*M*Pb₁₀(*M* = Ti ,V ,Cr ,Cu ,Pd)几何结构和磁性 的密度泛函计算研究*

杨 剑 王倪颖 朱冬玖 陈 宣 邓开明[†] 肖传云[‡]

(南京理工大学应用物理系,南京 210094) (2008年9月15日收到 2008年10月17日收到修改稿)

采用密度泛函理论(density functional theory ,DFT)中的广义梯度近似(generalized gradient approximation ,GGA)对 $MPb_{10}(M = Ti N Cr ,Cu ,Pd)$ 四种同分异构体的几何结构和磁性进行了计算研究.发现在四种同分异构体中 , D_{4d} 结构的 $MPb_{10}(M = Ti ,V ,Cr ,Cu ,Pd)$ 四种同分异构体的几何结构和磁性进行了计算研究.发现在四种同分异构体中 , D_{4d} 结构的 $MPb_{10}(M = Ti ,V ,Cr ,Cu ,Pd)$ 具有最大的结合能和能隙 ,表明 D_{4d} 结构为其基态几何结构 ,具有较高的化学稳定性.磁性计算显示 :基态 TiPb₁₀ 团簇的磁矩为 2 μ_B ,Ti 原子与周围的 Pb 原子之间存在着弱的铁磁相互作用.基态 VPb_{10} 团簇的磁矩为 1 μ_B ,V 原子与周围的 Pb 原子之间存在着弱的铁磁相互作用 又存在弱的反铁磁相互作用.基态 $CuPb_{10}$ 团簇的磁矩为 1 μ_B ,Cu 原子与周围的 Pb 原子之间存在着弱的铁磁相互作用.基态 $CrPb_{10}$ 和 PdPb₁₀ 团簇 的磁矩为零 ,体现为非磁性.由此可见 ,可以通过内掺不同过渡金属对 Pb₁₀ 团簇的化学反应活性和磁性进行调制.

关键词:几何结构,磁性,密度泛函 PACC:3640B,7500,7115M

1.引 言

自 C_{60} 发现以来,碳族元素(C ,Si ,Ge ,Sn ,Pb)形 成的团簇^[12]已成为一个十分活跃的研究领域.已有 的研究表明 , $C_{60}^{[3]}$ 仍然是单质碳族元素形成的最稳 定团簇 ,其他 Si ,Ge ,Sn ,Pb 等单质碳族元素构成的 团簇稳定性均不如 C_{60} .但是 ,这类团簇^[4—8]掺入金 属原子后所形成的金属原子掺杂团簇的性质可以通 过对金属原子的选择得到控制 ,并提高团簇的稳定 性 ,使我们有可能找到稳定性如 C_{60} 的掺杂团簇 ,以 期在纳米材料和器件等领域得到应用.

过渡金属(Sc,Ti,V,Cr,Mn,Fe,Co,Ni)团簇因其 具有磁性或具有开发磁性材料的潜力^[9]而受到人们 极大地关注,例如已有人详细研究了含有 13 个过渡 金属原子团簇的磁性^[10—12].于是,将过渡金属原子 掺入碳族元素形成团簇,从而获得几何上更高的对 称性、结构上的稳定性和一定的磁性,成为一项热门 的研究课题.这类具有磁性的团簇有可能在纳米材 料和纳米器件领域得到很好的应用.从理论上理解 这些磁性团簇的几何结构和电子结构,为合成磁性 可调纳米材料提供了可能.

在过去的几年中,Si和 Ge 内掺过渡金属原子 所形成的团簇已经得到实验^[13,14]和理论^[15-20]上的 充分研究,它们的光电子学特性使得它们成为制造 纳米器件比较合适的材料.最近,气体光电子谱实 验^[21,22]意外地发现[Sn₁₂]⁻[Pb₁₂]⁻形成了非常稳 定的正二十面体笼状结构,其中,铅空笼直径为 6.3Å,可以嵌入外来原子,为创造结构类似但性能 更优的团簇提供了可能.此外,D_{4d}结构的 Pb₁₀²⁻阴 离子空笼状结构也已经在实验上合成^[23].这些都为 我们进一步的理论研究指明了方向.本文采用密度 泛函理论方法,研究了 Pb₁₀分别内掺五种不同过渡 金属原子所形成团簇的几何结构和磁性.

2. 计算方法

本文采用密度泛函理论(DFT)^{24-26]}中的广义梯

^{*} 国家自然科学基金(批准号:10174039)和江苏省自然科学基金(批准号:BK2002099)资助的课题.

[;] 通讯联系人. E-mail:kmdeng@mail.njust.edu.cn

非 通讯联系人. E-mail:chuanyunx@yahoo.com

度近似(GGA)的 BLYP 交换关联函数(Becke^[27]交换 梯度修正函数和 Lee-Yang-parf^[28]关联梯度函数)和 DNP 基组.DNP 基组是用极化函数扩展的双数值原 子轨道基组,也就是说,函数中包含高于自由原子中 最高占据轨道角动量一级的角动量.计算中采用自旋 非限制近似求解 Kohn-Shan(KS)^{29]}自洽场方程.用密 立根(Mulliken)电荷分析来得到原子轨道的电荷和自 旋布 居 数.结构优化采用了 Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法,以梯度变化小于 10⁻³ a.u. 位移变化小于 10⁻³ a.u. 和能量变化小于 10⁻⁵ a.u.作为收敛标准.自洽过程是在能量和电子密度 的收敛标准为 10⁻⁶ a.u.下完成.

3. 结果和讨论

3.1. 结构和稳定性

首先选择 $MPb_{10}(M = Ti, V, Cr, Cu, Pd)$ 四种可 能的结构(如图 1 所示)进行优化,它们的对称性分 别是 D_{4d} , D_{4h} , D_{5d} 和 D_{5h} .其中, D_{4d} 与 D_{4h} 相比较,是 把 D_{4h} 上、下对称的四边形旋转 45°得到; D_{5d} 与 D_{5h} 相比较,是把 D_{5h} 上、下对称的五边形旋转 36°得到. 根据团簇的对称性,团簇中的原子可以分成 M,Pb1 和 Pb2 三类.

图 1 MPb₁₀四种同分异构体的优化几何结构(中心为 M 原子,其他为 Pb 原子)

表 1 列出了 Pb₁₀和 *M*Pb₁₀(*M* = Ti ,*N* ,Cr ,Cu ,Pd) 团簇四种结构中 Pb-Pb 和 *M*-Pb 的平均键长.由表中 数据可以发现 :1)Pb₁₀空笼四种结构的 Pb-Pb 平均键 长是 $D_{4d} > D_{5d} > D_{4h} > D_{5h}$;而 *M*Pb₁₀四种结构中的 Pb-Pb 平均键长均是 $D_{4d} > D_{4h} > D_{5d} > D_{5h}$,与 Pb₁₀ 空笼时的情形有一定差异.2) MPb_{10} 的 M-Pb 平均键 长 对 M = V, Cr, Cu,均有 $D_{4h} > D_{5h} > D_{5d} > D_{4d}$;而 对 Ti-Pb 平均键长,有 $D_{4h} > D_{4d} > D_{5h} > D_{5d}$;对 Pd-Pb 平均键长,则是 $D_{4h} > D_{5d} > D_{5h} > D_{4d}$.

表 1 Pb_{10} 和 MPb_{10} 中 Pb-Pb 和 M -Pb 的平均键	K
---	---

结构	Pb-Pb/Å				M-Pb/Å			
50149 -	D_{4d}	D_{4h}	D_{5d}	D_{5h}	D_{4d}	D_{4h}	D_{5d}	D_{5h}
Pb ₁₀	3.423	3.353	3.382	3.197	_	_	—	_
TiPb_{10}	3.579	3.454	3.436	3.309	3.258	3.397	3.204	3.247
VPb ₁₀	3.538	3.448	3.395	3.249	3.115	3.213	3.167	3.204
CrPb_{10}	3.538	3.421	3.355	3.225	3.094	3.184	3.135	3.178
CuPb_{10}	3.469	3.395	3.377	3.203	3.033	3.189	3.145	3.154
$PdPb_{10}$	3.491	3.408	3.400	3.199	3.040	3.185	3.158	3.150

表 2 列出了 Pb₁₀和 MPb₁₀(M = Ti ,V ,Cr ,Cu ,Pd) 四种结构的结合能(E_b)最高占据轨道(highest occupied molecular orbital ,HOMO)能与最低未被占据 轨道(lowest unoccupied molecular orbital , LUMO)能之 间的能隙(E_g).结合能是组成分子的各原子能量之 和减去分子总能量,它反映了各同分异构体的热力 学稳定性.由表中数据可以看出,对 Pb_{10} 和 MPb_{10} (M= Ti ,V ,Cr ,Cu ,Pd)团簇,在四种结构中 D_{4d} 结构的 结合能最大,所以 D_{4d} 结构是 Pb_{10} 和 MPb_{10} 的基态几 何结构.并且 D_{4d} 结构 MPb_{10} 团簇的能隙比其他三种

表 2 Pb ₁₀ 和 MPb_{10} 的结合能和能隙									
结构 —		$E_{ m b}/{ m eV}$				$E_{\rm g}/{ m eV}$			
	D_{4d}	D_{4h}	D_{5d}	D_{5h}	D_{4d}	D_{4h}	D_{5d}	D_{5h}	
Pb_{10}	20.12	18.03	17.85	17.24	0.33	0.35	0.03	0.23	
$\mathrm{Ti}\mathrm{Pb}_{10}$	23.57	22.37	22.99	21.69	0.72	0.03	0.34	0.11	
VPb_{10}	23.28	22.57	22.69	21.97	0.59	0.16	0.03	0.16	
CrPb_{10}	22.00	20.19	19.67	19.55	1.13	0.33	0.18	0.36	
CuPb_{10}	22.54	20.94	20.91	20.78	0.20	0.06	0.02	0.02	
PdPb_{10}	23.43	21.94	21.90	21.93	0.88	0.36	0.30	0.28	

结构都大,说明基态团簇也具有较高的化学稳 定性.

3.2. 电子结构和磁性

磁性计算结果表明,于基态 TiPb₁₀,VPb₁₀, CuPb₁₀,团簇总磁矩分别为 2 μ_{B} ,1 μ_{B} 和 1 μ_{B} ;而基态 CrPb₁₀和 PdPb₁₀,团簇及其各原子磁矩均为零;其中 VPb₁₀团簇的结构有些扭曲,但在 0.3Å 的误差范围内保持着 D_{4d} 结构.图 2 标出了 MPb_{10} (M = Ti N, Cu)团簇中各原子自旋布居数.由图可以看出,TiPb₁₀ 团簇磁性主要来源于中心的 Ti 原子,其磁矩为 1.68 μ_{B} ,Ti 原子与周围的 Pb 原子之间存在着弱的铁磁相互作用;VPb₁₀团簇中,N 原子运周围的 Pb 原子之间 防有弱的铁磁相互作用又有弱的反铁磁相互作用; 在 CuPb₁₀团簇中,Cu 原子提供的磁矩仅为 0.04 μ_{B} , 团簇的磁性主要来源于 10 个 Pb 原子,Cu 原子与周 围的 Pb 原子之间存在着铁磁相互作用.此外,Ti,V, Cu 原子掺入 Pb₁₀笼中后,其磁矩有明显的下降.以 V 原子为例,根据洪特定则,V 原子有 3 个未配对电 子,磁矩为 3 μ_B .当 V 原子内掺到 Pb₁₀笼中后,磁矩 下降到 1.09 μ_B .为了进一步了解 *M* Pb₁₀(*M* = Ti,V, Cu)团簇的磁性,表 3 列出了内掺 *M* 原子 3d *A*s 和 4p 轨道上的有效电荷和磁矩.从表中可以发现,V 原子的磁矩主要是由 3d 轨道提供的 *A*s 和 4p 轨道 贡献很少.对于独立的 V 原子,其价电子结构为 3d³4s²,而在 VPb₁₀团簇中 V 原子的 4s 轨道失去电 子,同时 3d 和 4p 轨道都得到电子,也就是说在 V 原 子中存在着内部电子从 4s 到 3d 和 4p 的转移.Ti 原 子和 Cu 原子中也存在着类似的现象.

图 2 基态 MPb10(M = Ti, V, Cu) 团簇中各原子自旋布居数

表 3	基态 MPb ₁₀ (M = Ti V	Cu)团簇中	M 原子 3	d As和4	p 轨道上的有效电	荷和磁矩
-----	------------------------	----------	--------	--------	--------	-----------	------

结构		电荷/e			磁矩/ _{µB}	
	3d	4s	4p	3d	4s	4p
TiPb ₁₀	2.64	0.39	0.31	1.58	0.04	0.08
VPb_{10}	3.70	0.42	0.37	1.05	0.02	0.04
CuPb ₁₀	9.74	0.64	0.55	0.05	- 0.01	- 0.01

图 3 给出了基态 $MPb_{10}(M = Ti , V , Cu) 团簇中 M$ 原子 s p和 d 轨道以及 Pb_{10} 的局部态密度图.态密度 图是通过离散能级的高斯展开获得.取 HOMO 为费米 能级,并规定该位置为能量零点.从图中可以看出,在 能量为 – 0.1 到 0 hartree 和 – 0.35 到 – 0.25 hartree(1 hartree = 110.5 × 10⁻²¹ J 处 *M* 原子的 s_.p 和 d 轨道有 明显的峰值,并且与 Pb₁₀峰对应,说明 *M* 原子轨道与 周围的 10 个 Pb 原子轨道存在着轨道混合.

图 3 基态 MPb10(M = Ti, V, Cu)团簇中 M 原子 s p 和 d 轨道以及 Pb10的局部态密度

4.结 论

本文采用密度泛函理论方法,优化了 $MPb_{10}(M)$ = Ti ,V ,Cr ,Cu ,Pd)四种同分异构体的几何结构,其 中 D_{4d} 结构的结合能最大,为 MPb_{10} 的基态几何结 构,且其能隙比其他三种结构都大,说明 D_{4d} 结构具 有较高的化学稳定性.

图 4 形象地展示了基态 *M*Pb₁₀(*M* = Ti, V, Cr, Cu, Pd)团簇的能隙和分子总磁矩随掺杂不同过渡 金属原子的变化情况.由此可见,通过内掺不同过渡 金属可以对 Pb₁₀团簇的化学活性和磁性进行调制. 磁性计算结果表明:基态 TiPb₁₀,VPb₁₀,CuPb₁₀团簇总 磁矩分别为 2 μ_B ,1 μ_B 和 1 μ_B ,而 CrPb₁₀和 PdPb₁₀团 簇及其各原子磁矩均为零.TiPb₁₀团簇磁性主要来源 于中心的 Ti 原子,Ti 原子与周围的 Pb 原子之间存 在着弱的铁磁相互作用;VPb₁₀团簇中心的 V 原子是 团簇磁矩的主要来源,V 原子与周围的 Pb 原子之间 既有弱的铁磁相互作用又有弱的反铁磁相互作用; CuPb₁₀团簇的磁性主要来源于 10 个 Pb 原子,Cu 原 子与周围的 Pb 原子之间存在着铁磁相互作用.

图 4 基态 MPb10 团簇的能隙和分子总磁矩

- [1] King R B, Silaghi-Dumitrescu I, Lupan A 2005 Inorg. Chem. 44 3579
- [2] Janssens E , Gruene P , Meijer G , Wöste L , Lievens P , Fielicke A 2007 Phys. Rev. Lett. 99 063401
- [3] Kroto H W, Heath J R, O 'Brien S C, Curl F R, Smalley R E 1985 Nature 318 162
- [4] Kumar V , Kawazoe Y 2001 Phys. Rev. Lett. 87 45503
- [5] Kumar V , Majumder C , Kawazoe Y 2002 Chem. Phys. Lett. 363 319
- [6] Kumar V , Kawazoe Y 2002 Phys. Rev. Lett. 88 235504
- [7] Kumar V , Kawazoe Y 2002 Appl . Phys . Lett . 80 859
- [8] Kumar V , Kawazoe Y 2003 Appl . Phys . Lett . 83 2677
- [9] Bloomfield L A, Deng J, Zhang H, Emmert J W 2000 Proc. Int. Symp. Cluster. Nanostruct. Interfaces 131
- [10] Deng K M , Yang J L , Xiao C Y , Wang K L 1996 Phys. Rev. B 54 11907
- [11] Xiao C Y , Yang J L , Deng K M , Wang K L 1997 Phys. Rev. B 55 3677
- [12] Yang J L , Toigo F , Wang K L , Zhang M H 1994 Phys. Rev. B 50 7173
- [13] Ohara M, Koyasu K, Nakajima A, Kaya K 2003 Chem. Phys. Lett. 371 490

- [14] Goicoechea J M , Sevov S C 2005 J. Am. Chem. Soc. 127 7676
- [15] Kumar V , Singh A , Kawazoe Y 2004 Nano Lett . 4 677
- [16] Khanna S , Rao B , Jena P 2002 Phys . Rev . Lett . 89 16803
- [17] Kumar V 2006 Computational Materials Science 36 1
- [19] Miyazaki T , Hiura H , Kanayama T 2002 Phys . Rev . B 66 121403
- [20] Hagelberg F , Xiao C , Lester W 2003 Phys. Rev. B 67 035426
- [21] Cui L F , Huang X , Wang L M , Zubarev D Y , Boldyrev A I , Li J , Wang L S 2006 J. Am. Chem. Soc. 128 8390
- [22] Cui L F , Huang X , Wang L M , Li J , Wang L S 2006 J. Phys. Chem. A 110 10169
- [23] Spiekermann A, Hoffmann S D, Fössler T F 2006 Angew. Chem. Int. Ed. 45 3459
- [24] San D 1996 Dmol. Biosym. Technologies CA
- [25] Tan C L , Cai W , Tian X H 2006 Chin . Phys. 15 2718
- [26] Chen X, Lu G L, Tang C M, Deng K M, Tan W S 2007 Acta Phys. Sin. 56 5216 (in Chinese)[陈 宣、卢功利、唐春梅、邓 开明、谭伟石 2007 物理学报 56 5216]
- [27] Becke A D 1988 J. Am. Chem. Phys. 88 1053
- [28] Perdew J P , Wang Y 1992 Phys. Rev. B 45 13244
- [29] Kohn W , Sham L J 1965 Phys. Rev. A 140 1133

Yang Jian Wang Ni-Ying Zhu Dong-Jiu Chen Xuan Deng Kai-Ming[†] Xiao Chuan-Yun[‡]

(Department of Applied Physics , Nanjing University of Science and Technology , Nanjing 210094 , China)

(Received 15 September 2008; revised manuscript received 17 October 2008)

Abstract

The geometric and magnetic properties of MPb_{10} (M = Ti, V, Cr, Cu, Pd) clusters with four probable isomers have been studied using the generalized grandient approximation based on density functional theory. It was found that the D_{4d} structures of MPb_{10} (M = Ti, V, Cr, Cu, Pd) have the highest binding energy and largest energy gaps among the four possible isomers, indicating that the D_{4d} structure is the ground statess of MPb_{10} cluster with high kinetical stability. The magnetism study shows that the ground states of $TiPb_{10}$, VPb_{10} and $CuPb_{10}$ clusters have 2 μ_B , 1 μ_B and 1 μ_B magnetic moments, respectively. For M = Ti and Cu, the magnetic ordering of MPb_{10} clusters is in a weak ferromagnetic arrangement between M and Pb atoms , while there is both weak ferromagnetic and weak antiferromagnetic arrangements between Cu and Pb atoms for the CuPb₁₀ clusters. On the other hand, there is no magnetic moment in the CrPb₁₀ and PdPb₁₀ clusters. Thus, the magnetic properties of MPb_{10} clusters could be tuned by doping different transition metal atoms into Pb₁₀ cage.

Keywords : geometric structure , magnetism , density functional claculations PACC : 3640B , 7500 , 7115M

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 10174039) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2002099).

[†] Corresponding author. E-mail: kmdeng@mail.njust.edu.cn

[‡] Corresponding author. E-mail : chuanyunx@yahoo.com