## 一维压电 Fibonacci 类准周期声子晶体传输特性\*

杨立峰† 王亚非 周鹰

(电子科技大学光电信息学院,成都 610054)

(2011年8月22日收到;2011年10月8日收到修改稿)

基于传输矩阵法研究了一维压电 Fibonacci 类准周期声子晶体的传输特性,比较了一维 Fibonacci 序列压电准周 期声子晶体与非压电准周期声子晶体以及压电周期性声子晶体的透射性. 计算结果表明:弹性波通过一维准周期结构压电声子晶体时与周期性声子晶体一样会有带隙的出现,且发现具有压电性的 Fibonacci 序列准周期声子晶体禁 带宽度发生了展宽.进一步讨论了入射角度对固定频率下声子透射系数的影响,结果表明一维压电 Fibonacci 序列 准周期结构声子透射性依赖于入射角度的选取.

关键词: 声子晶体, 准周期, 压电

PACS: 77.65.-j, 77.84.cg, 77.90.+k

#### 1引言

经典波在复合结构材料中传播特性的研究越 来越引起人们的兴趣. 弹性材料平行而周期地排 列形成所谓的声子晶体,当弹性波在这种人工复合 材料中传播时,某些频率范围内的弹性波会被抑 制,形成声子带隙<sup>[1]</sup>.周期性结构的声子晶体已经 受到了广泛关注,并且发现声子晶体与光子晶体 一样存在局域态、超晶格折叠性、负折射率等现 象<sup>[2-5]</sup>. 而准周期系统是介于周期与完全无序系统 之间的一种典型结构,它的电子性质以及光学性质 已被广泛研究<sup>[6,7]</sup>,准周期结构的声子晶体的性能 近年来也引起了国内外学者的关注 [8-16]. 由于压 电材料中声场与电磁场之间具有的耦合效应,基于 压电材料的声子晶体能带结构比单纯的弹性材料 有显著不同<sup>[17-19]</sup>. 例如曹永军等<sup>[9,10]</sup>分析了一 维 Fibonacci 类准周期声子晶体的透射性质,发现 准周期结构不仅具有更宽的禁带带隙范围,而且带 隙与入射角度有关; Zhou 等<sup>[11]</sup>分析了由黄金和硅 构成的一维 Fibonacci 类准周期声子晶体的透射性 质,发现准周期结构中禁带带隙分裂为两个或多个 带隙,同时有可能出现向高频域或低频域移动;李 凤明等 [12,13] 将压电特性引入到声子晶体结构中

© 2012 中国物理学会 Chinese Physical Society

后,发现当压电特性在一定范围内随机变化时明显 影响声子晶体传输特性.以上研究预示着在当压电 特性引入到准周期结构中等效弹性模量发生改变, 可以获得更宽的禁带或出现新的禁带.本文将压电 性引入到一维 Fibonacci 类准周期声子晶体中,分 析压电性以及入射角度对一维压电 Fibonacci 类准 周期声子晶体禁带的影响.

## 2 一维压电声子晶体准周期序列模型

由于压电声子晶体的透射性不仅受到组成材料的弹性系数、压电系数等性质的影响,而且与材料的排列方式和先后顺序有关,因此本文研究的准周期排列方式为 Fibonacci(简写为 FB)序列准周期结构,FB 序列准周期结构已经被应用于铁电体<sup>[6]</sup>、准晶体<sup>[7]</sup>、光子晶体<sup>[8,9]</sup>及声子晶体<sup>[10]</sup>等领域.

FB 序列可由迭代关系 A→AB, B→A 来产 生. 第 1 代 FB(1) 从 A 元素开始,前 5 代的序 列 FB(1)···FB(5) 分别是 A, AB, ABA, ABAAB, ABAABABA. 一维压电准周期声子晶体 Fibonacci 序列如图 1 所示.

<sup>\*</sup>国家自然科学基金(批准号:60877033)资助的课题.

<sup>†</sup> E-mail: yanglf@uestc.edu.cn



图 1 一维压电准周期声子晶体 Fibonacci 序列

用 F 表示 FB 序列的代数, R 表示 FB 序列的 层数. 在 FB 序列中 A 与 B 的个数比恰好等于黄 金分割比, 不但正空间具有自相似性, 而且倒空间 也具有自相似性, 这是因为一维准周期结构可看成 是二维周期性结构在一维上的投影<sup>[15]</sup>.一维准周 期 FB 序列虽然不具有周期性, 但它是长程定向有 序的<sup>[16]</sup>.

#### 3 耦合方程及其通解

采用位移场与电磁场耦合方程,弹性波在具有 压电特性的各介质层中的传播行为可以表示为<sup>[17]</sup>

$$c\nabla^2 u + e\nabla^2 \phi = \rho \frac{\partial^2 u}{\partial t^2},\tag{1}$$

$$e\nabla^2 u - \varepsilon \nabla^2 \phi = 0. \tag{2}$$

考虑在 *XOY* 平面内传播的切变波, 对 *R* = *N* 压电声子晶体其中第 *j* 层, 上述 (1) 和 (2) 式结合可 写成

$$\nabla^2 u = \frac{1}{v^2} \frac{\partial^2 u}{\partial t^2},\tag{3}$$

其中  $v = \sqrt{G/\rho}$  是切变波的波速,  $G = (c + e^2/\varepsilon)$ , (3) 式的通解 ( $y_j \leq y \leq y_{j+1}$ )可以写成:

$$u_{j} = (A_{j}^{+} \mathrm{e}^{\mathrm{i}k_{j}(y-y_{j})} + A_{j}^{-} \mathrm{e}^{-\mathrm{i}k_{j}(y-y_{j})}) \mathrm{e}^{\mathrm{i}(\omega t - k_{x}x)},$$
(4)

$$\phi_{j} = \left[ (S_{j}^{+} e^{k_{x}(y-y_{j})} + S_{j}^{-} e^{-k_{x}(y-y_{j})}) + \frac{e_{j}}{\varepsilon_{j}} (A_{j}^{+} e^{ik_{j}(y-y_{j})} + A_{j}^{-} e^{-ik_{j}(y-y_{j})}) \right] e^{i(\omega t - k_{x}x)}, \quad (5)$$

其中  $A_j^+$ ,  $A_j^-$ ,  $S_j^+$ ,  $S_j^-$  为待定系数,  $k_x$  为 x 方向上 的波矢,  $k_y$  指 y 方向的波矢,  $k_y = \sqrt{(\omega/v_y)^2 - k_x^2}$ .

### 4 一维准声子晶体序列的传递矩阵

在一维准声子晶体序列的 *j* 层和 *j* + 1 层的边 界处满足以下横向位移、电势、应力和电位移矢 量连续的条件<sup>[18]</sup>,即

$$u_j = u_{j+1}, T_j = T_{j+1}, \phi_j = \phi_{j+1}, D_j = D_{j+1}.$$
 (6)

通过待定系数构成矢量  $A^j = [A_j^+, A_j^-, S_j^+, S_j^-]^T$ , 将上述的 (4) 式和 (5) 式代入连续性条件 (6) 式中, 整理后可以得到:

$$\left|A^{j+1}\right\rangle = M^{(j,j+1)}\left|A^{j}\right\rangle,\tag{7}$$

$$M^{(j,j+1)} = \begin{bmatrix} -\partial_{+}\lambda_{xy-} & -\partial_{-}\lambda_{xy+} & \eta f_{xy-} & -\eta f_{xy+} \\ -\partial_{-}\overline{\lambda_{xy+}} & -\partial_{+}\overline{\lambda_{xy-}} & -\eta \overline{f_{xy+}} & \eta \overline{f_{xy-}} \\ (1-\gamma)\overline{\lambda_{y}} & (1-\gamma)\lambda_{y} & -\beta_{+}\overline{f_{y}} & -\beta_{-}f_{y} \\ (1-\gamma)\overline{\lambda_{y}} & (1-\gamma)\lambda_{y} & -\beta_{-}\overline{f_{y}} & -\beta_{+}f_{y} \end{bmatrix},$$
(8)

上式中:

$$\begin{split} f_y &= \exp[-k_x(y_{j+1} - y_j)] = 1/f_y, \\ f_{xy\mp} &= \exp\{-[iy_{j+1}k_y^{j+1} \mp k_x(y_{j+1} - y_j]\} \\ &= 1/\overline{f_{xy\mp}}, \\ \lambda_{xy\mp} &= \exp\{-[iy_{j+1}(k_y^{j+1} \mp k_y^j)]\} \\ &= 1/\overline{\lambda_{xy\mp}}, \\ \lambda_y &= \exp(-iy_{j+1}k_y^j) = 1/\overline{\lambda_y}, \\ \alpha_{\pm} &= \left(1 \pm \frac{k_y^j \overline{c_{44}^j}}{k_y^{j+1} \overline{c_{44}^{j+1}}}\right), \\ \beta_{\pm} &= \left(\gamma \pm \frac{e_{15}^j}{e_{15}^{j+1}}\right), \\ \eta &= i \frac{k_x(e_{15}^j)^2}{k_y^{j+1} \overline{c_{44}^{j+1}} \varepsilon_{11}^j} (1 - 1/\gamma), \\ \gamma &= \frac{e_{15}^j \varepsilon_{11}^{j+1}}{e_{15}^{j+1} \varepsilon_{11}^j}, \\ \overline{c_{44}} &= c_{44} + e_{15}^2/\varepsilon_{11}. \end{split}$$

通过 (7) 式可以得到透射系数  $T = |A_n^+|^2 / |A_{-1}^+|^2$ .

#### 5 结果与讨论

准周期结构虽然不具备短程有序性,但是其长程定向有序性为形成能带结构创造了条件.本文选择三种组合情况进行分析,三种组合中A,B材料分别采用 PZT5H 与环氧树脂,PZT5H (无极化) 与环氧树脂以及 PZT4 与 PZT5H,计算所用压电参数如表1 所示.每个层厚度均取为 1.2 mm,它们均以层状交叠形成 FB(9) 序列,即 F = 9.

| 表 1 | 一维准周期声子晶体计算中所用参数表 |
|-----|-------------------|
|     |                   |

|                                                             | PZT-5H  | PZT-5H (无极化) | PZT4 | 环氧树脂 |
|-------------------------------------------------------------|---------|--------------|------|------|
| 密度                                                          | 密度 7500 |              | 7500 | 1100 |
| $ ho/{ m kg}{ m \cdot}{ m m}^3$                             |         |              |      |      |
| 弹性常数                                                        | 2.30    | 2.30         | 2.56 | 0.13 |
| $c_{44}/10^{10} \ \mathrm{N}{\cdot}\mathrm{m}^{-2}$         |         |              |      |      |
| 压电常数                                                        | 17.0    | 0            | 12.7 | 0    |
| $e_{15}/10^{-12}{\rm C}{\cdot}{\rm N}^{-1}$                 | 17.0    |              |      |      |
| 相对介质常数                                                      | 3 13    | 3.13         | 1.47 | 0    |
| $\varepsilon_{11}/10^{-8}~\mathrm{F}{\cdot}\mathrm{m}^{-1}$ | 5.15    |              |      |      |

图 2(a) 为周期层数 R = 54 时,具有周期结构的压电声子晶体透射系数 T 随声子入射频

率 f 的变化曲线, 其中 A, B 材料采用 PZT5H 与 环氧树脂:图 2(b) 为准周期 FB(9) 序列结构, 层 数 R = 55 时压电准周期声子晶体透射系数 T 随 声子入射频率 f 的变化曲线, 其中 A, B 材料同 样采用 PZT5H 与环氧树脂,可以看出短程无序 对于禁带结构的破坏.对于周期性结构当 N = 27 (总共54 层介质) 时透射谱中显现出两个明 显的禁带,禁带位置分别是 1.73×10<sup>6</sup>—3.26×10<sup>6</sup> 和 4.39×10<sup>6</sup>—5.07×10<sup>6</sup> 频率范围内, 而对于第九 代 F 结构 (介质层数) 而言 F = 55 却有三个 禁带,分别位于 1.68×106-3.31×106, 4.35×106-5.09×10<sup>6</sup> 以及 5.32×10<sup>6</sup>—5.47×10<sup>6</sup> 频率范围内, 并且前两个频带宽度较周期结构有所展宽,同时发 现出现几个共振态,这种现象类似于向晶体中引入 杂质后对其带隙的调节功能,这里 FB 结构的短程 无序性就起到了晶体中杂质的作用.



图 2 一维声子晶体透射系数 T 随声子入射频率 f 的变化曲线 (a) 压电周期结构 (R = 54); (b) 为准周期 FB(9) 序列 (R = 55)

图 3(a) 给出了 A, B 材料分别采用 PZT5H(无极化) 与环氧树脂时,一维压电准周期声子晶

体透射系数 T 随声子入射频率 f 的变化曲线. 从图中可以看出也存在三个明显的带隙,分别 位于 1.76×10<sup>6</sup>—3.27×10<sup>6</sup>,4.43×10<sup>6</sup>—5.03×10<sup>6</sup> 以 及 5.34×10<sup>6</sup>—5.46×10<sup>6</sup> 频率范围内.图 3(b) 中 A, B 材料分别采用 PZT5H 与环氧树脂时,其他条件与 图 3(a) 计算时使用的参数一致,比较后发现对于准 周期 FB(9) 序列结构的声子晶体,具有压电性的 FB 序列准周期声子晶体禁带宽度与无压电性的相同, 只是禁带发生了展宽,这种展宽是由压电性的引入 使得材料的等效弹性模量改变引起的;同时出现了 几个共振频率的偏移,共振态对应于声子的纵向模 态被入射波激发出来,它不仅依赖于入射角度,而 且与层结构有关.



图 3 一维压电准周期声子晶体透射系数 T 随声子入射频率 f 的变化曲线 (入射角度  $\theta = 30^{\circ}$ )

对于 FB 结构而言,其透射谱线在不同入射角 度下也有着显著的不同. A, B 材料分别采用 PZT5H 与 PZT4 时,图 4 给出了具有压电性的 FB(9) 序列准 周期声子晶体的透射系数 T 随声子入射频率 f 的 变化曲线,其中图 4(a) 入射角度  $\theta = 10^\circ$ ,带隙分别



图 4 一维压电准周期声子晶体透射系数 T 随声子入射频率 f 的变化曲线 (a)  $\theta = 10^{\circ}$ ; (b)  $\theta = 30^{\circ}$ ; (c)  $\theta = 60^{\circ}$ 

位于  $3.28 \times 10^5$ — $4.11 \times 10^5$  和  $5.48 \times 10^5$ — $5.74 \times 10^5$ 频率范围内; 图 4(b) 入射角度  $\theta = 30^\circ$ , 带隙则 位于  $3.38 \times 10^5$ — $4.29 \times 10^5$  和  $5.60 \times 10^5$ — $5.91 \times 10^5$ 频率范围内; 图 4(c) 入射角度  $\theta = 60^\circ$ , 带隙则位 于  $3.76 \times 10^5$ — $4.68 \times 10^5$  和  $5.69 \times 10^5$ — $6.02 \times 10^5$  频 率范围内. 从图 4 可以看出: 具有压电性的 FB 序列 准周期声子晶体禁带宽度和位置与入射角度有关. 图 5 给出了在固定频率  $f = 3.4 \times 10^5$  处一维压电 准周期声子晶体透射系数 T 与入射角度  $\sin^2 \theta$  的 变化曲线, 从图中更清楚地看出声子透射性依赖于 入射角度的选取. 在实际情况下, 可以通过改变入 射角度来选择合适的滤波特性, 也可以在固定入射

#### 角度而改变层厚的基础上制作出稳定的滤波器件.





### 6 结 论

综上所述, FB 序列是一种重要的准周期序列, 而一维压电声子晶体结构具有更加丰富的物理内 涵,所以研究一维压电 FB 序列准周期声子晶体的 传输特性是有必要的.本文基于传输矩阵法研究了

- [1] Sigalas M M, Economou E N 1993 Solid State Commun. 86 141
- [2] Kushwaha M S, Halevi P, Dobrzynski L, Rouhani B D 1993 Phys. Rev. Lett. 71 2022
- [3] Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734
- [4] Wen J H, Wang G, Liu Y Z, Yu D L 2004 Acta Phys. Sin. 53 3384 (in Chinese) [温激鸿, 王刚, 刘耀宗, 郁殿龙 2004 物理学报 53 3384]
- [5] Wu F G, Liu Y Y 2002 Acta Phys. Sin. 51 1434 (in Chinese) [吴 福根, 刘有延 2002 物理学报 51 1434]
- [6] Yang X B 2000 Acta Phys. Sin. 49 1185 (in Chinese) [杨湘波 2000 物理学报 49 1185]
- [7] Li C L, Liu Y Y 2001 Acta Phys. Sin. 50 217 (in Chinese) [李翠 莲, 刘有延 2001 物理学报 50 217]
- [8] Zaghdoudi J, Kuszelewicz R, Kanzari M, Rezig B 2008 Proc. SPIE 6989 69890D
- [9] Cao Y J, Yang X, Jiang Z L 2008 Acta Phys. Sin. 57 3620 (in Chinese) [曹永军, 杨旭 2008 物理学报 57 3620]

一维压电 FB 序列 (PZT 材料) 准周期声子晶体, 可 以得出以下结论:

1) 在 FB(9) 序列下压电特性引入后禁带宽度 发生了展宽, 并且较高的频率范围内 (5.32×10<sup>6</sup>— 5.47×10<sup>6</sup> Hz) 出现了新的禁带位置, 这是由压电 性的引入使得压电材料的等效弹性模量改变而 引起的;

2) 入射角度对一维压电 FB 序列准周期声 子晶体的传输特性有很大影响,结果表明在一维 压电 FB 序列准周期声子晶体中声子透射性依 赖于入射角度的选取,声子透射性受到不同层 之间的 Bragg 散射相互耦合的影响,而层之间相 互 Bragg 散射与入射角度有关;

3) 可以通过设计合适的入射角度来制作出稳 定的滤波器件.

- [10] Cao Y J, Yang X, Jiang Z L 2009 Acta Phys. Sin. 58 7735 (in Chinese) [曹永军, 杨旭, 姜自磊 2009 物理学报 58 7735]
- [11] Zhou X F, Xu T, Liu S C, Cheng J C 2009 J. Appl. Phys. 106 104901
- [12] Li F M, Xu M Q, Wang Y S 2007 Solid State Commun. 141 296
- [13] Chen A L, Li F M, Wang Y S 2007 J. Sound Vibrat. 304 863
- [14] Widmer D S, Deloudi S, Steurer W 2007 Phys. Rev. B 75 94304
- [15] Holzer M 1988 Phys. Rev. B 38 5756
- [16] Cao Y J, Dong C H, Zhou P Q 2006 Acta Phys. Sin. 55 6470 (in Chinese) [曹永军, 董纯红, 周培勤 2006 物理学报 55 6470]
- [17] Calás H, Ramos R R, Otero J A, Leija L, Ramos A, Monsivais G 2010 J. Appl. Phys. 107 44511
- [18] Monsivais G, Ramos R R, Sirvent R E, Alvarez L F 2003 Phys. Rev. B 68 174109
- [19] Chen S B, Han X Y, You D L, Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学 报 59 387]

# The transmission properties in one-dimensional piezoelectric Fibonacci-class quasi-periodical phononic crystals\*

Yang Li-Feng<sup>†</sup> Wang Ya-Fei Zhou Ying

(College of Opto-Electrical Information, University of Electronic Science and Technology of China, Chengdu 610054, China) (Received 22 August 2011; revised manuscript received 8 October 2011)

- -

#### Abstract

The transmission properties of phononic crystals in one-dimensional piezoelectric Fibonacci quasi-periodical superlattices are studied using the transfer matrix method. The transmission coefficients in piezoelectric Fibonacci quasi-periodical superlattices are compared with those of the phononic crystals with periodical structure and with non-piezoelectric Fibonacci quasi-periodical structure. The results show that the band gap can also be found in the phononic crystals with both piezoelectric and non-piezoelectric Fibonacci quasi-periodical superlattices, and the frequency range of the gap in piezoelectric Fibonacci quasi-periodical superlattices is larger than those of periodical structure and non-piezoelectric Fibonacci quasi-periodical structure. Furthermore, the transmission coefficients are studied as a function of the properties of the material and incidence angle of the wave. The results show that the transmission coefficients in piezoelectric Fibonacci quasi-periodical superlattices are studied as a function of the properties of the material and incidence angle of the wave.

**Keywords:** phononic crystals, quasi-periodical, piezoelectric **PACS:** 77.65.–j, 77.84.cg, 77.90.+k

<sup>\*</sup> Project supported by the National Natural Science Foundation of China (Grant No. 60877033).

<sup>†</sup> E-mail: yanglf@uestc.edu.cn