$KCrF_3$ 中的轨道有序及其成因*

王广涛 张敏平 李珍 郑立花

(河南师范大学物理系信息与工程学院,新乡453007)

(2011年4月8日收到; 2011年6月5日收到修改稿)

强关联体系中的轨道有序及其成因一直是凝聚态物理研究的热点问题. 轨道有序对于巨磁阻和超导材料的研究有非常重要的地位. 利用第一性原理计算研究了 KCrF₃ 的四方相和立方相中的轨道有序及其成因. 在四方相中, GGA和 GGA+U 两种方法计算结果都表明其基态是 A 型反铁磁和 G 型轨道有序. 对于立方结构, GGA方法得出铁磁半金属态是基态, 而 GGA+U(U_{eff} = 3.0 eV) 得到的基态是 A 型反铁磁绝缘体. 光电导测量是少数能从实验上观察 到轨道有序的方法之一, 因此计算了其光电导, 并结合投影态密度讨论了 KCrF₃ 中的轨道有序. 最后找到了其轨道 有序的成因: 电子强关联效应, 而非电 - 声子相互作用是其轨道有序的物理根源.

关键词: 第一性原理, 轨道有序, 光电导, Jahn-Teller 效应

PACS: 71.20.-b, 75.25.Dk, 78.56.-a, 71.70.Ej

1引言

强关联体系中的轨道有序是凝聚态物理研 究的一个热点问题. 特别是在 3d 过渡金属氧化 物中,轨道、电荷、自旋等自由度相互关联和影 响,对材料的电输运、磁性等物理性质有非常重 要的影响^[1-8].同时轨道有序在巨磁阻^[9]和超 导材料^[10]的研究中也占据非常重要的地位. 钙 钛矿结构的 La_{1-x} A_x Mn₃(A = Ba, Sr, Ca) 就是轨 道有序的的典型代表 [11]. 无掺杂的母体 LaMnO3 是 A 型反铁磁绝缘体, 其中三价锰离子的电子构 型是 $t_{2g}^3 e_g^1$, 三个电子占据局域的 t_{2g} 轨道, 自旋磁 矩 3 µB, 一个巡游电子占据 eg 轨道, 并且与邻近 的 O 原子 2p 轨道杂化. 正是因为轨道有序存在, 才 使得 LaMnO₃ 为 A 型反铁磁结构^[11]. 除了过渡金 属氧化物,过渡金属氟化物也存在非常有趣的现象. 但与氧化物相比,氟化物的相关研究很少,这主要 是氟化物的合成有一定的困难. 最近, Margadonna 和 Karotsis^[12] 成功合成了 KCrF₃,并且研究了其结 构性质和磁性^[12-14]. 因为 Cr²⁺(d⁴) 的电子构型类 似于 La MnO_3 中的 $Mn^{3+}(d^4)$, 人们猜测它的性质

© 2012 中国物理学会 Chinese Physical Society

会类似于 LaMnO₃. 但是实验发现其结构和磁相变 都比预期的复杂得多: KCrF₃ 不但在室温下有明显 的 Jahn-Teller (JT) 畸变, 而且随温度的变化结构和 磁性相变发生一系列的变化^[12-14]. 因此本文用第 一性原理计算研究了它的电子、磁性和轨道结构.

虽然,关于 KCrF₃ 已经有一些实验和理论讨 论^[12-16],但是还没有人很清晰地阐述其中的轨道 有序现象和背后的物理机制.这是由于对轨道有序 的直接测量和观察都非常困难,需要很高的能量和 空间分辨率.然而,还是有一些实验方法^[17-23]能 够探测到由轨道有序造成的各向异性,其中,利用 偏振光对各向异性光电导的测量^[19-23],给我们提 供了一些有用的信息.在此,我们从第一性原理计 算其光电导,并从光电导结果很好地理解 KCrF₃ 轨 道有序和磁有序.

对于 LaMnO₃ 和 KCrF₃ 中的轨道有序的成因 目前有两种解释: 1) 电 - 声相互作用^[24,25],即 Jahn-Teller 畸变; 2) 电子间的强关联效应^[26,27]. 那么到 底是 Jahn-Teller 畸变起主要作用,还是电子间的强 关联效应是决定因素? 我们通过理论计算回答了这 个重要问题:即使没有 Jahn-Teller 畸变,电子间的

^{*}国家自然科学基金(批准号:10947001)资助的课题.

[†] E-mail: wangtao@henannu.edu.cn

强关联效应也会产生轨道有序; Jahn-Teller 畸变的 作用是进一步加剧了轨道有序.因此,电子间的强 关联效应是轨道有序的本质根源.

2 计算方法

本文的所有计算都是在 BSTATE^[2] 软件下完成的,它是基于密度泛函理论的平面波赝势方法. 计算所用晶格常数和原子坐标数据都是实验所得^[12,13].计算中用到的平面波函数的截断能量 是 36 *Ry*, 电荷密度的截断能量是 200 *Ry*. 对于第 一 Brillouin 的 *k* 空间积分我们用 16×16×12 的格 子. 共研究了四种磁性态, 分别是铁磁态 (FM)、三 种反铁磁态 (*A*-AFM, *C*-AFM, *G*-AFM). *A* 型反铁 磁, 晶格结构中 Cr²⁺ 的自旋在 *ab* 面内相互平行, 沿 *c* 轴相反; *C* 型反铁磁, Cr²⁺ 的自旋沿 *c* 轴平行, *ab* 面内相反; *G* 型反铁磁, Cr²⁺ 的自旋近邻都相 反. 几种磁性结构如图 1 所示. 对于交换相关能, 我 们采用广义梯度近似 (GGA-PBE)^[28], 并用 GGA+*U* 方法 ^[29] 处理 Cr 3d 电子的强关联效应.

图 1 (a) 各种磁性结构示意图; (b)KCrF3 的四方相晶体结构 (空间群 I4/mcm), x, y, z 轴分别沿原胞的 [110][110] 和 [001] 方向

3 计算结果和分析

3.1 四方相结构

表1给出了各种磁性的总能、交换常数、磁

矩和 A 型反铁磁的带隙. 从表 1 看出, A 型反铁 磁态是基态. 这个结论和 Giovannetti 等^[14]和 Xu 等^[16]的研究结果一致, 也符合中子散射实验结 果^[12,13].

表 1 随着 Ueff 的变化, FM, C-AFM, G-AFM 的总能与 A-AFM 总能的差值; ab 面内的交换常数 Jab, 沿 c 轴的交换常数 Jc,

CI 版 J 概AP, A-AFM II)市版												
$U_{\rm eff}$	FM/meV	C-AFM/meV	G-AFM/meV	$J_{\rm ab}/{\rm meV}$	$J_{\rm c}/{\rm meV}$	磁矩/ $\mu_{\rm B}$	带隙/eV					
0	24	261	258	5.3431	-0.5597	3.51	0.57					
1	13	178	165	3.5633	-0.5566	3.54	1.11					
2	15	116	108	2.2655	-0.4942	3.56	1.44					
3	14	85	75	1.5810	-0.5316	3.58	1.70					
4	13	66	55	1.1584	-0.5190	3.60	1.99					
5	13	52	42	0.8833	-0.4911	3.61	2.25					

Cr原子磁矩, A-AFM的带隙

表 1 中的交换常数是依据 Heisenberg 模型, 由 如下公式 ^[2,4,5] 给出:

$$J_{\rm ab} = [E(F) - E(G) + E(A) - E(C)] / (8S^2),$$

其中, S = 3.5 是 Cr^{2+} 的磁矩. 从计算结果来看, J_{ab} 比 J_c 大, 尤其是 U_{eff} 取值比较小时, 这说明材料的

$$J_{\rm c} = [E(F) - E(G) - E(A) + E(C)]/(4S^2),$$

二维特性非常明显. ab 面内交换作用 J_{ab} 随着 U_{eff} 的增大而减小,而沿 c 轴的交换作用 J_c 基本不变. J_{ab} 是正值和 J_c 是负值,这表明 ab 面内是铁磁耦合,沿 c 轴方向是反铁磁耦合.

鉴于 KCrF₃ 的基态是 *A*-AFM 态,我们在图 2 中给出该磁性态的态密度 (DOS). 在能量范围 从 -10.0 到 -6.0 eV 内,主要是 F-2p 的贡献, Fermi 面附近主要是自旋向上的 Cr-3d 态,从 1.5 到 4.0 eV 主要是下自旋态. 从晶体结构 (图 1) 得知: 二价 的 Cr 离子在六个 F 原子构建的八面体中心. 所以, Cr-3d 劈裂为三个低能 t_{2g} 轨道和两个高能 e_g 轨道. 我们计算的结果显示, Cr²⁺ 的四个电子占据自旋向 上的三个 t_{2g} 轨道和一个 e_g 轨道 ($t_{2g}^3 e_g^1$),而自旋先 下的轨道没有占据. 也就是说, Cr 离子在高自旋态, 这符合 Hund 规则,也和实验测量结果一致 ^[12,14]. 通过 X 射线和中子散射实验测量得知 ^[13],在高温 时 (973 K),体系在立方相;低于 973 K 时,高自旋态 的 Cr²⁺ 引发晶格畸变,原胞变成体心四方结构 (空 间群 I4/mcm). 体心四方结构中,CrF₆ 八面发生畸 变,沿 c 轴 Cr—F 键长 2.01 Å,而 ab 面内 Cr—F 键, 长轴 (2.29 Å) 和短交 (1.98 Å) 交替排布,这样 Cr₁ 和 Cr₂ 离子 (见图 1) 上的电子就会占据不同的轨道 态,如图 3 所示.

图 2 KCrF3 的态密度图 (A-AFM 正方晶系结构, GGA 方法)

图 3 (a), (b), (c) 分别是 Cr₁, Cr₂, Cr₃ 的投影态密度 (PDOS); (d) 计算所得的 KCrF₃ 光电导 (A-AFM 正方晶系结构, GGA 方 法), 其中 σ_{//} 表示 ab 面内的光电导, σ_⊥ 表示沿 c 轴的光电导

在图 3(a) 中, Cr₁ 的三个电子占据自旋向上的 t_{2g} , 一个电子占据自旋向上的 $d_{3x^2-r^2}$. Fermi 能以上 0.5 eV 是 $d_{z^2-y^2}$ 态, 未被占据.图 3(b)Cr₂ 的全部上自旋 t_{2g} 和一个 $e_g(d_{3y^2-r^2})$ 被占据, 而自旋

向上的 $d_{z^2-x^2}$ 未被占据. 图 3(c)Cr₃ 全部下自旋的 t_{2g} 态和 $d_{3y^2-r^2}$ 轨道被占据. 如此的轨道有序符合 Goodenough-Kanamori-Anderson 规则:ab 面内的 e_g - e_g 交换作用是 FM 的, 因为电子通过 F-2p 轨

道在 *ab* 面内从占据态到空态虚拟交换. 而 *t*_{2g} 是 半满能带, 它们通过面间的 F 原子之间的交换作用 是 AFM.

前面提到,直接观察轨道有序很难实现.但是, 测量各向异性光电导的方法,可以间接地测量出轨 道有序^[17-23]. 计算所得的光电导 (图 3(d)) 可以 帮我们理解轨道有序. ab 面内的光电导 $\sigma_{//}$ 有两 个峰值, α1 在 1.0 eV 处, α2 在大约 8.0 eV 处. α1 处的峰来自于 Cr_1 的占据态 $d_{3r^2-r^2}^{\uparrow}$ 和 Cr_2 的未占 据态 $d_{z^2-x^2}^{\uparrow}$ 间的电子跳跃. 沿 c 轴的光电导不存 在 α_1 这样的峰,因为如果 Cr₁ 占据态 d[↑]_{3r²-r²} 的 电子要跃迁到 Cr_3 的 $d_{r^2-r^2}^{\uparrow}$ 轨道上, 就必须翻转 自旋,这是很难发生的.峰 α2 是由于 F1-2p 电子和 未占据态 $d_{z^2-x^2}$ (或 $d_{z^2-u^2}$) 间存在电子跃迁. 沿 c 轴方向, F₂(CrF₆ 正八面体的顶点上原子) 2p 轨道 上的电子也能跃迁到未占据态 $d_{z^2-x^2}$ (或 $d_{z^2-y^2}$). σ_{\perp} 在 9.0 eV 处的峰 β_3 的来源和 α_2 类似. c 轴 方向,除了峰 β3 还有两个峰值,分别是 3.3 eV 处 的 β_1 和 6.8 eV 处的 β_2 .从 PDOS 图中我们发现,电 子在 Cr_1 的 $\operatorname{d}_{3r^2-r^2}^{\uparrow}$ 轨道和 Cr_3 的 $t_{2\sigma}^{\uparrow}$ 轨道间的跃 迁形成了峰 β_1 . 电子在 Cr₁ 的 d[↑]_{3r²-r²} 轨道和 Cr₃ 的 $d_{z^2-r^2}^{\uparrow}$ 轨道间的跃迁形成峰 β_2 .

为了更好地描述 KCrF3 的 Cr-3d 电子的强关

联效应, 我们用 GGA+U 方法计算了其电子结构. 计算中, U_{eff} 取 3.0 eV (U = 4.0, J = 1.0 eV), 以前工 作 ^[15] 已经验证这些参数是合适的. 同时我们还计 算了 U_{eff} 分别取不同值 (0.0, 1.0, 2.0, 4.0 和 5.0 eV) 的情况. 结果发现, 随着 U_{eff} 取值的增加, 几种磁 性态的能量差值和交换常数 J_{ab} 都随之减小 (见 表 1). 图 4 是当 $U_{\text{eff}} = 3.0$ eV 时 KCrF₃ 的总态密度 图和 PDOS 图. 与 GGA 结果相比, Cr-3d 占据态向 低能级移动 (从 –4.0 到 –2.0 eV), 而 F-2p 态几乎没 有移动.

图 4 四方相 A-AFM 在 U = 4.0 eV, J = 1.0 eV 的态密度

图 5 四方相结构 A-AFM 磁性 (a), (b), (c) 分别是 Cr1, Cr2, Cr3 的 PDOS; (d) 计算所得的 KCrF3 光电导

图 6 四方相结构 *A*-AFM 磁性的电荷密度图 (a) -0.2 eV 到 0 eV 范围; (b) 0 eV 到 2.0 eV 范围 (GGA+*U*, *U* = 4.0 eV, *J* = 1.0 eV). 图中的 *x*, *y*, *z* 轴分别沿原胞 [110][110] 和 [001] 方向

在 $U_{\text{eff}} = 3.0 \text{ eV}$ 时的投影态密度图 (PDOS) 和光电导图由图 5 给出. 与图 3 相比, 我们发现 占据态 $d_{3x^2-r^2}$ 和未占据态 $d_{z^2-x^2}$ 之间的带宽 从 0.6 eV 增大到 2.2 eV. 图 5 中的峰 α_1 和 α_2 分别 出现在 2.7 eV 和 9.0 eV 处. 在 5.5, 7.5 和 9.0 eV 处 分别出现峰 β_1 , β_2 和 β_3 . 前面提到, 计算中用到的 电子关联效应能 U_{eff} 是人为参数, 这个参数可以通 过光电导实验测得. 只要能测得峰 α_1 的位置, 就可 以得到电子关联强度 U_{eff} 的值.

图 6 中展示了电荷密度,这样更清晰地揭示 四方相 A-AFM 态的轨道有序.图 6(a) 给出占据 态 $d_{3x^2-r^2}$ 和 $d_{3y^2-r^2}$ 轨道在 ab 面内交错排列,沿 c 轴方向, Cr₁ 的 $d_{3x^2-r^2}$ 和 Cr₃ 的 $d_{3y^2-r^2}$ 成 90° 旋 转,这就是 G 型轨道结构.图 6(b) 对于未占据态, 是 $d_{z^2-x^2}$ 和 $d_{z^2-y^2}$ 轨道构成 G 型轨道有序.

一般情况下人们都是通过中子来测量磁性态, 就像 Xiao 等^[15]运用这种方法的得出 KCrF₃ 基

态是 A-AFM. 但是, 我们发现测量光电导也可以 确定磁性态^[20-23].图7给出了不同磁性态计算 出的光电导. 在 A-AFM 和 FM 中 ab 面内是铁磁 的, 这为 $\operatorname{Cr}_1\left(\operatorname{d}_{3x^2-r^2}^{\uparrow}\right)$ 和 $\operatorname{Cr}_2\left(\operatorname{d}_{z^2-x^2}^{\uparrow}\right)$ 之间的电 子跃迁提供了一个通道,因此 α1 峰出现在这两 个相中. 沿着 c 轴方向 $\operatorname{Cr}_1\left(\operatorname{d}_{3x^2-r^2}^{\uparrow}\right)$ 轨道上的电 子不能够跃迁到 $\operatorname{Cr}_2\left(\operatorname{d}_{z^2-x^2}\right)$ 轨道上, 这是因为 在 A-AFM 相两个轨道的自旋方向相反, 而在 FM 相两个轨道是平行的,因此,在 c 轴方向也出现了 一个光电导峰 β_1 . 对于 C-AFM 来说, 沿着 c 轴是 铁磁, ab 面上是反铁磁, 因此 $\operatorname{Cr}_1\left(\operatorname{d}_{3x^2-r^2}^{\uparrow}\right)$ 轨道 和 $\operatorname{Cr}_2\left(\operatorname{d}_{z^2-x^2}^{\uparrow}\right)$ 轨道上的电子跃迁在 2.8 eV 出现 一个 β_1 峰. 对于 C-AFM, 由于 ab 面上是反铁磁, 所以在 $\operatorname{Cr}_1\left(\operatorname{d}_{3x^2-r^2}^{\uparrow}\right)$ 轨道上的电子不能够跃迁 到 $\operatorname{Cr}_2\left(\operatorname{d}_{z^2-x^2}^{\uparrow}\right)$ 轨道上来, 这是因为自旋方向是 反平行的. $\operatorname{Cr}_1\left(\operatorname{d}_{3x^2-r^2}^{\uparrow}\right)$ 轨道上的电子可以跃迁 到 $\operatorname{Cr}_2 - t_{2\sigma}^{\uparrow}$ 轨道上, 结果是 α_1 峰值大约为 5.5 eV. 在 G-AFM 相, ab 面和 c 轴上都是反铁磁, 这会阻止 电子从 Cr₁ - d[↑]_{3r²-r²} 轨道跃迁到 Cr₂ - d[↓]_{r²-r²}(Cr₂ - $d_{z^2-u^2}^{\downarrow}$) 轨道. 因此, 无论是在 *ab* 面还是在沿 *c* 轴 方向的 2.8 eV 值附近均没有峰值出现. 在 5.5 eV 附 近出现的光传导峰来自 $Cr_1 - d_{3r^2 - r^2}^{\uparrow}$ 轨道到 $Cr_2 - c_{3r^2 - r^2}$ t_{2g}^{\uparrow} 和 Cr₃ - t_{2g}^{\uparrow} 轨道的跃迁. 从上面的描述中, 我们 可以通过测量光传导峰值的位置来确定磁序和电 子关联效应.

3.2 立方相: 轨道极化的起源

轨道有序的机理一直是大家讨论的热点^[24-27],一些研究者把轨道极化的起源归因为电子与声子之间的相互作用 (Jahn-Teller 畸变)^[24,25],还有一些研究者把它归因于电子与电子之间的相互作用 ^[26,27].因此,我们认为研究 KCrF₃ 的轨道序对于研究轨道序的机理很有意义.当温度高于 973 K 时, KCrF₃ 变为立方相,在立方相中所有的 Cr—F 键距离均相等. Margadonna 和 Karotsis 认为如果 Jahn-Teller 畸变确实是轨道极化的起源,那么轨道序就会消失 ^[12,13].然而,一些关于 KCuF₃的理论计算显示,即使没有 Jahn-Teller 畸变,轨道极化仍然会出现 ^[26].

图 7 GGA+U(U = 4.0 eV, J = 1.0 eV) 计算 KCrF₃ 各种磁性态的光电导 (a)A-AFM; (b) C-AFM; (c)FM; (d)G-AFM

图 8 立方相磁性为 FM, Cr 原子的投影态密度 (a) GGA; (b) GGA+U

立方相下各种磁性 (FM, *C*-AFM, *G*-AFM) 的 总能与 *A*-AFM 总能的差值如表 2 所示. 当电子关 联效应能 $U_{\text{eff}} \leq 2.0 \text{ eV}$ 时, FM 态最稳定, 而 $U_{\text{eff}} \geq$ 3.0 eV 时 *A*-AFM 变成基态. 交换常数 J_{ab} 和 J_c 在 $U_{eff} \leq 2.0$ eV 时都是正值, 这说明在 *ab* 面内及 *c* 轴方向都是铁磁耦合. $U_{eff} \geq 3.0$ eV 时, J_c 变成负

值, 意味着 c 轴方向变成反铁磁耦合. 而且, 我们发现 J_{ab} 的值大约是 J_c 的三倍, 说明 ab 面内的铁磁耦合比 c 轴方向的反铁磁耦合更强.

从表 2 看出, 关联效应比较小的情况下 ($U \leq 2.0 \text{ eV}$), FM 态的能量最低.因此我们在图 8 中给出 FM 态下 Cr 原子的 PDOS. 从图 8 看出, 在 FM 态下 t_{2g} 轨道的 d_{xy} , d_{yz} 和 d_{zx} 三个轨道是能级简并的,同时 e_g 轨道中 $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 两个轨道也是能级简并的.在 CrF₆ 八面体中, Cr²⁺ 离子的电子构型是 $t_{2g}^3 e_g^1$. FM 态下, $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 能级简并, 一个 e_g 电子只能在这两个轨道上各占一半.即使在强关联条件下 ($U_{\text{eff}} \geq 3.0 \text{ eV}$), 因为 $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 轨道能级简并, 这两个轨道也都是半占据 (图 8(b)). 立方相结构中, 没有 JT 畸变, 如果再不区分 Cr 原子的磁矩方向 (NM 或者 FM), e_g

的两个轨道 $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 就是简并的.如此 电子结构与 Margadonna 的猜想一致 ^[15,16].而 *A*-AFM 中的 $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 的能级简并解除 (见 图 9).在 U = 0 eV 时, *A*-AFM 态中 Cr 的 PDOS (图 9(a))和 FM 态的结果 (图 8(a))相似,即: $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 轨道也都是半占据.而当考虑强关联效 应 ($U_{eff} \ge 3.0$ eV)以后, KCrF₃ 转变成 Mott-绝缘体 轨道有序 (见图 9(b)). Cr²⁺ 的四个电子占据了 t_{2g} 的三个轨道和 $d_{x^2-y^2}$ 轨道.在没有 JT 畸变情况下, 磁性有序也会解除 e_g 轨道的能级简并,在考虑电 子强关联效应条件下 KCrF₃ 出现轨道有序.所以, 我们计算的结论就是:电子电子关联效应才是轨道 有序的成因,而不是 JT 畸变.这和 Anisimov's 在关 于 KCuF₃ 的文章 ^[26] 中结论一致.

表 2 立方相下各种磁性 (FM, *C*-AFM, *G*-AFM) 的总能与 *A*-AFM 总能的差值, 交换常数 *J*_{ab} 和 J_c, 在 *A* 型反铁磁 (*A*-AFM) 条件下计算 的 Cr 原子磁矩, 轨道 d_{3z²-y²} 和 d_{x²-y²} 占据数以及带隙

$U_{\rm eff}$	FM/meV	C-AFM/meV	G-AFM/meV	$J_{\rm ab}/{\rm meV}$	$J_{\rm c}/{\rm meV}$	Cr 磁矩 µB	$3z^2 - r^2$	$x^2 - y^2$	带隙/eV
0	-76	191	180	4.3	1.3	3.58	0.50	0.50	
1	-81	171	161	4.0	1.4	3.60	0.40	0.60	
2	-10	109	126	2.4	0.5	3.60	0.15	0.85	
3	14	85	70	1.4	-0.6	3.61	0.09	0.91	0.588
4	12	64	52	1.0	-0.5	3.62	0.00	1.0	0.888
5	11	55	43	0.8	-0.4	3.63	0.00	1.0	1.182

图 9 立方相磁性为 A-AFM, Cr 原子的投影态密度 (a) GGA; (b) GGA+U

图 10 立方相磁性为 A-AFM, U_{eff} 分别取 0, 1.0, 2.0, 3.0 和 4.0 eV 时, $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 轨道的占据数随着 JT 畸变 率变化结果

我们知道, 电声相互作用 (JT 畸变) 也能使轨道 发生极化. 图 10 中给出轨道 $d_{3z^2-r^2}$ 和 $d_{x^2-y^2}$ 的占 据数随着 JT 畸变率不同的变化. 其中 JT 畸变率定 义为: $\delta_{JT} = \frac{d_1 - d_s}{d_1 + d_s}$, 式中 d_1 和 d_s 分别代表 Cr-F 的长短轴键长. 图 9 中嵌入的小图展示了在不同电 子关联效应下 (U_{eff}), 极化随着 JT 畸变率的变化情 况. 极化率定义为: $N_{x^2-y^2} - N_{3z^2-r^2}$, 其中 $N_{x^2-y^2}$ 和 $N_{3z^2-r^2}$ 分别代表 $d_{x^2-y^2}$ 和 $d_{3z^2-r^2}$ 轨道的占据 数. 从图 9 看出: 在 JT Ratio = 0, U = 0 时候, $d_{x^2-y^2}$ 和 $d_{z^2-3r^2}$ 的轨道占据数都是 0.5, 即没有轨道极 化. 固定 JT Ratio = 0, 增大 U, $d_{x^2-y^2}$ 轨道的占据 数开始增大, 而 $d_{z^2-3r^2}$ 轨道上的占据数在减小. 也 就是说, 轨道极化率随着 U 的增大而变大. 当 U 大 于等于 3.0 eV 时候, 即使没有 JT 畸变 (JT 畸变率 为 0), 轨道极化率也高达 0.824. 图 10 中 $d_{x^2-y^2}$ 的 占据数随着 δ_{JT} 的增大而增大, 说明 JT 畸变有利 于轨道极化, 但并不是主要因素. 当 $U_{eff} \leq 2.0$ eV 时, 即便是 δ_{JT} 为 0.14, 轨道并未完全发生极化. 而 即便是没有 JT 畸变, 当 $U_{eff} \geq 3.0$ eV 时也发生了 高达 0.824 轨道极化. 所以, 我们得出: 电子关联效 应是轨道极化的决定性因素, JT 畸变只是加强了极 化而已.

4 结 论

利用第一性原理计算研究了 KCrF₃ 的四方相 和立方相电子结构、磁性结构和轨道结构.四方相 中, GGA 和 GGA+U 方法都得出基态是 A 型 AFM 结构和 G 型轨道有序.对光电导的测量,更好地 解释了轨道有序.计算得出的交换常数 J_{ab} 的值 是 J_c 的三倍,这显示出很明显的二维特征.立方 相结构中, GGA 计算得出 FM 半金属态是基态, 而 GGA+U(U_{eff} = 3.0 eV) 得到基态是 A-AFM.通 过研究轨道极化是如何随着电子关联效应和 JT 畸 变的变化而变化,我们得出电子关联效应是轨道极 化的决定性因素,而 JT 畸变只是加强了极化而已.

- [1] Fang Z, Terakura K 2001 Phys. Rev. B 64 R020509
- [2] Fang Z, Terakura K 2002 J. Phys.: Condens. Matter 14 3001
- [3] Fang Z, Nagaosa N, Terakura K 2003 Phys. Rev. B 67 035101
- [4] Fang Z, Nagaosa N, Terakura K 2004 Phys. Rev. B 69 045116
- [5] Fang Z, Nagaosa N 2004 Phys. Rev. Lett. 93 176404
- [6] Shu Z H, Dong J M 2003 Acta Phys. Sin. 52 2918 (in Chinese) [束正煌, 董锦明 2003 物理学报 52 2918]
- [7] Zhang SL, Kong H, Cen C, Su J R, Zhu C F 2005 Acta Phys. Sin.
 54 4379 (in Chinese) [张士龙, 孔辉, 岑诚, 苏金瑞, 朱长飞 2005 物理学报 54 4379]
- [8] Chen D M, Liu D Y 2010 Acta Phys. Sin. 59 7350 (in Chinese) [陈东猛, 刘大勇 2010 物理学报 59 7350]
- [9] Yu Q Y, Zhang J C, Jia R R, Jing C, Cao S X 2008 Acta Phys. Sin.
 57 453 (in Chinese) [於乾英, 张金仓, 贾蓉蓉, 敬超, 曹世勋 2008 物理学报 57 453]
- [10] Wang W, Su J F, Liu M, Liu S 2009 Acta Phys. Sin. 58 5632 (in Chinese) [王玮, 孙家法, 刘楣, 刘甦 2009 物理学报 58 5632]
- [11] Elfimov I S, Anisimov V I, Sawatzky G A 1999 Phys. Rev. Lett. 82 4264
- [12] Margadonna S, Karotsis G 2006 J. Am. Chem. Soc. 128 16436

- [13] Margadonna S, Karotsis G 2007 J. Mater. Chem. 17 2013
- [14] Giovannetti G, Margadonna S, van den Brink J 2008 Phys. Rev. B 77 075113
- [15] Xiao Y, Su Y, Li H F, Kumar C M N, Mittal R, Persson J, Senyshyn A, Gross K, Brueckel T H 2010 Phys. Rev. B 82 094437
- [16] Xu Y, Hao X, Lü M, Wu Z, Zhou D, Meng J 2008 J. Chem. Phys. 128 164721
- [17] Saitoh E, Okamoto S, Takahashi K T, Tobe K, Yamamoto K, Kimura T, Ishihara S, Maekawa S, Tokura Y 2001 Nature 410 180
- [18] Murakami Y, Hill J P, Gibbs D, Blume M, Koyama I, Tanaka M, Kawata H, Arima T, Tokura Y, Hirota K, Endoh Y 1998 *Phys. Rev. Lett.* 81 582
- [19] Tobe K, Kimura T, Okimoto Y, Tokura K 2001 Phys. Rev. B 64 184421
- [20] Hu W Z, Dong J, Li G, Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 257005
- [21] Li G, Hu W Z, Dong J , Li Z, Zheng P, Chen G F, Luo J L, Wang N L 2008 Phys. Rev. Lett. 101 107004
- [22] Li G, Hu W Z, Dong J, Qian D, Hsieh D, Hasan M Z, Morosan

E, Cava R J, Wang N L 2007 Phys. Rev. Lett. 99 167002

- [23] Chen Z G, Dong T, Ruan R H, Hu B F, Cheng B, Hu W Z, Zheng P, Fang Z, Dai X, Wang N L 2010 Phys. Rev. Lett. 105 097003
- [24] Loa I, Adler P, Grzechnik A, Syassen K, Schwarz U, Hanfland M, Rozenberg G K H, Gorodetsky P, Pasternak M P 2001 Phys. Rev. Lett. 87 125501
- [25] Popović Z, Satpathy S 2002 Phys. Rev. Lett. 88 197201
- [26] Leonov I, Binggeli N, Korotin D M, Anisimov V I, Stojić N, Vollhardt D 2008 Phys. Rev. Lett. 101 096405
- [27] Medvedeva J E, Korotin M A, Anisimov V I, Freeman A J 2002 Phys. Rev. B 65 172413
- [28] Perdew J P, Wang Y 1992 Phys. Rev. B 45 13244
- [29] Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

Orbital ordering and its origin of KCrF₃*

Wang Guang-Tao[†] Zhang Min-Ping Li Zhen Zheng Li-Hua

(College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China)

(Received 8 April 2011; revised manuscript received 5 June 2011)

Abstract

The electronic, the magnetic and the orbital structures of KCrF₃ are studied by first principles in its recently identified crystallographic phases (tetragonal and cubic) [Margadonna and Karotsis 2006 *J. Am. Chem. Soc.* **128** 16436]. In tetragonal phase, both generalized gradient approximation (GGA) and GGA+U calculations show that the ground state is the *A*-type antiferromagnetic (*A*-AFM) configuration with *G*-type orbital ordering pattern. Our calculations show that the orbital structures and the magnetic configurations can be measured by the optical conductivity. In the cubic state, the GGA calculations show that the ground state is ferromagnetic half metal state, while the GGA+U ($U_{eff} = 3.0 \text{ eV}$) calculations show that the *A*-AFM insulator phase is the ground state. Our calculations indicate that the electron-electron interactions rather than the electron-phonon interactions are the driving forces behind the orbital order.

Keywords: first principles, orbital ordering, optical conductivity, Jahn-Teller effect **PACS:** 71.20.–b, 75.25.Dk, 78.56.–a, 71.70.Ej

^{*} Project supported by National Natural Science Foundation of China (Grant No.10947001).

[†] E-mail: wangtao@henannu.edu.cn