SrTiO₃ (001) 表面上 Au 和 N 原子 相互作用的第一性原理研究

房 丽 敏[†] (广东第二师范学院物理系,广州 510303) (2010 年 7 月 1 日收到;2010 年 8 月 24 日收到修改稿)

采用基于密度泛函理论的第一性原理平面波赝势方法研究了 SrTiO₃(001)表面上 Au 和 N 原子间相互作用的 微观机理.通过比较分析 N 置换表面层 O 原子前后 SrTiO₃(001)表面吸附 Au 原子体系的相关能量和电子结构,发现 SrTiO₃(001)表面吸附 Au 原子和 N 替代表面层 O 原子的置换过程二者之间存在明显的"协同效应",即 N 原子 置换 SrTiO₃(001)表面层 O 原子的过程增强了相应表面吸附 Au 原子的稳定性,而 SrTiO₃(001)表面吸附 Au 原子 的出现则进一步促进了 N 原子置换表面层 O 原子的过程.

关键词:表面结构,相互作用,第一性原理 PACS:68.35.B-,34.35.+a,63.20.dk

1. 引 言

钛酸锶(SrTiO₃)材料是一种近年来应用非常广 泛的多功能电子陶瓷材料,因此关于 SrTiO,相关性 能的实验和理论研究受到了国内外学者的广泛关 注^[1-8]. 在众多氧化物催化剂中,钙钛矿型 SrTiO, 具有耐光化学腐蚀好,禁带宽度较为适合和导带电 位比金红石型 TiO, 更低的特点,因此 SrTiO, 是一种 具有极大应用前景的光催化材料^[7]. 纯 SrTiO, 本身 具有一定的光催化活性,但其较大的光学带隙 (3.25 eV)^[8]限制了其实际应用.为了进一步提高 它的光催化活性,人们参考掺杂 TiO,系列催化材料 的方法对 SrTiO,进行了系列研究,探索各种 SrTiO, 掺杂物的光催化功效及其微观机理. 最近,研究发 现N掺杂SrTiO,体系的光吸收活性扩展到可见光 区域,因此N掺杂SrTiO,材料的光催化性质和电子 结构引起了人们的广泛关注^[9-12].由于大多数光催 化性能的材料涉及到表面处理,而且光催化材料的 表面掺杂可能会影响某些材料表面的某些性质,如 SrTiO₃(001)表面吸附效应将直接导致其表面原子 结构畸变、以及电学性能和化学反应微观机理的变 化^[13-15]等. 最近,关于 N 掺杂各类金属氧化物的理 论研究表明^[16-18],N 元素的掺杂效应不仅改变了氧 化物的表面结构,并且提高了相关金属氧化物的光 催化性能.此外,实验研究发现 TiO₂ 表面吸附 Au 原 子有利于提高 N 置换原子在 TiO₂ 表面吸附 Au 原 子有利于提高 N 置换原子在 TiO₂ 表面上的稳定性, 从而提高材料内部 N 原子掺杂浓度,改进相应材料 的光催化性能^[19].因此,分析 SrTiO₃(001)表面上 Au 和 N 原子间相互作用的微观机理对于深化理解 氧化物衬底表面吸附 Au 原子或团簇的电子特性与 表面催化效应的联系及其相关光电子器件的研制 与设计具有重要的实际意义.本文采用基于密度泛 函理论的第一性原理平面波赝势方法,比较分析了 N 置换表面层 O 原子前后 SrTiO₃(001)表面吸附 Au 原子体系的电子结构和相关能量,研究发现 SrTiO₃ (001)表面吸附 Au 原子的行为和 N 原子置换表面 层 O 原子的过程之间存在明显的"协同效应".

2. 计算方法和模型

本文中所有的结构优化、相关能量和电子结构的计算都是采用基于密度泛函理论平面波赝势(plane wave pseudopotential, PWPP)方法的 CASTEP 程序包^[20].交换关联相互作用采用 PW91^[21, 22]参数 化形式的广义梯度近似(generalized gradient

©2011 中国物理学会 Chinese Physical Society

[†] E-mail:lmfang1975@163.com

图 1 N 置换 O_s(I)和 O_s(1)时吸附 Au 原子(a) TiO, 和(b) SrO 截止表面薄层的示意图

approximation, GGA)方法^[23, 24]来处理,而对于 Sr, Ti,O,Au 和 N 原子的赝势则采用 Vanderbilt 形式的 超软赝势^[25].

SrTiO₃(001)表面包括TiO₂和SrO原子层截止 的两种原子构型.我们建立了7层TiO,和SrO原子 交替组成的薄层模型(slab model)来模拟上述两种 SrTiO₃(001)表面,并且在垂直于表面方向薄层两侧 有厚度为11Å的真空层,这不仅可以满足计算结果 的收敛性而且合理地避免原子层两侧的相互作用. 我们用2×2的表面薄层模型来研究 N 原子置换表 面层 O 原子前后 SrTiO₃(001) 表面吸附 Au 原子的 行为.如图1所示,我们仅仅描绘了单层 Au 原子吸 附在 N 置换 O₂(I)和 O₂(1)原子时的表面层原子构 型,其中 Au 原子逐个排列在表面层 O 原子上方, N 置换原子(N - substitute)则分别替代表面层上的 O_{0} (I)和 O_c(1)原子. 在此基础上, 讨论分析表面吸附 Au 原子个数逐渐增加时,相关能量(包括 Au 原子 吸附能和 N 原子置换能)以及电子结构的变化 规律.

在计算过程中,平面波的截止能量设为 350 eV (25.7 Ry),它反映了基于平面波基矢各计算特性 的收敛程度^[26].整个布里渊区的积分计算采用 Monkhorst-Pack^[27]形式的特殊 k 点方法.对于 1 × 1 和 2 × 2 的表面薄层模型,所选取的 k 点数目分别为 4 × 4 × 1 和 8 × 8 × 1.通过共轭梯度法使基于平面波 基矢的体系总能达到最小值^[28].自洽场(SCF)计算 采用基于 Pulay 算法的混合密度方案^[29],并且 SCF 的容许误差设定为 1 × 10⁻⁶ eV/atom.对于所有可能 的 SrTiO₃(001)表面薄层模型都进行充分地几何结 构弛豫,不仅在原子垂直于界面方向的运动,而且 对原子的横向位移也进行几何结构优化.表面结构 弛豫完成后,当作用在每个原子上的作用力小于 0.03 eV/Å时,达到计算的收敛要求.

SrTiO₃(001)的表面能(E_s)定义为劈裂能与弛

豫能之和^[30].两个由7层SrO和TiO₂组成的Slab 模型合起来代表了7个块状原胞,当劈裂晶体时两 种构造形式的表面同时出现,因此两种构造形式的 表面的劈裂能的表达式完全相同,

$$E_{\rm s}^{\rm unrel} = \frac{1}{4} [E_{\rm siab}^{\rm unrel}({
m SrO})$$

 $+ E_{\text{slab}}^{\text{unerl}}(\text{TiO}_2) - 7E_{\text{bulk}}], \qquad (1)$

式中, $E_{\text{stab}}^{\text{unrel}}$ (SrO)和 $E_{\text{slab}}^{\text{unrel}}$ (TiO₂)分别代表SrO和TiO₂作为表面终止原子的未弛豫Slab能量, E_{bulk} 是一个块状SrTiO₃原胞的能量,因子1/4是因为在劈裂过程中产生了四个表面.接着计算每一个Slab表面的弛豫能(E_{rel}),

$$E_{\rm rel}(A) = \frac{1}{2} \left[E_{slab}(A) - E_{slab}^{unrel}(A) \right], \quad (2)$$

式中, $E_{slab}(A)$ 是一个层晶 Slab 模型弛豫后的能量, A 代表 SrO 或者 TiO₂. 最后,表面能 E_s 则表示为劈 裂能与弛豫能之和,即

 $E_{s}(A) = E_{s}^{unrel} + E_{rel}(A)$. (3) 根据(1)—(3)式所定义的表面能以及前面所设置 的各项参数,我们分别计算了由 7,9 以及 11 层 SrO 和 TiO₂ 组成 Slab 模型的表面能以校验所得结果的 收敛性. 所得相应表面能分别为 1. 36 eV/cell, 1. 40 eV/cell 和 1. 45 eV/cell (TiO₂ 截止); 1. 32 eV/cell, 1. 37 eV/cell 和 1. 43 eV/cell (SrO 截止),这表明计 算值的收敛域约为 0. 05 eV/cell. 因此,7 层原子交 替组成的 SrTiO₃(001)表面 Slab 模型足以描述其表 面性质.

3. 结果及讨论

3.1. 能量分析

Au 原子在 SrTiO₃(001) 表面上的吸附能 E_{ads}^{Au} 可表示为

$$E_{\rm ads}^{\rm Au} = \frac{1}{n} (E_{\rm Surface}^{\rm Au} - E_{\rm Surface} - nE_{\rm Au}), \qquad (4)$$

式中, $E_{Surface}^{Au}$ 和 $E_{Surface}$ 分别表示吸附和未吸附 Au 原子的表面薄层模型结构优化总能;n是表面吸附 Au 原子的个数, E_{Au} 则表示一个自由(孤立)的 Au 原子能量.

对于 N 原子的置换能, E_{sub}^{N} ,则可由下式求出:

$$E_{\text{sub}}^{\text{N}} = E_{\text{surf}}^{\text{sub}} - E_{\text{perfect}} - \frac{1}{2}E(\text{N}_2) + \frac{1}{2}E(\text{O}_2), \qquad (5)$$

式中, E_{suf}^{sub} 与 $E_{perfect}$ 分别表示 N 置换和未置换 O 原子的表面模型结构优化总能. $E(N_2)$ ($E(O_2)$)则表示 一个孤立 N₂(O₂)分子的自旋极化总能.

表1 N 原子置换表面层 O_s(1) (O_s(1))原子前后(Pure 和 N-substituted)的 Au 原子吸附能以及表面吸附 Au 原子前后(Pure 和 Au-adsorbed)的 N 原子置换能及其相应差值

SrTiO ₃ (001) 表面状态	相关能量/ (eV/atom)	TiO2 截止表面体系			SrO 截止表面体系				
		表面上吸附 Au 原子的个数							
		1	5	9	13	1	5	9	
Pure	$E_{\rm ads}^{\rm Au}$ (Pure)	1.35	1.26	1.19	1.13	1.23	1.14	1.08	
N-substituted	$E_{ m ads}^{ m Au}$ ($N_{ m Sub}$)	2.96	2.81	2.65	2.57	2.54	2.32	2.17	
$E_{\rm ads}^{\rm Au}\left(N_{\rm Sub}\right) \ - E_{\rm ads}^{\rm Au}\left({\rm Pure}\right)$		1.61	1.55	1.46	1.44	1.62	1.49	1.40	
Pure	$E_{\rm sub}^{\rm N}$ (Pure)	4.49	4.49	4.49	4.49	4.57	4.57	4.57	
Au-adsorbed	$E_{\mathrm{sub}}^{\mathrm{N}}\left(\mathrm{Au}_{\mathrm{ads}} ight)$	2.88	2.79	2.72	2.65	2.95	2.86	2.77	
$E_{\rm sub}^{\rm N}$ (Au _{ads}) $-E_{\rm sub}^{\rm N}$ (Pure)		-1.61	-1.70	-1.77	-1.84	-1.62	-1.71	-1.80	

表1列出了 N 原子置换表面层 O 原子前后的 Au 原子吸附能和 N 原子置换能. 首先, 我们注意 到:不管 N 原子是否置换 O 原子,单个 Au 原子对应 的吸附能最大,而随着表面吸附 Au 原子数量的不 断增加, Au 原子的吸附能则逐渐减小,即 SrTiO, (001) 表面对 Au 的吸附强度将随其原子数量的增 加而逐渐减弱.这种变化趋势说明,随着吸附 Au 原 子覆盖程度增大,吸附 Au 原子和表面阴离子化学 键相互作用强度很可能有所改变,这与其他氧化物 表面上吸附的金属原子^[31, 32]十分相似. 例如,对于 整个单层 Au 原子吸附在 N 置换 O_o(I)的表面结构 模型,因为只有一个Au原子和N原子直接作用,而 其他 Au 原子与表面层 O 原子对应,所以表面对单 层 Au 的整体吸附强度相对减弱;另一方面,这也恰 恰揭示了 Au 与 N 原子的相互作用强度要高于表面 层 O 原子. 此外, 吸附 Au 原子与表面不同阴离子的 优化原子间距(Au-N 原子间距为 2.06 Å, 而 Au-O 原子间距则为 2.37 Å)及 Au 原子吸附能差值(E_{ads}^{Au} $(N_{Sub}) - E_{ads}^{Au}$ (Pure))的变化趋势也证实了上述 结论.

其次,比较 N 原子置换表面层 O_s(I)(O_s(1)) 原子前后 Au 原子的吸附行为,我们发现相应 Au 原 子的吸附能量值明显增大,这说明 SrTiO₃(001)表 面出现的 N 原子显著提高了表面对 Au 原子的吸附

强度. 例如,在表1中比较 N 原子置换前后相关能 量可以看到:单个自由 Au 原子的吸附能量值从 1.35 eV (1.23 eV) 增大为 2.96 eV (2.54 eV),同 时 N 原子的置换能在 Au 原子吸附前后从 4.49 eV (4.57 eV)显著下降至2.88 eV (2.95 eV).此外,我 们还注意到随着表面吸附 Au 原子数量的不断增 加,N原子置换能亦相应减小,这意味着表面吸附 Au 原子数量越大,则 N 原子置换表面层 O 原子的 过程变得更加容易. 表 1 中给出的表面吸附 Au 原 子前后N原子置换能差值的变化趋势进一步证实 了上述结论,这充分说明表面吸附 Au 原子的出现 促进了 N 原子置换 SrTiO₃(001)表面层 O 原子的过 程. 综上所述, 对于 Au-SrTiO_{3-x}N_x(001)体系, N 原 子替代表面层 O 原子的置换过程与表面吸附 Au 原 子行为之间存在着明显的"协同效应" (synergy effect),即N原子置换表面层O原子增强了相应表 面对 Au 原子的吸附强度;表面吸附 Au 原子则促进 了 N 原子置换表面层 O 原子的过程. 这一结论与 Au-TiO_{2-x}N_x(110)体系的研究结果十分相符^[19].

3.2. 电子结构

为了进一步理解 N 原子置换效应和表面吸附 Au 原子行为的联系,我们选取 N 置换 SrTiO₃(001) 表面层上 O_s(I)和 O_s(1)为例,比较分析 N 置换前 后表面吸附单个 Au 原子的电子结构变化. 图 2 分 别给出了单个 Au 原子吸附在 N 置换前后(a) TiO₂ (b) SrO 截止的 SrTiO₃(001)表面体系的总体态密 度(total density of states, TDOS)和相应表面层各原 子的投影态密度(projected density of states, PDOS). 表 2 则列出了相应 Au 原子位于表面不同吸附位置 的优化原子间距和 Mulliken 有效电荷.

图 2 单个 Au 原子吸附的 N 置换前后 SrTiO₃(001)表面体系的 态密度(density of states, DOS) (a)和(b)分别对应 TiO₂和 SrO 截止的 SrTiO₃(001)表面,其中顶部图示表示表面体系 TDOS,而中间和底部的图示则对应表面层上各原子的 PDOS

对于 TiO₂ 截止的表面体系,如图 2(a) 所示,N 原子置换表面层 O_s(I) 原子之后,SrTiO₃(001) 表面 体系的总体态密度曲线在费米能级 E_F 附近出现了 一些"新态"(图 2(a) 中黑色箭头指示的狭窄峰). 同时,通过比较图 2(a) 中 N 原子置换前后的 Au 原 子投影态密度,发现 N 原子的置换掺杂效应使得表 面吸附 Au 原子的 6s 轨道电子态出现了一些"新 态",并且与 N 原子的 2p 轨道电子态相对应,从而 使 Au 原子 6s 轨道电子与 N 原子 2p 轨道电子的杂 化相互作用强度明显高于 Au 与 O_s(I)原子,即 Au 和 N 原子之间的化学键强于 Au 和 O_s(I)原子,即 Au 外,在表 2 中可以看到 Au 和 N 的优化原子间距 (1.92 Å)小于 Au 和 O_s(I)(2.23 Å),这进一步揭 示了前者的化学键相互作用强度高于后者,即 N 置 换表面 O 原子的过程提高了 Au 原子的吸附强度. 对于 SrO 截止的表面体系,如图 2(b)与表 2 所示, 其态密度及优化原子间距的变化趋势与 TiO₂ 截止 的表面体系完全相近.因此,SrTiO₃(001)表面出现 的 N 替位原子提高了表面吸附 Au 原子的稳定性.

表1 N原子置换 O_s(I) (O_s(1))原子前后(Pure 和 N-substituted) SrTiO₃(001)表面吸附 Au 原子和表面不同吸附位置的优化原子间 距以及 Au 原子的 Mulliken 有效电荷

SrTiO ₃ (001)		Au 和#原子的	Mulliken 有效	
表面状态		优化间距/Å	电荷/e	
TiO ₂ 截止	Pure	$1.92 \;(\#_{:} \; O_{s}(I))$	0.13	
表面体系	N-substituted	2.23 (#: N)	-0.45	
SrO 截止	Pure	2.05 (#: $O_s(1)$)	0.15	
表面体系	N-substituted	2.34 (#: N)	-0.48	

虽然原子电荷布局分析对于所采用的基函数 具有高度灵敏性,所得到的原子有效电荷的大小没 有绝对的物理意义,但如果计算中使用相同的基函 数,则原子电荷和布局分析的相对值可以提供有用 的信息以比较性质的不同^[33].因此,我们在表2中 还给出了 N 原子置换表面层 O 原子前后表面吸附 单个 Au 原子的 Mulliken 有效电荷. 对于 TiO, 截止 的表面体系,我们发现N原子置换前后表面吸附Au 原子的 Mulliken 有效电荷从 0.13e 转变为 - 0.45e, 这表明 N 替位原子的出现使表面吸附的 Au 原子失 去了部分电子即改变了其电学性质.此外,如图 2 (a) 所示, 比较 N 原子置换前后 Au 原子投影态密度 的变化趋势可知, Au 原子在费米能级($E_{\rm F}$)处的电 子态密度明显减小,这也反映了其 Mulliken 有效电 荷的变化规律.对于 SrO 截止的表面体系,我们也可 以发现完全相同的结论.应当指出:尽管研究表明, 氧化物(如 MgO^[34]和 TiO₂^[35])表面吸附的 Au 原子 通常显示出电负性,即吸附 Au 原子从衬底表面得 到部分电子,并且当氧化物衬底存在表面缺陷(最 常见的是氧空位缺陷^[34, 35])或有金属支撑材料^[36]

时其电负性更加显著. 然而,最近对于 Au-TiO_{2-x}N_x (110)体系^[19]的研究则发现,电子转移方向是从 Au 原子的6s轨道朝向 N 原子的2p轨道,即表面吸附 Au 原子向 TiO(110) 衬底表面的电荷转移过程为 Au + N²⁻→Au⁺ + N³⁻,这种独特的电荷转移机理决 定了 Au-TiO_{2-x}N_x(110) 表面体系中"Au↔N"的协 同效应. 如图 2 所示, 各原子的投影态密度清晰地显 示出 Au 原子 6s 轨道电子态的显著变化与 N 原子 2p 轨道电子态一一对应,即表面吸附 Au 原子通过 与 N 原子的相互作用向 SrTiO₃(001)衬底表面转移 了部分轨道电子.因此,我们认为这一电荷转移机 理也适用于 Au-SrTiO3-*N*(001) 系统. 总而言之, SrTiO₃(001)表面出现的吸附 Au 原子将有助于这类 催化材料中 N 原子浓度的提高,从而使其光催化性 能得到优化;反之,N原子的表面置换过程也会提高 表面吸附 Au 原子的稳定性,从而使其电化学性能

- [1] Wang P Y, Yang C, Li L C, Li Y R 2008 Acta Phys. Sin. 57
 2340 (in Chinese) [王佩怡、杨 春、李来才、李言荣 2008 物 理学报 57 2340]
- [2] Wu X W, Li X J 2008 Acta Phys. Sin. 57 5500 (in Chinese)
 [吴雪炜、刘晓峻 2008 物理学报 57 5500]
- [3] Xu X F, Shao X H 2009 Acta Phys. Sin. 58 1908 (in Chinese) [徐新发、邵晓红 2009 物理学报 58 1908]
- [4] Zhang R Z, Wang C L, Li J C, Mei L M 2009 Acta Phys. Sin.
 58 7162 (in Chinese) [张睿智、王春雷、李吉超、梅良模 2009 物理学报 58 7162]
- [5] Merkle R, Maier J 2008 Angew. Chem. Int. Ed. 47 3874
- [6] Souza R A D 2009 Phys. Chem. Chem. Phys. 11 9939
- [7] Wagner T, Somorjai G A 1980 Nature 285 55
- [8] Benthem K V, Elsasser C 2001 J. Appl. Phys. 90 6156
- [9] Wang J S, Yin S, Komatsu M, Zhang Q W, Saito F, Sato T 2004 Appl. Catal. B 52 11
- [10] Mi Y Y, Wang S J, Chai J W, Pan J S, Huan C H A, Feng Y
 P, Ong C K 2006 Appl. Phys. Lett. 89 231922
- [11] Liu C M, Zu X T, W. L. Zhou W L 2007 J. Phys D: Appl. Phys. 40 7318
- [12] Marozau I, Shkabko A, Dinescu G, Döeli M, Lippert T, Logvinovich D, Mallepell M, Schneider C W, Weidenkaff A, Wokaun A 2009 Appl. Surf. Sci. 255 5252
- [13] Baniecki J D, Ishii M, Kurihara K, Yamanaka K, Yano T, Shinozaki K 2008 Phys. Rev. B 78 195415
- [14] Lin F, Wang S, Zheng F, Zhou G, Wu J, Gu B L, Duan W. 2009 Phys. Rev. B 79 035311
- [15] Lin F, Zheng F W, Ouyang F P 2009 Acta Phys. Sin. 58 S193 (in Chinese) [林 峰、郑法伟、欧阳方平 2009 物理学报 58 S193]

得到改善.

4. 结 论

本文运用第一性原理赝势方法系统地研究了 SrTiO₃(001)表面吸附 Au 原子和 N 替位原子相互 作用的微观机理,发现 SrTiO₃(001)表面吸附 Au 原 子和 N 原子替代 SrTiO₃(001)表面层 O 原子的置换 过程二者之间存在着明显的"协同效应"(synergy effect),即 N 原子置换表面层 O 原子增强了相应表 面吸附 Au 原子的稳定性;反之,表面吸附 Au 原子 的出现使 N 原子置换表面层 O 原子的过程更为容 易实现.本文工作有助于进一步分析 N 原子和 O 空 位缺陷的复合效应对 SrTiO₃ 材料光电性能的影响, 从而指导设计 N 掺杂 SrTiO₃ 材料相关的电子 元件^[37].

- [16] Li Q, Fang G H, Xiong W P, Zhang Y 2010 Acta Phys. Sin. 59
 4170 (in Chinese) [李 琦、范广涵、熊伟平、章 勇 2010 物 理学报 59 4170]
- [17] Gao P, Wu J, Liu Q J, Zhou W F 2010 Chin. Phys. B 19 087103.
- [18] Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军、高 攀、柳清菊 2010 物理学报 59 4930]
- [19] Graciani J, Nambu A, Evans J, Rodriguez J A, Sanz J F 2008 J. Am. Chem. Soc. 130 12056.
- [20] Payne M C, Teter M P, Arias T A, Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045.
- [21] Perdew J P 1991 Physica B 172 1
- [22] Perdew J P, Wang Y 1992 Phys. Rev. B 46 12947
- [23] Langreth D C, Perdew J P 1980 Phys. Rev. B 21 5469
- [24] Perdew J P, Wang Y 1986 Phys. Rev. B 33 8800
- [25] Vanderbilt D 1990 Phys. Rev. B 41 7892
- [26] Lin J S, Qteish A, Payne M C, Heine V 1993 Phys. Rev. B 47 4174
- [27] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [28] Teter M P, Payne P C, Allan D C 1989 Phys. Rev. B 40 12255
- [29] Pulay P 1969 Mol. Phys. 17 197
- [30] Heifets E, Eglitis R I, Kotomin E A, Maier J, Borstel G 2001 Phys. Rev. B 64 235417
- [31] Goniakowski J 1998 Phys. Rev. B 58 1189
- [32] Asthagiri A, Sholl D S 2002 J. Chem. Phys. 116 9914
- [33] Winkler B, Pickard C J, Segall M D, Milman V 2001 Phys. Rev. B 63 214103
- [34] Yang Z, Wu R, Zhang Q, Goodman D W 2002 Phys. Rev. B 65 155407

- [35] Chrétien S, Metiu H 2007 J. Chem. Phys. 127 244708
- [36] Frondelius P, H? kkinen H, Honkala K 2007 New J. Phys. 9 399
- [37] Shkabko A, Aguirre M H, Marozau I, Lippert T, Weidenkaff A 2009 Appl. Phys. Lett. 94 212102

First principles study of interactions between Au and N atoms on $SrTiO_3(001)$ surface

Fang Li-Min

(Department of Physics, Guangdong University of Education, Guangzhou 510303, China) (Received 1 July 2010; revised manuscript received 24 August 2010)

Abstract

First principles PWPP calculations based on the density functional theory were carried out to study the microscopic mechanism of the interaction between Au and N atoms on $SrTiO_3(001)$ surface. From analysis of the related energies and density of states, it was confirmed that there is clearly a synergy effect between the substitution of N for the surface O atoms and the adsorption of Au atoms on the $SrTiO_3(001)$ surface. In other words, the substitution of N atoms for O atoms stabilizes the Au atoms adsorbed on the surface, and the presence of the adsorbed Au atoms can also favor the process of N substitution on the surface.

Keywords: structure of surfaces, interactions, first-principles theory **PACS**: 68.35. B - , 34.35.+ a, 63.20. dk

[†] E-mail: lmfang1975@163.com