Pt 插层对铁磁/反铁磁界面交换耦合的影响*

王一军 刘洋 于广华†

(北京科技大学材料物理与化学系,北京 100083)

(2011年12月13日收到;2012年1月7日收到修改稿)

在铁磁层 (FM)/反铁磁层 (FeMn) 耦合体系中插入 Pt 插层或对靠近 FM/FeMn 界面处的 FeMn 掺杂 Pt 元素, 研究了体系的交换偏置场 H_{ex} 及矫顽力 H_c 随 Pt 插层深度 d_{Pt} 与 Pt 掺杂层厚度 t_{PtFeMn} 的变化关系. 实验结果表明, 引入 Pt 插层后 NiFe/FeMn(d_{Pt})/Pt/FeMn 体系的未补偿磁矩 (UCS) 的数量得到很大的提高, 从而对 H_{ex} 与 H_c 起到 增强的作用; 同时, 从实验结果可以推测 FeMn 层内部 UCS 的分布深度约为 1.3 nm. 另外, 对靠近 FM/FeMn 界面处 的 FeMn 掺杂 Pt 元素, 发现掺入 Pt 元素后体系的 H_{ex} 得到有效增强, 这是因为掺入 Pt 元素后体系 UCS 的数量也得 到很大的提高.

关键词:磁性多层膜,交换耦合, Pt 插层, 未补偿磁矩

PACS: 75.70.Ak, 75.70.-i, 81.15.Cd

1引言

由于自旋阀、自旋电子器件及信息存储器的 广泛应用^[1-3],铁磁层 (FM) 与反铁磁层 (AFM) 之 间的界面交换耦合作用一直以来为人们所广泛关 注,这种交换耦合作用称作交换偏置 (EB) 现象,即 铁磁层的磁滞回线中心沿磁场方向偏离原点,偏离 的大小为交换偏置场 *H*_{ex},并伴随矫顽力 *H*_c 的增 大^[4].尽管交换偏置现象发现已经半个多世纪,近 二十年来对它的研究取得很大的突破并提出了几 种模型^[4-9],但由于 *H*_{ex} 受各种因素的影响十分复 杂,目前还没有形成一个理论模型能统一地解释所 有的交换偏置现象.不过,现在已有关于交换偏置 的报道都表明^[10,11],交换偏置与 AFM 界面的磁矩 排列密切相关.

Takano 等^[11] 首次利用超导量子干涉 仪 (SQUID) 证明了 AFM 未补偿磁矩 (UCS) 与交换 偏置的密切联系. 随后, 由于实验测试手段的进步, 如: SQUID ^[11-13]、X 射线磁圆二色/X 射线磁线二 色 (XMCD/XMLD)^[14,15]、磁光克尔效应 (MOKE effect)^[16]、X 射线磁共振散射仪 (XRMR)^[17]、极

© 2012 中国物理学会 Chinese Physical Society

化中子散射仪 (PNR)^[13] 等, 人们已经能够直接 观察到界面处 UCS 的数量、方向和分布, 甚至 可以观察到界面处磁畴结构,这都为研究交换 偏置提供了十分可靠的实验数据. 通过研究表 明 FM/AFM 界面的未补偿磁矩可以分为两个部 分^[12-16]:一部分在外场作用下随着 FM 层的翻 转而翻转,这部分 UCS 会引起 H_c 的增加;另一部 分 UCS 处于钉扎状态, 从而导致 EB 的产生. 早 期,人们以为只有 FM/AFM 界面一两个原子层内 存在 UCS^[15], 但最近的文献报道, 不仅在 FM/AFM 界面处存在 UCS, 在 AFM 层内部且靠近界面一 定深度处也存在 UCS^[17]. 近十年来. 人们开始通 过在 FM/AFM 双层膜界面处插入非磁性 (NM) 插 层或掺杂 AFM 来研究 EB 的机理 [18-23]. 发现在 界面处引入插层或掺杂 AFM 都能改变 AFM 层 界面磁矩的数量与状态,从而调节 FM/AFM 双 层膜的 Hex 和 Hc. 例如: 在 NiFe/FeMn, Co/FeMn 和 (Pt/Co)₄/FeMn 等 FM/AFM 界面插入超薄 Pt 层, 将会产生额外的 UCS, 从而增强了 FM/AFM 体系 的 H_{ex} 和 H_{c} ^[24]. 但不同体系中 UCS 的数量、钉 扎比例 (钉扎状态的 UCS 占体系全部 UCS 的百分 比)和分布深度究竟受哪些因素影响并不是十分

^{*}国家自然科学基金(批准号: 51071023, 50831002)资助的课题.

[†] E-mail: ghyu@mater.ustb.edu.cn

清楚,仍需进一步研究.本文通过在 AFM 层内部 引入 Pt 插层及对靠近界面处的 AFM 掺杂 Pt 元素 的方法,改变 Pt 插层厚度、深度及 Pt 掺杂层厚度 来调节 AFM 层磁矩状态,讨论其对 FM/AFM 双层 膜磁滞回线、交换偏置场和矫顽力的影响,进而 从体系中 UCS 的数量、钉扎比例和分布深度来揭 示 FM/AFM 体系中的交换耦合作用与界面 UCS 之 间的相互关系.

2 实 验

本实验样品均在 DV-502 型磁控溅射仪系统中 制备,溅射前的本底真空优于 4 × 10⁻⁵ Pa, 薄膜的 生长在 0.5 Pa 的 99.99%高纯 Ar 气氛下进行, 所有 样品均生长在玻璃基片上. 实验中所用的 Ni₈₁Fe₁₉ 靶、Fe50Mn50 靶、Co 靶的纯度均为 99.9%, Pt 靶 纯度为 99.95%, 其中 NiFe 靶、Co 靶、FeMn 靶采 用直流溅射, Pt 靶采用射频溅射, 其溅射速率分别 为 0.055, 0.084, 0.055 和 0.050 nm/s (各种靶的溅射 速率均由台阶仪测定). 制备样品时在平行膜面方 向加一个诱导场,感生一个易磁化方向,诱导场大 小约为 63.7 kA/m. 样品被切成 3 mm × 5 mm 大 小,在室温下利用综合物性测量系统 (PPMS) 测 量样品的磁滞回线,测量磁场平行于膜面,沿着 易磁化方向,最大场为 31.8 kA/m. 室温条件下, 在 22 mm × 22 mm 玻璃基片上沉积了 S1, S2, S3, S4 四组样品 (本文中薄膜厚度单位均为 nm), 其基 本结构是:

S1: Pt20.0/NiFe4.0/FeMn(d_{Pt})/Pt1.0/FeMn4.0/ Pt8.0 ($d_{Pt} = 0$ —9.0 nm);

S2: Pt20.0/NiFe4.0/FeMn1.5/Pt(t_{Pt})/FeMn9.5/ Pt8.0 ($t_{Pt} = 0$ —4.0 nm);

S3: Pt20.0/NiFe10.0/Pt₄₀Fe₃₀Mn₃₀(t_{PtFeMn})/ FeMn(25.0 - t_{PtFeMn})/Pt8.0 ($t_{PtFeMn} = 0$ —1.3 nm);

S4: Pt20.0/(Pt2.0/Co0.3)₄/Pt₄₀Fe₃₀Mn₃₀(t_{PtFeMn})/ FeMn(25.0 - t_{PtFeMn})/Pt8.0 (t_{PtFeMn} = 0—1.3 nm).

为了方便, 这里我们将 S1 组中下面薄的 FeMn 层称为 δ 层, 其厚度表示为 d_{Pt}, 即 1.0 nm Pt 插 层的深度. 其中, 所有样品制备前, 先在基片上面 首先生长 20 nm 的 Pt 层作为缓冲层并诱导 NiFe 的 (111) 织构, 样品的最上面再生长 12 nm 的 Pt 层 作为保护层. S3, S4 组中掺杂层 Pt₄₀Fe₃₀Mn₃₀ 由 Pt 靶与 FeMn 靶共溅射生长.

3 结果与讨论

图 1 为体系 S1 与体系 NiFe4.0/FeMn(t_{FeMn}) 的 H_{ex} 和 H_c 分别随 d_{Pt} 与 t_{FeMn} 变化的关系曲 线. 从图 1(a) 可以看出, 体系 S1 在 $d_{Pt} = 0$ nm 时, $H_{ex} = 480$ A/m; 随着 d_{Pt} 由 0 nm 增大到 0.6 nm, H_{ex} 基本处于一稳定值; 当 d_{Pt} 继续增加, H_{ex} 开始 减少, 直到 $d_{Pt} = 1.3$ nm 时, H_{ex} 下降为零; 当 d_{Pt} 增加到 2.0 nm 后, 即 NiFe4.0/FeMn (t_{FeMn}) 体系产 生交换耦合的临界厚度 $t_{C,FeMn}$ (如图 1(a) 插图所 示) 时, H_{ex} 开始增加, 并在 $d_{Pt} = 9$ nm 时达到饱和 值约为 12736 A/m. 从图 1(b) 中可以观察到体系 S1

图 1 (a) 体系 S1 (实心方形) 与 NiFe4.0/FeMn (*t*_{FeMn}) (空心圆) 的 *H*_{ex} 分别随 *d*_{Pt} 与 *t*_{FeMn} 的变化关系, 插图表示体 系 S1 的 *H*_{ex} 随插层深度 *d*_{Pt} 为 0—2.0 nm 时的变化关系; (b) 体系 S1(实心上三角) 与 NiFe4.0/FeMn(*t*_{FeMn}) (空心下三角) 的 *H*_c 分别随 *d*_{Pt} 与 *t*_{FeMn} 的变化关系, 插图表示体系 S1 的 *H*_c 随插层深度 *d*_{Pt} 为 0—2.0 nm 时的变化关系

的 H_c 随 d_{Pt} 的变化规律与 H_{ex} 随 d_{Pt} 的变化规 律基本一致. $d_{Pt} = 0$ nm 时, 体系 S1 的 $H_{ex} =$ 480 A/m, 说明在 NiFe4.0/FeMn4.0 界面处插入 1.0 nm 的 Pt 插层后, NiFe 与 FeMn 之间仍存在相当 强的交换耦合作用,即在 NiFe/FeMn 界面处引 入 Pt 插层时, NiFe 与 FeMn 之间耦合作用为长 程作用. 当 $d_{Pt} = 0$ —0.6 nm 时, 体系 S1 的 H_{ex} 处于一稳定值约为 480 A/m, 说明在 FeMn 内部 且靠近 NiFe4.0/FeMn4.0 界面处引入 1.0 nm Pt 插 层, NiFe 与 FeMn 之间仍然存在交换耦合作用; 随 着 d_{Pt} 继续增大, H_{ex} 与 H_c 均开始减少, 这种交换 耦合作用开始减弱,在 $d_{\text{Pt}} = 1.3$ nm时, H_{ex} 减少为 零,这种交换耦合作用相应地减少为零.这充分说 明了当 d_{Pt} = 0—0.6 nm 时, 480 A/m 的 H_{ex} 并不是 由δ层所贡献, 而是由 4.0 nm FeMn 与 NiFe 层的耦 合作用所产生. 当 $d_{Pt} > 2.0$ nm 时, 体系 S1 的 H_{ex} 又开始增大,这是由于δ层大于2.0 nm 后,已经能 钉扎住 NiFe 层, 从而产生 H_{ex} , 并在 $d_{Pt} = 9$ nm 时 达饱和值约为 12736 A/m.

图 2 体系 S2 的 H_{ex} 和 H_{c} 随 Pt 插层厚度 t_{Pt} 的变 化关系

图 2 表示体系 S2 的 H_{ex} 和 H_c 随 Pt 插层厚 度 t_{Pt} 变化的关系. 从图 2 可观察到, 当 Pt 插层的 厚度 $t_{Pt} = 0$ nm 时, 体系 S2 的 $H_{ex} = 12656$ A/m, 说明 11 nm 的 FeMn 能够很好地钉扎住 NiFe 层; 随 着 Pt 插层厚度 t_{Pt} 的增大, H_{ex} 呈指数趋势迅速衰 减; 在 $t_{Pt} = 0.6$ nm 时, 体系 S2 的 H_{ex} 从 12656 A/m 衰减为零; 当 $t_{Pt} > 0.6$ nm 后, H_{ex} 保持为零. 说明 体系 S2 中整个 FeMn 层与 NiFe 之间的耦合作用 随着 Pt 插层厚度 t_{Pt} 增加而迅速减弱. 这是因为随 着 t_{Pt} 的增大, 1.5 nm 的 FeMn 与 9.5 nm 的 FeMn 的耦合作用逐渐减弱, 导致整个 FeMn 层的有效各 向异性降低. 当 $t_{Pt} > 0.6$ nm 时, 9.5 nm 的 FeMn 层与 1.5 nm 的 FeMn 层组成的 AFM 层已经无法提 供足够强的有效各向异性来钉扎住 4.0 nm 的 NiFe 层,最终导致该体系的 H_{ex} 减少为零.所以,在体 系 S1 中,当 $d_{Pt} < 1.3$ nm 时,体系 S1 的 H_{ex} 也不 是由最上面 4.0 nm 的 FeMn 直接对 NiFe 层钉扎所 贡献,因为体系 S1 中 Pt 插层的厚度为 1.0 nm. 那 么在 $d_{Pt} < 1.3$ nm 时,体系 S1 的 H_{ex} 到底是如何 产生的呢?

图 3 $M_{\rm s}/M_{\rm s0}$ 随 Pt 插层深度 $d_{\rm Pt}$ 的变化关系 其中虚 线为 NiFe4.0/FeMn4.0 双层膜饱和磁矩的数据

图 3 为体系 S1 的饱和磁矩 Ms 与 NiFe4.0/FeMn4.0 饱和磁矩 M_{s0} 的比值 M_s/M_{s0} 随 Pt 插层深度 dPt 变化的关系. 从图 3 中可以看到, 插入 Pt 插层后, 体系 S1 的 M_s 得到很大提高, 说 明体系 S1 的净磁矩的数量得到大大提高. 体系 S1 的 $M_{\rm s}$ 随着 $d_{\rm Pt}$ 的增大先迅速增加,在 $d_{\rm Pt} = 0.6$ nm 时到达最大值, Ms 提高了 25%; 当 dPt 继续增大, 体系 S1 的 $M_{\rm s}$ 开始减少, 在 $d_{\rm Pt} = 1.3$ nm 时, 仅提 高了 5%; $d_{\rm Pt} \ge 1.3$ nm 时, 体系 S1 的 $M_{\rm s}$ 保持一 稳定值. 当 $d_{\text{Pt}} = 0$ —0.6 nm 时, 体系 S1 的 M_{s} 随 着 d_{Pt} 的增大迅速增加, 对应体系 S1 的 H_{ex} 处于 一稳定值. 这是因为 $d_{\text{Pt}} = 0$ —0.6 nm 时, δ 层完全 处于磁无序的状态, δ 层与 4.0 nm 的 NiFe 层共同 组成名义 FM 层, 故 $M_{\rm s}$ 随着 $d_{\rm Pt}$ 的增大迅速增加. 这样,名义FM 层与 4.0 nm 的 FeMn 层之间仅隔 着 1.0 nm 的 Pt 层, 故名义 FM 层与 4.0 nm 的 FeMn 层之间交换耦合强度几乎不变, S1 体系的 Hex 便会 在 d_{Pt} = 0—0.6 nm 时处于一稳定值, 约为 480 A/m. $d_{\rm Pt} = 0.6$ —1.3 nm 时, 体系 S1 的 $M_{\rm s}$ 开始减少, 这 是由于 δ 层大于 0.6 nm, 即 $d_{Pt} > 0.6$ nm 后, δ 层 很可能已经由岛状结构生长成为连续的薄膜,δ层 的磁矩逐渐有序化,开始由 FM 状态向 AFM 状态 转变. 由于 1.0 nm 的 Pt 插层的引入, 增加了界面粗 糙度,导致δ层存在两个界面: NiFe/δ层界面和δ 层/Pt 界面, 且两个界面可能都产生了额外的净磁 矩,这些额外的净磁矩正是体系 S1 中 UCS 的重要 来源.因此,多层膜中界面粗糙度直接影响着 AFM 中 UCS 的数量与分布. 最上面 4.0 nm 的 FeMn 层 经过 Pt 层与 δ 层/Pt 界面的未补偿磁矩发生耦合 作用,从而对 δ 层/Pt 界面的未补偿磁矩起到钉扎 的效果,进而钉扎住 NiFe/δ 层界面的未补偿磁矩, 最终 NiFe/δ 层界面的未补偿磁矩会对 NiFe 层钉 扎. d_{Pt} 在 0.6—1.3 nm 范围内增加时, δ 层磁矩有 序化逐渐增加,体系 S1 的 M_s 开始减少, δ 层/Pt 界面的未补偿磁矩便会逐渐减少,相应地,这种钉 扎作用随着 dpt 的增加而减弱, 从而导致体系 S1 的 H_{ex} 在 $d_{\text{Pt}} = 0.6$ —1.3 nm 时逐渐减少. 体系 S1 中的 Hex 在 dPt 增大到 1.3 nm 时减少为零, 这是由 于δ层/Pt界面的未补偿磁矩减少为零,最上层的4 nm FeMn 不再对 δ 层有钉扎作用, 故 Hex 减少为 零 (如图 1(a) 内插图所示), 故体系 S1 中 FeMn 层未 补偿磁矩的分布深度约为 1.3 nm. 随着 δ 层厚度进 一步的增大,当其厚度大于 FeMn 临界厚度 t_{c FeMn} 时, δ层薄层形成稳定有序的 AFM 相, 可以直接 与 4 nm 的 NiFe 耦合并对其起钉扎作用,因此 Hex 开始增加. d_{Pt} 在 0—1.3 nm 这个范围时, 体系 S1 的 H_c 大于 NiFe4.0/FeMn(t_{FeMn}) 的 H_c , 这是因为 在 FeMn 层内部插入 Pt 插层后, 可反转的 UCS 也 增加了.因此, Pt 插层的引入增加了 UCS 数量, 一 部分 UCS 在外场作用下随着 FM 层的翻转而翻转, 会引起 H_c 的增加; 另一部分 UCS 处于钉扎状态, 从而导致 EB 的增强.

图 4 表示体系 S3, S4 的 H_{ex} 随着掺杂层厚 度 t_{PtFeMn} 变化的关系. 如图 4 曲线 (a) 所示, 对体 系 NiFe10.0/FeMn25.0 与 (Pt2.0/Co0.3)₄/FeMn25.0 界面处的 FeMn 掺杂 Pt 元素, 当掺杂厚度 t_{PtFeMn} 为 0.4—1.0 nm 时, 体系 S3, S4 的 H_{ex} 得到有效增 强. 体系 S3, S4 的 H_{ex} 随着掺杂厚度 t_{PtFeMn} 增大 先减少, 在 $t_{PtFeMn} = 0.2$ nm 时出现极少值; 随着掺 杂厚度继续增大, 体系 S3, S4 的 H_{ex} 都开始增强, 体系 S3 在 $t_{PtFeMn} = 0.85$ nm 时 H_{ex} 出现极大值, 从没有掺杂时的 15602 A/m 提高到 29770 A/m, 体 系 S4 在 $t_{PtFeMn} = 0.50$ nm 时 H_{ex} 出现极大值, 其极大值为 8438 A/m. 这是因为, 粗糙的 PtFeMn 界 面产生了大量的 UCS, 在 NiFe 层的拖曳下, 大部分 额外的磁矩是可反转的. 与此同时, 当掺杂厚度合 适时,由于与 NiFe 层隔开了一定的距离,部分额外 磁矩更多地受到 FeMn 层内部的钉扎作用,这样界 面钉扎态 UCS 的数量也增加了,体系的 H_{ex} 和 H_c 可以同时增加.而当掺杂层太薄(t_{PtFeMn} 约 0.2 nm) 时, H_{ex} 并不提高,与之相应的是体系的各向异性 也相对较差.这一方面是因为不完整插层会破坏 界面处的表面各向异性,另一方面因为未补偿磁矩 离 FM 层太近会使其中绝大部分成为可反转磁矩, 钉扎态磁矩的数量和比例并不增加,因此 H_{ex} 是下 降的.

通过掺杂 FeMn 来制造未补偿自旋的办法最 好只在 FeMn 靠近界面的几个原子层内实施, 如 图 4 所示, 掺杂层 PtFeMn 的厚度在 0.4—1.0 nm 范围时 H_{ex} 出现极大值, 继续增加掺杂厚度, 体系 的 H_{ex} 反而会破坏 FeMn 的 AFM 属性, 使 H_{ex} 大 幅下降.

图 4 (a) 体系 S3 中的 H_{ex} 随掺杂层厚度 t_{PtFeMn} 的变 化关系; (b) 体系 S4 中的 H_{ex} 随掺杂层厚度 t_{PtFeMn} 的变 化关系

4 结 论

对于 FM/FeMn 双层膜, 通过在 FeMn 层内部 引入 Pt 插层和对靠近界面处的 FeMn 掺杂 Pt 元素 的方法, 研究了 Pt 插层厚度与深度、Pt 掺杂层厚 度对交换偏置体系 H_{ex} 和 H_c 的影响. 结果表明, 体 系 NiFe/FeMn/Pt(t_{Pt})/FeMn 中的 H_{ex} 随 Pt 插层厚 度增加呈指数趋势迅速衰减, 这是因为 Pt 插层的 引入极大地降低了整个 FeMn 层的有效各向异性. 无论是在 FeMn 内部插入 Pt 插层还是对 FeMn 层 靠近界面处掺杂 Pt 元素, 都能改变 FM/FeMn 体系 中的 UCS 的数量, 从而调节 FM/FeMn 体系的 H_{ex} 与 H_c , 因为引入 Pt 插层或对界面处 FeMn 掺杂 Pt 元素都能增加界面粗糙度,为体系带来更多的 UCS.实验结果也表明,对于 NiFe/ FeMn 体系, UCS 不仅仅分布在界面处,在 FeMn 内部一定深度

处也存在 UCS. 并且 AFM 层中 UCS 的分布深度 与 FM 层材料、AFM 层材料及界面粗糙度等密切 相关.

- [1] Dieny B 1994 J. Magn. Magn. Mater. 136 335
- [2] Parkin S S P, Jiang X, Kaiser C, Panchula A, Roche K, Samant M 2003 Proc. IEEE 91 661
- [3] Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 *Nature Mater.* 10 347
- [4] Meiklejohn W H, Bean C P 1956 Phys. Rev. 102 1413
- [5] Mauri D, Siegmann H C, Bagus P S, Kay E 1987 J. Appl. Phys. 62 3047
- [6] Malozemff A P 1987 Phys. Rev. B 35 3679
- [7] Koon N C 1997 Phys. Rev. Lett. 78 4865
- [8] Nowak U, Usadel K D, Keller J, Miltényi P, Beschoten B, Güntherodt G 2002 Phys. Rev. B 66 014430
- [9] Keller J, Miltényi P, Beschoten B, Güntherodt G, Nowak U, Usadel K D 2002 *Phys. Rev.* B 66 014431
- [10] Nogués J, Schuller I K 1999 J. Magn. Magn. Mater. 192 203
- [11] Takano K, Kodama R H, Berkowitz A E, Cao W, Thomas G 1997 Phys. Rev. Lett. 79 1130
- [12] Gloanec M, Rioual S, Lescop B, Zuberek R, Szymczak R, Aleshkevych P, Rouvellou B 2010 Phys. Rev. B 82 144433
- [13] Paul A 2010 Appl. Phys. Lett. 97 032505

- [14] Nolting F, Scholl A, Stöhr J, Seo J W, Fompeyrine J, Siegwart H, Locquet J P, Anders S, Lüning J, Fullerton E E, Toney M F, Scheinfein M R, Padmore H A 2000 *Nature* 405 767
- [15] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203
- [16] Morales R, Li Z P, Olamit J, Liu K, Alameda J M, Schuller I K 2009 Phys. Rev. Lett. 102 097201
- [17] Mishra S K, Radu F, Valencia S, Schmitz D, Schierle E, Dürr H A, Eberhardt W 2010 *Phys. Rev.* B 81 212404
- [18] Gökemeijer N J, Ambrose T, Chien C L 1997 Phys. Rev. Lett. 79 4270
- [19] Lechevallier L, Zarefy A, Lardé R, Chiron H, Le Breton J M, Baltz V, Rodmacq B, Dieny B 2009 *Phys. Rev.* B **79** 174434
- [20] Ali M, Marrows C H, Hickey B J 2008 Phys. Rev. B 77 134401
- [21] Fu Y Q, Liu Y, Jin C, Yu G H 2009 Acta Phys. Sin. 58 7977 (in Chinese) [付艳强, 刘洋, 金川, 于广华 2009 物理学报 58 7977]
- [22] Urazhdin S, Tabor P, Lim W L 2008 Phys. Rev. B 78 052403
- [23] Ma M, Cai L, Wang X F, Hu J G 2007 Acta Phys. Sin. 56 529 (in Chinese) [马梅, 蔡蕾, 王兴福, 胡经国 2007 物理学报 56 529]
- [24] Liu Y, Jin C, Fu Y Q, Teng J, Liu M H, Liu Z Y, Yu G H 2008 J. Phys. D 41 205006

Effect of Pt spacers on interface exchange coupling in ferromagnetic/antiferromagnetic bilayers*

Wang Yi-Jun Liu Yang Yu Guang-Hua[†]

(School of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083, China)

(Received 13 December 2011; revised manuscript received 7 January 2012)

Abstract

By inserting a Pt spacer between ferromagnetic (FM)/ antiferromagnetic (FeMn) coumpling systems or by doping Pt element in the AFM layer, the depth dependence of Pt spacer and the thickness dependence of Pt doping layer on exchange bias (H_{ex}) and coercivity (H_c) are investigated. The results indicate that the number of uncompensated spin moments (UCSs) of NiFe/FeMn(d_{Pt})/Pt/FeMn increases as a result of inserting Pt spacer, which enhances H_{ex} and H_c of the system. Also, the distribution depth about 1.3 nm of UCS of FeMn in NiFe/FeMn system is inferred. Besides, by doping Pt element in FeMn near the FM/FeMn interlayer, we find that the H_{ex} of the system is enhanced efficiently, which is caused by the huge increase of the number of UCSs in the system.

Keywords: magnetic multilayer, exchange coupling, Pt spacer, uncompensated spin moment **PACS:** 75.70.Ak, 75.70.-i, 81.15.Cd

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51071023, 50831002).

[†] E-mail: ghyu@mater.ustb.edu.cn