单相 ABO, 型多铁材料的磁电耦合及磁电性质研究*

仲崇贵^{1,2}^{)†} 蒋 青² 方靖淮¹ 莴存矸³

1)(南通大学理学院,南通 226007)
 2)(苏州大学物理科学与技术学院,苏州 215006)
 3)(南通大学化学化工学院,南通 226007)
 (2008年6月7日收到 2008年11月8日收到修改稿)

实验发现多铁性钙钛矿物质 YMnO₃ 和 BiMnO₃ 在接近磁有序相变温度时,其介电常数和正切损失会出现异常, 这些现象说明在物质的磁性和介电性质之间存在耦合.通过对系统磁性和铁电性之间可能磁电耦合方式的分析, 考虑在系统哈密顿量中加入与自旋关联和极化相关的耦合项,对铁电子系统应用软模理论,对磁性运用基于海森 伯模型的量子平均场近似,研究了外磁场诱导的极化、介电的变化和外电场诱导的磁化的变化等,并将以上结果与 实验进行了比较和分析,较为合理地解释了一些多铁钙钛矿物质中的磁电现象.

关键词:多铁,磁电耦合,铁电,铁磁 PACC:7510J,7550E,7780

1.引 言

多铁性材料是指同时具有铁电、铁磁等多种有 序共存的材料,它不但具备单一铁性(如铁电性、铁 磁性,铁弹性)性质,而且通过多铁性的耦合作用,具 有一些新的物理效应,大大拓宽了铁性材料的应用 范围.在多铁材料中,磁电材料就是其中一类最典型 的代表,这种材料不仅具有铁电、铁磁的性质,而且 还具有由于磁电耦合作用导致的一种新颖的物理性 质——磁电效应.由于磁电作用在下一代多功能微 型存储器件等方面可能的应用,近年来引起了非常 广泛的关注^[1-4].

磁电效应最早是上世纪 60 年代在低温反铁磁 Cr₂O₃ 单晶^[5,6]中观察到的,随后发现其他单晶体如 BiFeO₃^[7]和 BaMnF₄^[8]等也存在磁电效应.自从磁电 现象发现以来 科学家们对铁电磁体的兴趣就一直 没有中断过.在早期的研究中,Landau 和 Lifshiz^[9]从 理论上指出在系统的自由能中应该存在外电场和外 磁场的耦合项 $\alpha_{ij}E_iH_j$,这里 E 和 H 分别表示外电场 和磁场.其后 Hommeich ,Shtrikman 和 Rado^[10,11]又考 虑了单离子各向异性、反对称交换、朗德因子、海森 伯交换等作用在外场下的变化,并运用统计理论解 释相关实验现象.

近年来,随着掺杂LaMnO3 在其磁相变点附近 巨磁电阻现象的发现[12],以及研究人员在铁电磁 YMnO3, BiMnO3, SeCuO3和 TeCuO3等材料中观察到的 由铁电-反铁磁 FE-AFM)或铁电-铁磁 FE-FM)耦合 而导致的介电和正切损失的反常¹³⁻¹⁵进一步肯定 了磁电(ME)耦合的重要影响,文献 16,17 对多铁 材料功能的预测 则将多铁的研究又推向了巅峰 特 别是在寻找具有较大磁电效应的复合材料方面,虽 然单相材料作用较弱,但是在不同单相材料中的耦 合机理和相互作用形式仍然是一个极具争议的论 题.Katsufuji 等人^[18]发现多铁材料介电和磁性性质 的变化与磁性离子的最近邻自旋关联密切相关,而 Wang 等人^[19]也在理论上从耦合系统的能量角度验 证了耦合能与近邻电子自旋关联的相关,通过第一 性计算全面研究了铽锰氧化合物的晶体结构和电、 磁学性质 揭示出了这种材料中磁、电共存和巨磁电 效应的奥秘.因此这里我们考虑在系统哈密顿量中 加入耦合 $g \sum_{k,i,j} q_k^2 s_i \cdot s_j$ 的形式来研究 ABO_3 型

^{*} 国家自然科学基金(批准号:60571055,50832002), 江苏省自然科学基金(批准号:BK2006047),江苏省高校自然科学基金(批准号: 05KJB140108)资助的课题和薄膜材料江苏省重点实验室开放课题。

[†] 通讯联系人.E-mail:chgzhong@ntu.edu.cn

同构单相磁电材料的磁电性质。

2. 模型和分析

考虑带有周期性边界条件的三维立方铁电磁 ABO_3 型结构,假设在每个格点上同时存在两个参量,即描述铁电极化的位移算符 q_i 和描述磁有序的 海森伯自旋算符 s_i .考虑电性系统和磁性系统之间 的耦合关系,根据 Alcanctara, Gehring和 Jansser^[20,21] 的模型,系统的哈密顿量可以写成如下形式:

 $H = H^{e} + H^{m} + H^{me}$, (1) 其中 H^{e} , H^{m} 分别表示电性系统和磁性系统的哈密 顿量,而 H^{me} 则描述两个子系统间的耦合相互作用. 存在外电场时, H^{e} 可写成以下的形式:

$$H^{e} = \sum_{l} \left[\frac{P_{l}^{2}}{2m} + V(q_{l}) \right] - \frac{1}{2} \sum_{ll'} v_{ll'} q_{l} q_{l'} - \sum_{l} Eq_{l} ,$$
(2)

其中 P_l 和 q_l 分别表示在第 l 个格点上粒子的动量 和位移. $V(q_l)$ 是局域势函数, $\frac{1}{2}\sum_{u'} v_{u'}q_lq_r$ 表示两体 相互作用势, $v_{u'}$ 表示相互作用势的耦合参数. 我们 用最简单的形式来描述在 l 格点上的局域势, 即 $V(q_l) = \frac{1}{2} m \omega_0^2 q_l^2 + \frac{1}{4} \gamma q_l^4$, 即 H^e 描述了存在非谐势 的简谐振子的振动. 其中 ω_0 是振子的固有频率, $\frac{1}{2} m \omega_0^2 q_l^2$ 是简谐项, $\frac{1}{4} \gamma q_l^4$ 是非谐项.

B 离子自旋相互作用来源于 *B* 离子自旋间通 过 0 离子的超交换作用实现.这个超交换作用的大 小实际上与晶格振动激发的声子膜有关,假设只考 虑最近邻作用,那么与电子自旋相关的磁性系统及 耦合 作 用 的 哈 密 顿 量 可 用 海 森 伯 模 型 *H* = $\sum_{i,j} J_{ij}(q_{l})s_{i} \cdot s_{j}$ 来表示^[19],由于磁性诱导的晶格 变形使得格点偏离平衡位置的位移 q_{l} 非常小,这样 展开交换作用系数到二级项,不难得到

$$H^{\mathrm{m+me}} = \sum_{i,j} J_{ij}(0) \mathbf{s}_{i} \cdot \mathbf{s}_{j} + \sum_{i,j} \sum_{l} \frac{\partial J_{ij}}{\partial q_{l}} q_{l} \mathbf{s}_{i} \cdot \mathbf{s}_{j}$$
$$+ \sum_{i,j} \sum_{kl} \frac{\partial^{2} J_{ij}}{\partial q_{k} \partial q_{l}} q_{k} q_{l} \mathbf{s}_{i} \cdot \mathbf{s}_{j}.$$
(3)

式中第一项表示基态的电子自旋相互作用,其交换 作用系数与位移算符 q_l 无关;而考虑到一般情况 下,在铁电磁 ABO₃ 型结构中自旋算符的空间反演 对称以及与电极化相关的位移算符的空间反演对称 破缺,可见自旋关联与极化算符的一次耦合项必定 为零,而二次耦合项必定不等于零,即第三项一定存 在.在下面对耦合项的描述中我们假设其耦合系数 为常数.

根据上面的讨论,对磁性系统假如考虑到次近 邻作用,则其哈密顿量可写为

$$H^{m} = \sum_{i,j} J_{1} s_{i} \cdot s_{j} + \sum_{[i,j]} J_{2} s_{i} \cdot s_{j} - \sum_{i} h \cdot s_{i} ,$$

$$(4)$$

其中 $i_{,j}$ 和 $i_{,j}$ 分别表示对最近邻和次近邻的一次性求和 J_1 和 J_2 分别表示最近邻和次近邻的交换积分 h 是沿自旋有序 z 方向的外磁场.

至于磁电耦合作用 ,考虑 q_i 的两次方项与自旋 关联的耦合 ,其哈密顿量为

$$H^{\rm me} = -g \sum_{l} \sum_{i,j} q_l^2 \boldsymbol{s}_i \cdot \boldsymbol{s}_j , \qquad (5)$$

其中 g 是磁电耦合系数. *i j* 就表示给定格点 *l* 周 围最近邻的格点对.

在平均场近似下,在电性系统中考虑包括磁电 耦合的单个离子的哈密顿量可以写成如下形式:

$$H_{l}^{E} = H_{l}^{e} + H_{l}^{me}$$

$$= \frac{P_{l}^{2}}{2m} + \frac{1}{2}m\omega_{0}^{2}(g)q_{l}^{2} + \frac{1}{4}\gamma q_{l}^{4}$$

$$- \sum_{l'} v_{ll'} q_{l} - Eq_{l} , \qquad (6)$$

其中

$$\omega_0(g) = \sqrt{\omega_0^2 - \frac{2g}{m} \sum_{i,j} s_i \cdot s_j}$$

这样磁性对铁电系统的作用可通过 ω₀(g)体现 出来 ,由软模理论 ,容易得到

 $(m\omega_0^2(g) + 3\gamma\sigma_l + \gamma q_l^2)q_l = \sum_{r} v_{lr} q_r + E,$ $(m\omega_0^2(g) + 3\gamma(\sigma_l + q_l^2))\sigma_l = k_BT,$ (7) 其中 k_B 和 T 是玻尔兹曼常量和热力学温度 σ_l 是 离子位移涨落 ,定义为 $\sigma_l = q_l - q_l^2$, E 是平行 于电极化的外电场.同样,软模频率可定义为

 $m\omega_{k}^{2}(g) = m\omega_{0}^{2}(g) + 3\gamma(\sigma_{l} + q_{l}^{2}) - v_{k} (8)$ 其中 $v_{k} = \sum_{l} \exp[-ik \cdot (R_{l} - R_{l})]$ 是波矢为 k 时 的相互作用势.对于铁电体 *ABO*₃,软声子模是在布 里渊中心(k = 0).因此,软声子模的频率可以写成

 $m\omega_{k=0}^{2}(g) = m\omega_{k=0}^{2}(0)(1 - \alpha s_{i} \cdot s_{j}), (9)$ 这里

$$\alpha = \frac{2z_2 g}{m\omega_{k=0}^2(0)} = \frac{2z_2 g}{m\omega_0^2(g) + 3\gamma(\sigma_l + q_l^2) - v_{k=0}}.$$

 $\omega_{k=0}(0)$ 是在不考虑耦合作用时的软声子模频率,而且在温度很低的情况下几乎不受温度的影响. $z_2 = 12$ 是直接作用于 A 位离子的自旋关联对数.则静态极化率系数可以由下式给出:

$$\chi(g) = \frac{1}{m\omega_{k=0}^{2}(0)} (1 + \alpha \mathbf{s}_{i} \cdot \mathbf{s}_{j} + \alpha^{2} \mathbf{s}_{i} \cdot \mathbf{s}_{j}^{2} + \dots)$$

 $\approx \chi(0)(1 + \alpha s_i \cdot s_j),$ (10) 这里 $\chi(0)$ 是不存在自旋关联作用下的静态极化率 系数.事实上,假如忽略 *ABO*₃ 中自旋高次方项的作 用 相对介电常数 ε 可以由(10)式得出如下:

 $\epsilon(g) = \epsilon(0)(1 + \beta s_i \cdot s_j), \quad (11)$ 其中

$$\varepsilon(0) = 1 + \chi(0), \quad \beta = \frac{\chi(0)}{1 + \chi(0)} \alpha.$$

综合以上分析,我们可以推断 ɛ(g)的理论形式 与从实验数据上拟合的形式^[18]很相符.它说明了极 化和自旋关联之间的耦合来自于自旋涨落与软声子 膜频率的耦合.也就是说,自旋关联扰动光学声子频 率,从而影响着介电常数.为了研究在不同磁场下介 电常数的变化,我们接着考虑耦合系统的自旋关联.

对于磁性系统,包括磁电耦合的磁性哈密顿量 可以写成如下形式:

$$H^{\mathrm{M}} = H^{\mathrm{m}} + H^{\mathrm{me}} = \sum_{i,j} \left(J_{1} - g \sum_{l} q_{l}^{2} \right) \mathbf{s}_{i} \cdot \mathbf{s}_{j}$$
$$+ \sum_{i,j} J_{2} \mathbf{s}_{i} \cdot \mathbf{s}_{j} - \sum_{i} \mathbf{h} \cdot \mathbf{s}_{i} , \qquad (12)$$

利用量子平均场理论 ,单离子哈密顿量可写为

 $H_i^{M} = -H_i^{x_s^{x}} - H_i^{x}(h)s_i^{z}$, (13) 其中 $H_i^{x}(v = x, z)$ 是作用在两子晶格(a 和 b)不同 方向上的有效磁场 ,x ,z 表示是自旋组分:

$$H_{i}^{x} = -z_{1} (J_{1} - z_{3}g q_{l}^{2}) s_{j}^{x} - z_{2}J_{2} s_{i}^{x} ,$$

$$H_{i}^{z}(h) = h - z_{1} (J_{1} - z_{3}g q_{l}^{2}) s_{j}^{z} - z_{2}J_{2} s_{i}^{z} ,$$

(14)

这里 $i_{,j} = a_{,j} = 6_{,z_1} = 6_{,z_2} = 12_{,j}$ 为最近邻和次近邻 的配位数 $z_{,z_3} = 4$ 是直接影响自旋关联配对的 A 位 离子数目.根据量子统计理论 ,自旋的热力学平均值 s^{*} 可通过下式计算获得:

$$s^{v} = -k_{\rm B}T \frac{\partial}{\partial (-H_{i}^{v})} \times \ln \operatorname{Trexp}\left(-\frac{H_{i}^{v}}{k_{\rm B}T}\right) ,$$
(15)

从而在不同外加磁场 h 下磁化 s^{*} 和温度 T 的理 论关系可表示为

$$s^{z} = \frac{H_{i}^{z}(h)}{H_{i}}$$

$$\times \frac{4 \sinh(2H_i/k_{\rm B}T) + 2 \sinh(H_i/k_{\rm B}T)}{2 \cosh(2H_i/k_{\rm B}T) + 2 \cosh(H_i/k_{\rm B}T) + 1}, \quad (16)$$

其中 $H_i = \sqrt{(H_i^x)^2 + (H_i^x(h))^2}$. 在下面的自恰计算 中 根据平均场近似 最近邻格点的自旋关联可以退 耦如下: $s_i \cdot s_j = s_i^x - s_j^x + s_i^z - s_j^z$.

3. 结果与讨论

使用(7)(15)和(16)式等,我们可以研究同构 立方钙钛矿系统的磁电性质.相关物理量的热力学 平均值随温度,外磁场、外电场变化可以通过对上面 这些公式进行数值求解获得.考虑到实际多铁系统 中,磁性有序相变温度远低于铁电相变温度,结合相 关实验结果,这里我们用于数值计算的参数为:磁相 互作用 $J_1 = 0.25k_{\rm B}$ K, $J_2 = -0.10k_{\rm B}$ K;电性系统 $mo_0^2 = 1.0 \times 10^{-23}$ Jcm⁴/mC², $\gamma = 5.5 \times 10^{-23}$ Jcm⁴/mC², $v = 1.5 \times 10^{-23}$ Jcm⁴/mC²;而对于 FE-AFM 磁电 系统耦合系数 g = -0.05.

图 1(a)和(b)给出了 FE-AFM 系统中,当磁场 h = 0.8, 12 T 时的极化 q 和介电常量 ϵ 随着温度的 变化.从图 1(a)中,可以发现极化 q 随着温度的增 加而减小.这是由于温度的增大使得电极化有序逐 渐变成无序.然而,对于不同的磁场,它不仅改变反 铁磁相变温度 T_N ,而且在相变温度下铁电极化 q的值也发生较大改变 ,可见这是由于磁电耦合作用 的结果.同样不难发现在曲线 ε-k_BT 上(图 1(b))一 个明显的特征是在 T_N 附近出现异常.不加外场时, 在低于反铁磁有序温度 T_N 时介电常数 ϵ 急剧下 降 而在 T_N 时异常表现最为明显,这跟在 YMnO₃, ScMnO₃ 等铁电磁材料中观察到的现象一致^[13,22],是 由于本征固有的磁电耦合导致软模频率的显著增加 的结果,由(9)式可以推断固有反铁磁关联导致软声 子模频率变大从而抑制了介电常数,但是,当外加足 以产生铁磁有序的高磁场时 磁有序增强 软声子模 软化而使得介电常量增大,这与量子顺电反铁磁耦 合系统的情况类似[18],但是与铁电-铁磁耦合系统 相反[23].

为了从另一侧面说明外磁场对极化和介电常数 的影响 在图 2 中我们给出了 FE-AFM 耦合系统和 同构的 FE-FM 耦合系统中的极化、介电响应随外磁 场的变化.考察在磁有序相变温度附近 相对较低的

图 1 (a) 极化 q_l 和(b) 介电常数 ε 在不同的磁场下随温度的 变化

磁场引起的极化和介电响应的变化 这里定义 $\Delta q =$ q(h) - q(h=0),介电响应为 $1 - \epsilon(h)/\epsilon(h=0)$.图 χ_a)给出两同构系统中的外磁场诱导的极化变化, 而图 χ b 则是同条件下介电响应随磁场的变化.我 们发现对于 FE-FM 耦合系统 ,在铁磁相变温度附 近 系统的外磁场诱导的极化 △q 和介电响应随着 外磁场 h 的增加出现急剧的变化,而对于同构的 FE-AFM 耦合系统在磁相变温度附近极化和介电响 应的变化都很平缓,这与铜酸盐钙钛矿 SeCuO₄(属 于 FE-FM 耦合)、TeCuO₃(属于 FE-AFM 耦合)和锰掺 杂 BiFeO, 的实验结果^[18,24]及朗道唯像论解释^[14]相 一致,这是因为在 FE-FM 耦合的系统中,当温度处 于相变温度附近时,由于外磁场能使自旋快速翻转, 表现为磁化对外磁场的依赖是强烈非线性的 磁关 联作用增强,从而系统极化变化明显,而在 FE-AFM 耦合系统中 这个依赖基本上是线性依赖关系,当然 当磁场较大时,两系统的磁场依赖关系趋于一致,这 也可以从下面两幅图中看到.

图 3(a) 表示在 FE-AFM 耦合系统和 FE-FM 耦合

图 2 表示在磁有序相变温度 $T_{N}(T_{C})$ 时 (a)磁场诱导的极化 Δq (b)介电响应随外加磁场的变化曲线

系统中磁化随外磁场变化而变化的曲线,在相变温 度附近 FE-FM 耦合系统中的磁化 💰 和磁场强度 呈非线性关系 磁场强度接近于零时 💰 变化迅速 , 说明磁有序随着外磁场方向的变化其有序方向也跟 着迅速变化 很小的外加磁场即能实现自旋方向的 反转,而在磁场很大时自旋同向趋于饱和因而 🦻 变化变得平缓,幅度不大,而在 FE-AFM 系统中,温 度接近于 T_N时,磁化 s^{*} 随磁场变化几乎是线性 的 这是由于一旦外加磁场 所有电子自旋将倾向于 沿与磁场垂直的方向上排列,且两子晶格自旋方向 相反.随着外磁场的变大,自旋逐渐向磁场方向翻 转^{14,18,23},所以沿磁场方向上的磁化基本呈线性增 加.同样在图 3(b)中我们给出了在两同构系统中, 电场诱导的磁化的变化.这里我们给出的是子晶格 的磁化大小.可见子晶格磁化 💰 的大小随外加电 场的变化在两同构体系中是一致的,由于外电场的 增加,诱导的磁化非线性的增加,当电场增加到一定 程度时,磁化接近饱和,而当电场反向时,磁化则反 向增加,可见电场的作用相当于磁场,不仅能诱导产 生磁化 而且也能实现自旋的翻转 事实上电场诱导

图 3 在磁相变温度附近,同构磁电体中的磁化 s^z 随(a)磁 场、(b)电场的变化

的自旋翻转在许多多铁材料中已经能实现,如 FeTiO₃,BiFeO₃等以及自旋非共性的YMn₂O₅.但在 一些复杂磁结构材料中,电场对自旋的作用不仅通 过自旋关联与声子软膜的耦合,还应该考虑 D-M 反 对称交换作用^[25,26].当然在 FE-AFM 耦合系统中,电 场诱导的自旋取向在两子晶格中仍然是反向排列.

4.结 论

本 文 中,通 过 考 虑 磁 电 耦 合 作 用 形 式 $g \sum_{k=i,j} q_k^2 s_i \cdot s_j$,结合软模理论和平均场近似,我 们研究了不同磁场作用下极化,介电常数随温度的 变化、磁性相变温度附近外磁场对极化和介电响应 的作用以及电场对磁化的影响.结果发现在磁相变 温度附近 磁场通过耦合导致极化和介电常数 。发 生相当大的变化,这种变化与同构的铁电铁磁(FE-FM)耦合系统中磁场导致的极化和介电常数的变化 趋势相反,即在 FE-FM 耦合系统中 极化 q 和介电 响应随着外磁场 h 的增加出现急剧的变化,而对于 同构的 FE-AFM 耦合系统,在反铁磁相变温度附近 极化和介电响应的变化却都很平缓,且磁场抑制系 统极化.在研究磁场对磁化和电场对磁化的作用时, 发现在两个同构系统中 磁场诱导的磁化因为自旋 平行或反平行的不同出现线性和非线性增加,最后 到达饱和 而电场诱导的磁化在两同构系统中均为 非线性增加 最后达到饱和 但是在 FE-AFM 耦合系 统中 电场诱导的自旋取向在两子晶格中仍是反铁 磁排列取向,我们的理论结果与实验结果一致,

- [1] Eerenstein W , Mathur N D , Scott J F 2006 Nature 442 759
- [2] Spaldin N A , Fiebig M 2005 Science **309** 391
- [3] Ramesh R , Spaldin N A 2007 Nature Mater. 6 21
- [4] Cheong S W , Mostovoy M 2007 Nature Mater . 6 13
- [5] Folen V J, Rado G T, Stalder E W 1961 Phys. Rev. Lett. 6 607
- [6] Rado G T , Folen V J 1961 Phys. Rev. Lett. 7 310
- [7] Kubel F , Schmid H 1990 Acta Crystallogr . B 46 698
- [8] Scott J F 1977 Phys. Rev. B 16 2329
- [9] Landau L D, Lifshitz E M 1960 Electrodynamics of Continuous Media (Reading, MA: Addison-Wesley)
- [10] Hornreich R M , Shtrikman S 1967 Phys. Rev. 161 506
- [11] Rado G T 1965 Phys. Rev. 128 2546
- [12] Fontcuberta J, Martínez B, Seffar A, Piñol S, García-Muñoz J L, Obradors X 1996 Phys. Rev. Lett. 76 1122
- [13] Huang Z J, Cao Y, Sun Y Y, Xue Y Y, Chu C W 1997 Phys. Rev. B 56 2623
- [14] Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y 2003 Phys. Rev. B 67 180401

- [15] Lawes G, Ramirez A P, Varma C M, Subramanian M A 2003 Phys. Rev. Lett. 91 257208
- [16] Zhou J P, Shi Z, Liu G, He H C, Nan C W 2006 Acta Phys. Sin.
 55 3766 (in Chinese) [周剑平、施 展、刘 刚、何泓材、南
 策文 2006 物理学报 55 3766]
- [17] Zhang Y, Deng C Y, Ma J, Lin Y H, Nan C W 2008 Chin. Phys.
 B 17 3910
- [18] Katsufuji T , Takagi H 2001 Phys. Rev. B 64 054415
- [19] Wang C , Guo G C , He L X 2007 Phys Rev Lett 99 177202
- [20] Alcantara O F , Gehring G A 1980 Advances in Physics 29 731
- [21] Janssen T, Tjion J A 1981 Phys. Rev. B 24 2245
- [22] Tomuta D G , Ramakrisha S dag , Nieuwenhugs G J , Mydosh J A , 2001 Preprint cond-mat/0103609
- [23] Zhong C G , Fang J H , Jiang Q 2004 J. Phys. : Condens. Matter. 16 9059
- [24] Yang C H , Koo T Y , Jeong Y H 2005 Solid State Commun. 134 299

[26] Radaelli P G , Chapon L C , Daoud-Aladine A , Vecchini C , Brown

Magnetoelectric coupling and magnetoelectric properties of single-phase *ABO*₃ type multiferroic materials *

Zhong Chong-Gui^{1,2,)†} Jiang Qing²) Fang Jing-Huai¹) Ge Cun-Wang³)

1) (School of Sciences, Nantong University, Nantong 226007, China)

2)(School of Physical Sciences and Technology, Suzhou University, Suzhou 215006, China)

3) (School of Chemistry and Chemical Engineering, Nantong University, Nantong 226007, China)

(Received 7 June 2008; revised manuscript received 8 November 2008)

Abstract

The anomalies in both the dielectric constant and loss tangent occur at fixed temperature close to the magnetic ordering transition , which have been observed experimentally in multiferroic pervoskite YMnO₃ and BiMnO₃ , indicating coupling between the magnetism and dielectric properties. In this paper , by analyzing the magnetoelectric coupling between magnetic and ferroelectric subsystems , an appropriate coupling term related to a combination of electric polarization and spin correlation is added to system Hamilton expression , Then apply the soft-mode theory for electric subsystem and mean-field approximation under Heisenberg model for magnetic subsystem , magnetoelectric properties have been investigated , including the change of polarization , dielectric constant induced by external magnetic field , and the change of magnetization induced by external electric field. We also make some qualitative comparison and analysis between our results and the experimented ones and give a reasonable interpretation of magnetoelectricity phenomenon in some multiferroic pervoskite materials.

Keywords : multiferroic , magnetoelectric effect , ferroelectric , magnetic PACC : 7510J , 7550E , 7780

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 60571055, 50832002), the Jiangsu Provincial Natural Science Foundation (Grant No. 05KJB140108) and Jiangsu Key Laboratory of Thin Films.

[†] Corresponding author. E-mail :chgzhong@ntu.edu.cn