反位缺陷对碳化硅纳米管电子结构和光学 性质影响研究^{*}

宋久旭1)2)† 杨银堂3) 郭立新1) 王平1) 张志勇4)

1) (西安电子科技大学理学院,西安 710071)

2)(西安石油大学电子工程学院,西安 710065)

3) (宽禁带半导体材料与器件教育部重点实验室,西安电子科技大学微电子学院,西安 710071)

4)(西北大学信息科学与技术学院,西安 710127)

(2012年5月7日收到; 2012年6月21日收到修改稿)

采用基于密度泛函理论的第一性原理计算对含有反位缺陷 (5,5) 单壁碳化硅纳米管的电子结构和光学性质进行了研究.纳米管进行结构优化的结果显示, C_{Si} 缺陷在纳米管表面形成了凹陷, Si_C 缺陷形成了凸起;反位缺陷在纳米管的导带底附近形成了缺陷能级,使纳米管表现出 n 型导电的特点,由价带顶到缺陷能级的跃迁,在垂直和平行于纳米管管轴方向上形成了新的介电峰.

关键词:碳化硅纳米管,反位缺陷,电子结构,光学性质

PACS: 73.20.At, 73.22.-f, 73.20.Hb, 78.67.Ch

1 引 言

碳纳米管在纳米传感器、纳米电子器件以及 光电器件等诸多领域中的良好应用前景,使得纳米 管材料成为当前研究的热点之一^[1,2].最近合成的 碳化硅纳米管具有碳化硅晶体较宽的能带间隙、 高热导率和良好机械性能等诸多优点,同时有较大 的比表面积^[3-5],这些特性使碳化硅纳米管是制备 高温、高压环境下工作的气敏传感器和电子器件 等的理想材料.反位缺陷是碳化硅晶体中常见的缺 陷^[6,7],Tetsuyoshi研究表明在富含碳元素的生长环 境下容易形成 C_{Si}反位缺陷,即硅晶格被碳原子占 据,而在硅元素比例较高的环境中容易形成另外一 种反位缺陷,即 Si_C 缺陷^[8];Bernardini等研究显示 含有这两类缺陷的碳化硅晶体呈现了 n 型导电的 特点^[9].反位缺陷也是碳化硅纳米管较典型的缺陷 之一,研究其对碳化硅纳米管电子结构和光学性质 的影响,可以为碳化硅纳米管应用的探索工作提供 必要的理论支持,进而促进相关研究工作的开展.

第一性原理计算在碳纳米管、氮化硼纳米 管、硫化锌纳米管等纳米材料结构和电子结构的 研究中都取得了满意的结果^[10-12],这些都表明上 述方法是研究碳化硅纳米管电子结构和光学性质 的理想方法之一.论文在分析反位缺陷对纳米管 结构影响的基础上,计算了含有 C_{Si} 和 Si_C 反位缺 陷 (5, 5) 碳化硅纳米管的电子结构和光学性质,分 析了它们对纳米管性质的影响及形成机理.

2 模型与方法

选择结构较典型的锯齿型 (5,5) 碳化硅纳米管

*中国博士后科学基金(批准号: 201104619)和陕西省教育厅自然科学基金(批准号: 2010JK775)资助的课题.

[†] E-mail: sonx@mail.xidian.edu.cn

为研究对象, 建立了纳米管的模型. 模型沿管轴方向由 6 层原子构成, 每层包含 5 个碳原子和 5 个硅原子, 共 60 个原子. 碳化硅纳米管单胞的晶格参数设置为 a = b = 23.69 Å, c = 9.25 Å, $\alpha = \beta = 90^{\circ}$, $\gamma = 120^{\circ}$. a, b 远大于碳化硅纳米管的直径, 可以避免纳米管间耦合对其电子结构的影响. 反位缺陷通过将图 1 中 *OC* 方向上第 3 层的原子被相应的原子取代实现, 虚线中的碳原子被硅原子取代形成了 Si_C 缺陷.

图 1 (5,5) 碳化硅纳米管的模型, 图中黑色和灰色小球分 别为碳原子和硅原子

CASTEP 软件包是基于密度泛函理论的从头 计算量子力学程序,在纳米材料的结构和电子结 构的研究中都取得了较满意的结果. 对含有反位缺 陷碳化硅纳米管的电子结构和光学性质的计算都 是采用该软件包实现的. 在计算过程中, 将多电子 体系用平面波函数展开,为了减少平面波基个数, 采用超软赝势来描述离子实与价电子的相互作用. 在 k 空间中, 平面波的截断能选择 300 eV, 电子间的 相互作用的交换关联能采用广义梯度近似 (generalized gradient approximation, GGA) 的 PBE (Perdow-Burke-Emzerhof) 方案来处理^[13]. 系统总能量和电 荷密度在布里渊区的积分采用 Monkhorst-Pack 方 案进行选择 k 网格点为 1×1×8. 碳化硅纳米管的结 构对其性质有较大的影响,在计算含反位缺陷碳化 硅纳米管的电子结构和光学性质前对其进行了结 构优化. 几何优化的收敛标准由四个参数决定: 原 子间相互作用力的收敛标准设置为 0.1 eV/Å; 单个 原子能量的收敛标准设置为 5×10^{-5} eV/atom; 碳 化硅纳米管内应力的收敛标准设置为 0.2 GPa: 原 子最大位移的收敛标准设置为5×10⁻³Å.在几何 优化的过程中,对四个参数同时进行优化,当它们 同时收敛后停止迭代.

3 结果与分析

3.1 碳化硅纳米管的电子结构和光学性 质

理想碳化硅纳米管的电子结构和光学性质是 分析反位缺陷对其性质影响的基础,为此,计算了 理想结构的 (5,5) 碳化硅纳米管的能带结构和分波 态密度 (partial density of states, PDOS),如图 2 所示.

图 2 (5,5) 碳化硅纳米管的电子结构 (a) 碳化硅纳米管 的能带结构; (b) 碳化硅纳米管的分波态密度

从 (5, 5) 碳化硅纳米管的能带结构 (图 2(a)) 可以看出, 该纳米管是间接带隙半导体, 导带底和 价带顶分别位于布里渊区的 Γ 点和 Z 点, 能带间 隙大约 2.21 eV, 与 Huang 等计算的 2.19 eV 是比 较接近的 ^[14]. 从图 2(b) 中 (5, 5) 碳化硅纳米管 的 PDOS 可以看出, 价带的低能区, 其能量从 –14.0 eV 到 –10.2 eV, 主要是碳原子的 2s 态和硅原子 3s 态的贡献; 价带的高能区从 –7.9 eV 到 0.0 eV, 为 碳原子的 2p 态和硅原子 3p 态的贡献, 在能量较 低的区域有少量的硅原子 3s 态. 导带主要来自硅 原子 3p 态的贡献. 价带顶和导带底分别由碳原子 的 2p 态和硅原子的 3p 态占据.

碳化硅纳米管在光电器件中的良好应用前景 使得对其光学性质的研究具有较重要的理论价值 和实际意义.碳化硅纳米管在线性相应范围内,其 光学响应可以用复介电函数表示,复介电函数的定 义为

$$\varepsilon(\omega) = \varepsilon_1(\omega) + \varepsilon_2(\omega),$$
 (1)

其中, $\varepsilon_1 = n^2 - k^2$, $\varepsilon_2 = 2nk$.根据直接跃迁概率 和 Krames-Kronig 色散关系可以推导碳化硅纳米管 介电函数的虚部和实部、吸收系数、反射系数等, 在文献 [15] 中可以找到详细的推导过程,其中与本 文相关的计算过程如下:

$$\varepsilon_{1} = 1 + \frac{8\pi^{2}e^{2}}{m^{2}} \sum_{\mathrm{V,C}} \int_{\mathrm{BZ}} \mathrm{d}^{3}k \frac{2}{2\pi}$$

$$\times \frac{|e \cdot M_{\mathrm{CV}}(K)|^{2}}{[E_{\mathrm{C}}(K) - E_{\mathrm{V}}(K)]}$$

$$\times \frac{\hbar^{3}}{[E_{\mathrm{C}}(K) - E_{\mathrm{V}}(K)]^{2} - \hbar^{2}\omega^{2}}, \qquad (2)$$

$$\varepsilon_{2} = \frac{4\pi^{2}}{2} \sum \int_{-\infty}^{\infty} \mathrm{d}^{3}k \frac{2}{2} |e \cdot M_{\mathrm{CV}}(K)|^{2}$$

$$C_2 = \frac{1}{m^2 \omega^2} \sum_{\mathrm{V,C}} \int_{\mathrm{BZ}} \mathrm{d}^3 k \frac{1}{2\pi} \left| e \cdot M_{\mathrm{CV}}(K) \right|^2$$

$$\delta \left[E_{\rm C}(K) - E_{\rm V}(K) - \hbar \omega \right], \qquad (3)$$

$$I(\omega) = \sqrt{2}(\omega) \left(\sqrt{\varepsilon_1(\omega)^2 - \varepsilon_2(\omega)^2} - \varepsilon_1(\omega)\right)^{\frac{1}{2}},$$
(4)

×

$$R(\omega) = \left|\frac{1-N}{1+N}\right|^2 = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2},\tag{5}$$

其中, h 为普朗克常量, ω 为角频率, k 为倒格矢, 下标 C 和 V 分别代表碳化硅纳米管的导带和价带, BZ 为其第一布里渊区, E_C(k) 和 E_V(k) 分别为导 带和价带的本征能级, n 和 k 分别反射系数和消光 系数. 上面这些公式反映了能级间电子跃迁产生光 谱的发光机理, 是分析碳化硅纳米管能带结构和光 学性质的理论基础.

图 3 绘制了理想 (5,5) 碳化硅纳米管的复介电 函数的虚部和实部, 其中考虑了 [100] 和 [001] 极 化方向, 分别对应垂直纳米管的管轴和平行管轴 的方向. 平行于纳米管管轴方向上的介电峰 (*c'*) 的最大值要远大于垂直管轴方向上的 (*c''*), 在 垂直于管轴方向上的纳米管的分子轨道会受到 电场作用, 电子分布会导致分子轨道发生形变, 而在平行于管轴方向上的分子轨道几乎没有变 化 ^[16]. 平行于纳米管管轴的复介电函数 ε' (图 3 (a)),在 2.45 eV 到 4.32 eV 的两个介电峰分别出现 在 2.94 eV 和 3.18 eV,介电峰主要来自于碳化硅 纳米管 π^* 键中电子在 C 2p 轨道到 Si 3p 轨道间 的跃迁的贡献,而在高于 3.18 eV,仅在 5.35 eV 处 形成介电峰,它主要来自于纳米管的 π 键和 π^* 键间的跃迁; 垂直于纳米管管轴方向的复介电函 数 ε'' (图 4(b)),大概可以分为三个区间,在 2.45 eV 到 4.32 eV 间的介电峰主要来自 C 2p 轨道和 Si 3p 轨道间的跃迁,纳米管 π 键和 π^* 键间的跃迁在形 成 4.32 eV 到 8.54 eV 间的介电峰中起着主要作用, 而高于 8.00 eV 的介电峰是 σ 键到 σ^* 键间跃迁的 结果.

3.2 含反位缺陷碳化硅纳米管的结构

对含有 C_{Si} 和 Si_C 反位缺陷的 (5, 5) 碳化硅纳 米管进行了结构优化,优化采用了 BFGS(Broyden-Flectcher-Goldfard-Shanno) 算法,收敛标准在模型 与方法中有详细的论述.缺陷对碳化硅纳米管结构 的影响主要集中在其附近,在图 4 中分别给出了含 有这两种缺陷碳化硅纳米管的结构.

从图 4 可以看出, C_{Si} 缺陷附近三个碳原子间 的距离分别为 1.47, 1.52 和 1.52 Å, 与理想碳化硅 纳米管的碳硅原子间距有较明显的缩短, 在纳米管 的表面形成了凹陷; Si_C 缺陷附近三个硅原子间的 距离分别为 2.36, 2.28 和 2.28 Å, 这种变化导致在 纳米管的表面形成了较显著的突起.

(b)

图 4 含反位缺陷 (5, 5) 碳化硅纳米管的结构 (a) 含 C_{Si} 缺陷碳化硅纳米管; (b) 含 Si_C 缺陷碳化硅纳米管

3.3 含反位缺陷纳米管的电子结构和光 学性质

基于对含有 C_{Si} 和 Si_C 缺陷 (5, 5) 碳化硅纳 米管结构优化的结果,分别计算了这两种反位缺 陷碳化硅纳米管的能带结构和 PDOS. 反位缺陷使 得碳化硅纳米管能带的简并度有明显的降低,但 是导带和价带并未发生明显变化,缺陷对纳米管 能带的影响主要是在导带底附近形成了缺陷能级, Si_C 和 C_{Si} 缺陷形成缺陷能级与导带底的距离分别 为 0.24 和 0.23 eV,它们具有施主能级的特点,使碳 化硅纳米管表现出 n 型电导的特点,这与碳纳米管 的硅掺杂相似^[17]. 含有这两种缺陷纳米管的能带 结构具有较高的相似性,为此在图 5(a) 中,绘制了 含有 C_{Si} 缺陷 (5, 5) 碳化硅纳米管的能带结构,用 箭头标出了缺陷能级.

为了深入分析含有 C_{Si} 反位缺陷碳化硅纳米 管的电子结构,还计算了缺陷附近四个碳原子和所 有碳原子的 PDOS(图 5(b)).在所有碳原子的态密 度中,形成了三个新的态密度峰,分别位于 –14.98, –8.56 和 1.95 eV 处.位于 –14.98 eV 的密度峰主 要来自缺陷附近四个碳原子的 2s 态,缺陷附近碳 原子 2p 态和 2s 态的交叠形成了 -8.56 eV 处的态 密度峰,这两个态密度峰对纳米管性质的影响要小 于位于 1.95 eV 处的态密度峰. 位于导带底附近的 态密度峰主要由缺陷附近 2p 态构成,它主要由缺 陷能级的决定,而缺陷能级对纳米管的性质有较显 著的影响.

图 5 含 C_{Si} 缺陷 (5, 5) 碳化硅纳米管的电子结构 (a) 能带结构; (b) PDOS

对含有 Si_C 缺陷碳化硅纳米管电子结构的分 析也得到了类似的结果, 导带底附近的缺陷能级主 要来自硅原子的 3p 态.

采用与理想碳化硅纳米管光学性质研究相同 的设置计算了含有反位缺陷碳化硅纳米管的光学 性质,含 C_{Si} 缺陷碳化硅纳米管的复介电函数如 图 6 所示.反位缺陷对平行于纳米管管轴方向上介 电函数(ɛ')的影响主要表现在两个方面:在 2.02 eV 形成了新的介电峰,该介电峰主要来自电子由价 带顶到杂质能级的跃迁;位于 2.45 eV 介电峰的 峰值显著地降低,这主要是因为 C_{Si} 缺陷使得导带 最主要态密度峰有明显的降低,电子占据相应能 级的概率也有所降低,削弱了由价带顶到对应能 级跃迁的概率. 而垂直管轴方向上复介电函数 (ε^{''}) 在 2.02 eV 附近也形成了新的介电峰, 同时最主要 的两个介电峰有显著的降低, 其成因与平行于纳米 管方向上的介电函数的变化是一致的.

图 6 含 CSi 缺陷 (5,5) 碳化硅纳米管的复介电函数

- [1] Tooski S B 2010 J. Appl. Phys. 107 034315
- [2] Li X L, Jia Y, Cao A Y 2010 ACS Nano 4 506
- [3] Menon M, Richter E, Mavrandonakis A, Andriotis A N 2004 *Phys. Rev.* B 69 115322
- [4] Li C P, Fitzgerald J D, Zou J, Chen Y 2007 New J. Phys. 9 137
- [5] Taguchi T, Igawa N, Yamamoto H, Jitsukawa S 2005 J. Am. Ceram. Soc. 88 459
- [6] Torpo L, Marlo M, Staab T E M, Nieminen R M 2001 J. Phys. Condens. Matter 13 6203
- [7] Litton C W, Johnstone D, Akarca-Biyikli S, Ramaiah K S, Bhat I, Chow T P, Kim J K, Schubert E F 2006 Appl. Phys. Lett. 88 121914
- [8] Tetsuyoshi T 2008 J. Appl. Phys. 103 063521
- [9] Bernardini F, Mattoni A, Colombo L 2004 Eur. Phys. J. B 38 437
- [10] Lin F, Li Z Y, Wang S Y 2009 Acta Phys. Sin. 58 8544 (in Chi-

对含有 Si_C 缺陷碳化硅纳米管的复介电函数 也进行了同样的分析,缺陷在平行于纳米管管轴和 垂直于管轴的方向上都行成了介电峰,同时介电峰 的峰值的降低趋势要比 C_{Si} 缺陷的更显著.

4 结论

采用基于密度泛函理论的第一性原理计算对 含有反位缺陷 (5,5) 碳化硅纳米管的电子结构和光 学性质进行了研究. 计算结果显示, 理想结构的纳 米管是能带间隙大约 2.21 eV 的间接半导体材料, 而 C_{Si} 和 Si_C 反位缺陷分别在纳米管的表面形成了 凹陷和凸起, 同时在纳米管的导带底附近形成了缺 陷能级, 使得纳米管表现出 n 型导电的特点; 由价 带顶到杂质能级的跃迁, 在垂直和平行于纳米管管 轴方向上的介电函数中形成了新的介电峰, 同时使 得纳米管介电峰的峰值有明显的降低. 这些结果对 于碳化硅纳米管电子器件和光电器件的研制工作 具有一定的参考价值.

nese) [林峰, 李缵轶, 王山鹰 2009 物理学报 58 8544]

- [11] Zhang L J, Hu H F, Wang Z Y, Wei Y, Jia J F 2010 Acta Phys. Sin.
 59 527 (in Chinese) [张丽娟, 胡慧芳, 王志勇, 魏燕, 贾金凤 2010 物理学报 59 527]
- [12] Krainara N, Limtrakul J, Illas F, Bromley S T 2011 Phys. Rev. B 83 233305
- [13] Perdew J, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
- [14] Huang S P, Wu D S, Hu J M, Zhang H, Xie Z, Hu H, Cheng W D 2007 Opt. Express 15 10947
- [15] Shen X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press) p76(in Chinese) [沈学础 1992 半 导体光谱和光学性质(北京: 科学出版社) 第 76 页]
- [16] Wu I J, Guo G Y 2007 Phys. Rev. B 76 035343
- [17] Baierle R J, Fagan S B, Mota R, Silva A J R, Fazzio A 2001 Phys. Rev. B 64 085413

Investigation on influence of antisite defects on electronic structure and optical properties of silicon carbide nanotube*

Song Jiu-Xu^{1)2)†} Yang Yin-Tang³⁾ Guo Li-Xin²⁾ Wang Ping¹⁾ Zhang Zhi-Yong⁴⁾

1) (School of Science, Xidian University, Xi'an 710071, China)

2) (School of Electronic Engineering, Xi'an Shiyou University, Xi'an 710065, China)

3) (Key Laboratory of Ministry of Education for Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China)

4) (Information Science and Technology Institution, Northwest University, Xi'an 710127, China)

(Received 7 May 2012; revised manuscript received 21 June 2012)

Abstract

Electronic structure and optical properties of a (5, 5) single-walled silicon carbide nanotube are studied with first principles calculation based on density functional theory. Depression and salient are formed near C_{Si} defect and Si_C defect in the surface of the nanotube. Defect energy levels are formed near the bottom of conduction band, which results in an n-type conductivity for nanotubes with antisite defects. In dielectric functions parallel and perpendicular to the axis of the nanotube, novel resonance peak is formed from transitions between top of the conduction band and the defect energy level.

Keywords: silicon carbide nanotube, antisite defects, electronic structure, optical properties **PACS:** 73.20.At, 73.22.-f, 73.20.Hb, 78.67.Ch

^{*} Project supported by the China Postdoctoral Science Foundation (Grant No. 201104619) and the Fund of Shaanxi Provincial Educational Department, China (Grant No. 2010JK775).

[†] E-mail: sonx@mail.xidian.edu.cn