>4</sub>C<sub>2</sub> ,Si<sub>2</sub>C<sub>3</sub> ,SiC<sub>4</sub> ,Si<sub>2</sub>C<sub>4</sub> 团簇的 能量二阶差分  $\Delta_2 E_m$  也均为正值 ,说明这些团簇的 稳定性较高 . 但没有表现出明显的"奇-偶"振荡和 " 幻数 '效应 . 将  $\Delta_2 E_m$  为正值和  $\Delta_2 E_n$  为正值的团簇 结合起来 ,发现 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇中 ,Si<sub>2</sub>C , Si<sub>3</sub>C ,Si<sub>5</sub>C SiC<sub>2</sub> ,Si<sub>3</sub>C<sub>2</sub> ,Si<sub>4</sub>C<sub>2</sub> 和 SiC<sub>4</sub> 团簇在增加 C 原 子和 Si 原子的变化中 ,其二阶差分能均为正值 ,说 明这些团簇的稳定性要大于 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇中 最稳定的几种团簇 .



图 5 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇的 HOMO-LUMO 的能隙

#### 3.3.HOMO-LUMO 能隙

我们知道 HOMO 与 LUMO 之间的能隙  $E_{a}$  的大 小反映了电子从 HOMO 向 LUMO 发生跃迁的能力, 能隙越大表示激发电子到未占据态就越困难,即实 现费米能级和占据态的交叉越困难,团簇越稳定,这 在一定程度上代表了团簇分子参与化学反应的能 力.由图 5 可以看出,  $Si_{m}C_{a}(m + n \leq 7)$ 团簇中  $C_{a}$ 的能隙要大于  $Si_{a}$  的能隙,但两者的差值逐渐变小, 并且当 n = 7 时 Si<sub>7</sub> 的能隙要比 C<sub>7</sub> 的能隙大,这说 明随着原子数的增加,团簇的性能逐渐与块体材料 的性能接近.由于掺杂 C 原子和 Si 原子,SiC 混合团 簇并没有表现出" 奇-偶"振荡和" 幻数"效应.Si<sub>2</sub>C, Si<sub>3</sub>C,Si<sub>5</sub>C,Si<sub>4</sub>C<sub>2</sub>,Si<sub>4</sub>C<sub>2</sub>和 SiC<sub>4</sub>团簇的能隙都 比较大,说明这些团簇比较稳定,与图 2,图 3 和表 2 得到的结果一致.

#### 4.结 论

本文应用密度泛函理论(DFT)的 B3LYP 方法, 在 6-31G \* 基组的水平上对 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇 的几何构型,平均结合能  $E_b$ ),二阶能量差分( $\Delta_2 E$ ) 和能隙( $E_a$ )等进行了详细地讨论 结果表明:

1. 随着原子个数的增加 ,SiC 二元团簇的结构 由线性转变为平面 ,再转变为三维立体结构 ,但原子 数小于 5 时 ,除 Si<sub>5</sub> 和 Si<sub>4</sub>C 外其他所有的团簇都是 平面结构 ; $n \ge 6$  时  $C_n$  由线性结构转变为平面环状 结构 ; SiC<sub>n</sub> 和 Si<sub>2</sub>C<sub>n</sub> 团簇的结构均为线性结构 ,分别 属于  $C_{\infty_n}$ 和  $D_{\infty_h}$ 点群.可以看成是在 C<sub>n</sub> 团簇的基础 上添加 Si 原子变化而来.

2. 通过的 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇的平均结合能 计算可知, C-C 键的键能比 Si-Si 键的键能要强,随 着 C 原子增加, Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇的平均单点能 不断增加,说明富 C 的 Si<sub>m</sub>C<sub>n</sub>( $m + n \leq 7$ )团簇比富 Si 的稳定性要强.对 Si<sub>n</sub> 团簇掺杂 C 原子可以提高 团簇的稳定性.

3. 团簇的二阶差分能和能隙表明,  $C_n$ ,  $SiC_n$ 和 Si<sub>2</sub>C<sub>n</sub> 团簇表现出明显的"奇-偶"振荡和"幻数"效 应, Si<sub>2</sub>C, Si<sub>3</sub>C, Si<sub>5</sub>C, SiC<sub>2</sub>,  $Si_3C_2$ ,  $Si_4C_2$ 和 SiC<sub>4</sub> 团簇稳 定性要大于 Si<sub>m</sub>C<sub>n</sub>( $m + n \le 7$ )中的其他团簇,为 Si<sub>m</sub>C<sub>n</sub>( $m + n \le 7$ )团簇中最稳定的几种团簇.

- [1] Liu Y Z, Luo C L 2004 Acta Phys. Sin. 53 592 (in Chinese) [刘 玉真、罗成林 2004 物理学报 53 592]
- [2] Wang J, Wang S Q 2003 Acta Phys. Sin. 52 2854(in Chinese)
  [王 坚、王邵青 2003 物理学报 52 2854]
- [3] Raghavachari K , Binkley J S1987 J. Chem. Phys. 87 2191
- [4] Shen L N , Graham W R M 1989 J. Chem. Phys. 91 5115
- [5] Arnold D W, Bradforth S E, Kitsopoulos T N et al 1991 J. Chem. Phys. 95 8753
- [6] Li S, Van Zee R J, Weltner W Jr et al 1995 Chem. Phys. Lett. 243 275
- [7] Raghavachari K , Rohlfing C M 1991 J. Chem. Phys. 94 3670
- [8] Adamowicz L 1991 Chem. Phys. Lett. 185 244
- [9] Rohlfing C M , Raghavachari K 1992 J. Chem. Phys. 96 2114
- [10] Fye J L , Jarrold M F 1997 J. Phys. Chem. A 101 1836
- [11] Nakajima A , Taguwa T , Nakao K et al 1995 J. Chem. Phys. 103 2050

- [12] Pellarin M ,Ray C , Melinon P , Lerme J , Vialle J L , Keghelian P , Perez A , Broyer M 1997 Chem. Phys. Lett. 277 96
- [13] Pellarin M , Ray C , Lerme J et al 1999 J. Chem. Phys. 110 6927
- [14] Yadav P S, Yadav P K, Agrawal S et al 2006 J. Phys. : Condens Matter 18 7085
- [15] Froudakis G, Zdetsis A, Mühlhäuser M et al 1994 J. Chem. Phys. 101 6790
- [ 16 ] Gordon V D , Nathan E S , Apponi A J et al 2000 J. Chem. Phys. 113 5311
- [17] Ding X D , Wang S L , Rittby C M L et al 2000 J. Phys. Chem. A 104 3712

- [ 18 ] Ding X D , Wang S L , Rittby C M L , Graham W R M 1999 J. Chem. Phys. 110 11214
- [19] Jiang Z Y, Xu X H, Wu H S et al 2003 Chinese J. Struct. Chem.
  22 459 (in Chinese)[姜振益、许小红、武海顺等 2003 结构化 学 22 459]
- [20] Becke A D1993 J. Chem. Phys. 98 5648
- [21] Lee C , Yang W , Parr R G 1988 Phys. Rev. B 37 785
- [ 22 ] Zhao G F , Sun J M , Liu X et al 2008 J. Mol. Struct : Theochem 851 348
- [23] Bertolus M , Finocchi F , Millié P 2004 J. Chem. Phys. 120 4333

# Density functional theory study of $Si_m C_n(m + n \le 7)$ clusters \*

Li Bing<sup>1</sup>)<sup>†</sup> Yang Chuan-Lu<sup>2</sup>) Qi Kai-Tian<sup>1</sup>) Zhang Yan<sup>1</sup>) Sheng Yong<sup>1</sup>)<sup>‡</sup>

1) College of Material Science and Engineering , Sichuan University , Chengdu 610065 , China )

2 ) College of Physics and Electronics , Ludong University , Yangtai -264025 ,China )

( Received 15 July 2008 ; revised manuscript received 22 September 2008 )

#### Abstract

Possible geometrical structures and relative stability of  $\operatorname{Si}_m \operatorname{C}_n(m + n \leq 7)$  clusters are studied by using the hybrid density functional theory (B3LYP) with 6-31G \* basis sets in this article. For the most stable isomers of  $\operatorname{Si}_m \operatorname{C}_n(m + n \leq 7)$  clusters, the binding energy per atom ( $E_b$ ), second difference in energy ( $\Delta_2 E$ ) and HOMO-LUMO gaps ( $E_g$ ) et al. are analyzed. The calculated results show that : with increasing of the number of atoms the structure of SiC binary clusters transform linear into planar, and then into a three-dimensional structure. When the atomic number is less than 5, all clusters have planer structure except for Si<sub>5</sub> and Si<sub>4</sub>C. With the increase of C atom, the average binding energy of Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ ) clusters increases, which means that clusters of "rich C" are more stable than clusters of "rich Si", and Si<sub>n</sub> clusters with C doping can increase the stability. C<sub>n</sub>, SiC<sub>n</sub> and Si<sub>2</sub>C<sub>n</sub> clusters show clearly "odd-even " oscillation and the "magic number " effect , and Si<sub>2</sub>C ,Si<sub>3</sub>C , Si<sub>5</sub>C Si

**Keywords** : Si<sub>m</sub> C<sub>n</sub>( $m + n \leq 7$ ) clusters , density functional theory , structure and properties **PACC** : 3640 , 3640B , 3120A

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 10674114)

<sup>†</sup> E-mail libingnc@qq.com

 $<sup>\</sup>ddagger$  Corresponding author :E-mail :shengyong69@163.com