过模波导器件的迭代设计方法

王强1)3) 周海京2) 杨春1) 李彪1) 何晓阳1);

1)(中国工程物理研究院,电子工程研究所,绵阳 621900)

2) (应用物理与计算数学研究所,北京 100094)

3) (清华大学, 工程物理系, 北京 100084)

(2012年12月8日收到;2013年2月25日收到修改稿)

从模式保留和转换的角度, 过模波导器件可分为模式转换器、模式保留器和模式综合器. 传统方法只解决其中一种器件的设计或者对器件的某个指标进行改进. 本文在深入分析耦合波理论之后, 提出了过模波导器件的迭代设计方法, 从原理上解决了过模波导器件的设计问题. 该方法能够统一设计三类过模波导器件, 通过添加不同的结构控制方法, 可得到转换效率更高、带宽更宽、结构更紧凑、满足不同工程需求的器件, 而且还能有效设计一些新型器件. 给出了两个设计实例: 双频 TM₀₁—TE₁₁ 模式变换器和光壁馈源喇叭. 双频 TM₀₁—TE₁₁ 模式变换器的两个工作频点为 8.75 GHz 和 10.3 GHz, 波导半径为 16 mm, 在两个频点转换效率为 99%以上. 光壁馈源喇叭实现 TE₁₁ 模式向高斯束的转换. CST 仿真结果验证了这两个器件设计的正确性和有效性.

关键词:耦合波理论,模式转换器,模式过渡器,迭代法 PACS: 52.35.Hr, 42.68.Ay, 92.60.Ta DOI: 10.749

DOI: 10.7498/aps.62.115204

1引言

随着高功率微波应用越来越广泛,过模波导器 件的应用也越来越频繁 [1]. 从模式保留和转换的 角度,过模波导器件可分为三类:模式转换器,实 现一个波导模式向另外一个波导模式的转换,例 如 TM01—TE11 模式转换器:模式保留器,器件输入 端和输出端模式相同,但器件结构特性(半径变化 或者轴线弯曲)发生改变,例如 TEo1 模式过渡器、 TM01 弯头结构;模式综合器,输入为一个模式,输 出为模式分布,例如光壁馈源喇叭.这些过模波导 常常可采用耦合波理论进行描述. 在高功率微波 的不同应用需求中,涌现了大量以耦合波理论为基 础的设计方法:相位重匹配法^[2]、常曲率法^[3]、基 于结构参数的蜂窝优化方法^[4]、Dolph-Chebyshev 方法 [5], 等等. 然而, 这些传统设计方法都只解决 某一种器件的设计或者对某种器件的某个指标进 行改进^[6]. 最近几年出现了迭代设计法, 该方法能 够对三类过模波导统一设计,设计结构相比于传

统方法能够具备更优的电特性和结构特性, 甚至 能设计传统方法无能为力的新型器件. 迭代法存在 两条发展路线: 基于整体结构轮廓优化和基于耦 合波理论的优化求解. 第一条路线由 Denisov 等完 成^[7,8], 但他们在公开发表的文献中对于具体技术 细节披露甚少. 第二条路线由 Eric 等提出^[9], 他们 完成了迭代梯度的求解工作, 但没有给出迭代步长 的合理取值方法并且对具体应用描述较少. 本文在 Eric 的工作的基础上, 完成了迭代步长求解, 建立 了通用迭代法设计流程. 在设计实例部分, 设计了 双频 TM₀₁—TE₁₁ 模式转换器和光壁馈源喇叭. 双 频 TM₀₁—TE₁₁ 模式转换器的设计未见报道, 本文 首次报道了此类器件的设计和仿真结果; 光壁馈源 喇叭虽然设计方法较多, 但以耦合波理论为基础进 行设计也尚属首次.

2 迭代法原理

耦合波理论^[10]对非均匀波导进行描述时,认为:当遭遇波导不均匀性(轴线弯曲、半径渐变或

[†]通讯作者. E-mail: hexy789@163.com

^{© 2013} 中国物理学会 Chinese Physical Society

边界阻抗改变)时,不同模式间将发生模式耦合.忽略反射模和波导损耗的耦合波方程组如式(1):

$$\frac{\mathrm{d}\boldsymbol{A}}{\mathrm{d}z} = \mathrm{j}\boldsymbol{\beta}\boldsymbol{A} + \boldsymbol{C}(s,z)\boldsymbol{A},\tag{1}$$

A 为模式复幅度向量, z 为轴线坐标, j 为虚数单位, β 为模式传播常数, s 为结构函数, 结构函数的选择 与耦合机理有关系, 对于轴线弯曲波导 s 为曲率, 而 对于半径渐变波导 s 为 d(lna)/dz, a 为半径, C 为 耦合系数矩阵. 模式沿轴的变化可分为两部分, 一 部分为自身相位的变化, 第二部分为其他模式对该 模式的耦合项.

过模波导器件设计问题可描述为:已知输入模 式分布和输出模式分布,如何设计器件结构,使得 最终效率最高.将结构作为待优化的函数,将效率 作为优化目标,这个问题为泛函优化问题

$$\max_{s(z)} J(s), \tag{2}$$

s(z)为结构函数, J(s)为效率. 将结构函数离散化为 N个结构变量, $S = (s_1, s_2, ..., s_N)$,则泛函优化问题 转换为多变量优化问题. 在数学上,多变量优化问 题常常采用最速下降法进行求解,求解过程为如下 迭代过程: 给定初始结构; 对第 p 次迭代,判断结构 性能是否达到要求, 如果满足则迭代过程结束, 如 果不满足, 采用 $S^{p+1} = S^p + t^p \Delta S^p$ 更新结构,并进 行第 p+1 次迭代. 其中, S 为结构向量, t^p 为第 p步迭代步长, ΔS^p 为梯度, 也即 J(S) 关于每一个结 构变量的偏导数. 迭代法的两个关键步骤为: 梯度 求解和迭代步长求解. 梯度为器件改善的方向, 而 迭代步长决定了沿着这个方向走多远, 两者的正确 计算决定了迭代过程能否快速有效收敛.

2.1 梯度求解

梯度求解过程需要求出效率 J(S) 对每一个变 量 s_k 的偏导数. 求解过程如下 ^[9]: 记 W_k 为模式分 布函数 A 对 s_k 的偏导数, 为便于与直波导连接, 要 求 $W_k(0) = 0.$ (1) 式对 s_k 求导,

$$\frac{\mathrm{d}\boldsymbol{W}_k}{\mathrm{d}z} = \boldsymbol{C}(\boldsymbol{S}, z)\boldsymbol{W}_k + \partial_{s_k}\boldsymbol{C}(\boldsymbol{S}, z)\boldsymbol{A}. \tag{3}$$

引入伴随状态 Z, Z 为如下反向传播过程的解:

$$\frac{\mathrm{d}\boldsymbol{Z}}{\mathrm{d}z} = \boldsymbol{C}(\boldsymbol{S}, z)\boldsymbol{Z},$$
$$\boldsymbol{Z}(L) = \boldsymbol{R}_m, \tag{4}$$

其中, **R**_m 为目标模式分布. 可得到效率 **J**(**S**) 随 s_k 的偏导:

$$\partial_{s_k} J(\boldsymbol{S}) = \operatorname{Re}(\partial_{s_k} \boldsymbol{A}(L), \boldsymbol{Z}(L))$$

= $\operatorname{Re}(\boldsymbol{W}_k(L), \boldsymbol{Z}(L)),$ (5)

括号表示厄米内积.而由分部积分可得

$$\int_{0}^{L} \left(\frac{\mathrm{d} \boldsymbol{W}_{k}}{\mathrm{d} z}, \boldsymbol{Z} \right) \mathrm{d} z$$
$$= -\int_{0}^{L} \left(\boldsymbol{W}_{k}, \frac{\mathrm{d} \boldsymbol{Z}}{\mathrm{d} z} \right) \mathrm{d} z + (\boldsymbol{W}_{k}(L), \boldsymbol{Z}(L), \quad (6)$$

所以,有

$$(\boldsymbol{W}_{k}(L), \boldsymbol{Z}(L))$$

$$= \int_{0}^{L} \left(\frac{\mathrm{d}\boldsymbol{W}_{k}}{\mathrm{d}z}, \boldsymbol{Z} \right) \mathrm{d}z + \int_{0}^{L} \left(\boldsymbol{W}_{k}, \frac{\mathrm{d}\boldsymbol{Z}}{\mathrm{d}z} \right) \mathrm{d}z$$

$$= \int_{0}^{L} \left[(\boldsymbol{C}\boldsymbol{W}_{k}, \boldsymbol{Z}) + (\boldsymbol{W}_{k}, \boldsymbol{C}\boldsymbol{Z}) \right] \mathrm{d}z$$

$$+ \int_{0}^{L} (\partial_{s_{k}} \boldsymbol{C}\boldsymbol{A}, \boldsymbol{Z}) \mathrm{d}z.$$
(7)

无损耗时,耦合系数矩阵为厄米反对称矩阵,即 $C = -C^{H}$,因而有

$$(\boldsymbol{C}\boldsymbol{W}_k, \boldsymbol{Z}) + (\boldsymbol{W}_k, \boldsymbol{C}\boldsymbol{Z}) = 0, \qquad (8)$$

于是,得到如下结果:

$$\partial_{s_k} J(\boldsymbol{S}) = \operatorname{Re}\left(\int_0^L \left(\partial_{s_k} \boldsymbol{C} \boldsymbol{A}, \boldsymbol{Z}\right) \mathrm{d}z\right).$$
 (9)

2.2 迭代步长

为计算迭代步长, 需将梯度表达式 (9) 重新写 为多条耦合线叠加的形式:

$$\Delta \boldsymbol{S} = \begin{bmatrix} \partial_{s_1} J(\boldsymbol{S}), \partial_{s_2} J(\boldsymbol{S}) \dots \partial_{s_N} J(\boldsymbol{S}) \end{bmatrix}$$
$$= \sum_{i=1}^{M} \sum_{j=i+1}^{M} \Delta s_{ij}$$
$$= \sum_{i=1}^{M} \sum_{j=i+1}^{M} \operatorname{Re} \left[c_{ij} \cdot \left(A_i^* \cdot Z_j + A_j^* \cdot Z_i \right) \right], \quad (10)$$

 Δs_{ij} 代表 *i*, *j*模式形成的耦合线, *M*代表模式总数, c_{ij} 为模式 *i*、*j*间的波型参数, 即耦合系数对 s_k 的 导数, $A_{i(j)}$, $Z_{i(j)}$ 代表第 i(j)个模式的模式幅度. 定 义耦合线对梯度的贡献

$$G_{ij} = \int_0^L |\Delta s_{ij}| \,\mathrm{d}z. \tag{11}$$

在每步迭代中,总能够找到贡献最大的耦合线,与 其他耦合线相比,改变这条耦合线的幅度更能够提 高效率,因而可针对这条耦合线来计算迭代步长. 在两模耦合过程中,下式形式的耦合系数分布能够 有效实现模式变换:

$$C_{12}(z) = \frac{\pi}{L} \sin\left[\left(\beta_2 - \beta_1\right)z\right].$$
 (12)

比较(10)式和(12)式,不难得到迭代步长取值为

$$t = \frac{\pi}{|c'_{mn}|^2 L},\tag{13}$$

其中 c'mn 为贡献最大的模式对之间的波型参数.从 (13) 式看出,随着迭代次数增加,迭代步长的取值 并不随着迭代次数而变小,然而梯度却会随着迭代 次数减小,因而结构改变量会不断变小,最终收敛.

2.3 迭代法设计流程

迭代过程只针对结构函数进行设计,对于轴线 弯曲耦合机理,结构函数为曲率,对于半径渐变耦 合机理,结构函数为半径对数相对于传播变量的导 数.可在每次迭代过程中,添加结构控制方法,稍微 改变结构函数,从而实现某些特殊的结构特性,例 如,共轴、结构弯曲一定角度、或者输入输出半径 控制,等等.以结构 90°弯曲为例,控制方法为

$$\rho_{\text{new}} = \rho_{\text{old}} - \frac{1}{L} \int \rho_{\text{old}}(z) \, \mathrm{d}z + \frac{\pi}{2L}, \qquad (14)$$

其中, ρ_{new} 为结构控制之后的曲率函数, ρ_{old} 为结构 控制之前的曲率函数, L 为结构总长度. 给出较好的 初始结构之后, 每次迭代时结构控制方法对结构函 数改变很少, 并不会影响迭代进程. 最终迭代法设 计流程如图 1 所示.

3 设计实例

对于常规的模式变换器,本文作者已经做了相关研究,并与传统方法进行了比较,包括:宽带紧凑型 TE₀₁—TE₁₁ 模式变换器^[11] 和一周期 TE₀₂— TE₀₁ 模式变换器^[12],从比较结果中看出:迭代法设计的器件不仅带宽更宽,而且结构也能更紧凑.这 儿给出两个设计实例,采用传统方法较难实现.

3.1 双频 TM₀₁—TE₁₁ 模式变换器

双频高功率微波源 [13] 是目前研究方向之一, 然而双频模式变换器却鲜见报道,采用迭代法可 设计双频工作的模式变换器. 双频模式变换器的 设计需要在基本迭代法的基础上稍作修改:基本 迭代法的梯度求解是在一个频点下计算得到,而 双频器件的梯度求解需要在两个频点下分别计算, 然后加权求和,求和结果作为新的梯度,再代入迭 代法进行计算.根据新的梯度方向来改变结构能够 提高这两个频点处的转换效率.设计了工作频点为 8.75 GHz 和 10.3 GHz 的双频 TM01-TE11 模式变 换器, 波导半径为 16 mm. 结构总长度为 793 mm, 如图 2 所示. 采用 CST 建模仿真,带宽曲线如图 3 所示,从图中看出存在两个模式转换频带:频带1 的中心频点为 8.75 GHz, 转换效率为 99.93%, 带宽 达到 0.22 GHz; 频带 2 的中心频点为 10.3 GHz, 转 换效率为 99.86%, 带宽达到 0.48 GHz, 8.75 GHz 和 10.3 GHz 的模式耦合过程分别如图 4(a), (b) 所示.

图 1 过模波导器件的迭代法设计流程

图 2 双频 TM₀₁—TE₁₁ 模式变换器示意

3.2 光壁馈源喇叭设计

在高功率微波系统中, 光壁喇叭相比于波纹喇 叭能够降低打火风险. 采用迭代法能够快速设计光 壁喇叭. 光壁喇叭需要完成 TE₁₁ 模式向基模高斯 束的转换. 选择高斯束束腰半径为 w = 0.6a, 将高 斯束的场分布按照波导模式作展开, 得到波导模式 成分为: TE₁₁ 成分 80.4%, TM₁₁ 成分 18%, 与 TE₁₁ 相位相差 π, TE₁₂ 成分为 1.6%, 与 TE₁₁ 同相. 光壁 喇叭的设计为模式综合问题, 可采用迭代法快速设 计.设计了工作频率为 35 GHz 的光壁喇叭,输入 半径为 16 mm,输出半径为 40 mm.结构总长度为 426 mm,结构如图 5 所示.在 PC 机上的总计算时 间为 2 min.采用 CST 建模仿真,方向图计算结果 如图 6 所示,从图中看出方向图的 E 面、45°切面 和 H 面重合度达到 25 dB,高斯束成分较高,达到了 光壁喇叭的设计要求.

图 5 光壁馈源喇叭示意

图 6 光壁喇叭的 CST 仿真远场方向图

4 结 论

本文介绍了过模波导器件的迭代设计方法,该 方法能够快速自动完成模式变换器、渐变器和模 式综合器件的设计,通过添加结构控制方法,还能 够实现指标改进. 采用迭代法设计了双频 TM₀₁— TE11 模式转换器和光壁馈源喇叭两个过模波导器 件. 双频 TM01—TE11 模式转换器的两个工作频率 分别为 8.75 GHz 和 10.3 GHz, 波导半径为 16 mm, CST 仿真结果表明两个频点处的转换效率分别为 99.93%和 99.86%, 达到预期指标. 光壁馈源喇叭工 作频率为 35 GHz, 输入半径为 16 mm, 输出半径为 40 mm, CST 仿真结果表明远场方向图的 E 面、H 面和 45° 切面有 25 dB 的重合度, 高斯束成分较高. 迭代法为过模波导器件设计的通用方法,为了适应 不同的工程需求,可在基本迭代法的基础上作多种 改进.针对不同需求的改进方法的研究仍然是一个 很值得研究的方向.

- [1] Thumm M K, Kasparek W 2002 IEEE Trans. on Plasma Sci. 30 3
- [2] Kumric H, Thumm M K, Wilhelm R 1988 INT. J. Electron. 64 1
- [3] Vinogradov D V, Denisov G G 1991 Int. J. Infrared Millim. Waves 12
- [4] Yang S W, Qing A Y 2005 IEEE Trans. on Plasma Sci. 33 4
- [5] Flugel H, Kuhn E 1988 IEEE Trans. on Microwave Theory Tech. 36 2
- [6] Sun X, Zhao Q, Li H F 2008 Acta Phys. Sin. 57 4 (in Chinese) [孙旭, 赵青,李宏福 2008 物理学报 57 4]
- [7] Denisov G G, Kalynova G I, Sobolev D I 2004 Radiophysics and Quantum Electronics 47 8
- [8] Sobolev D I, Denisov G G 2010 IEEE Trans. on Plasma Sci. 38 10
- [9] Luneville E, Krieg J M 1998 IEEE Trans. on Microwave Theory Tech. 46 1
- [10] Sporleder F, Unger H G 1979 Waveguide Tapers Transitions and Couplers (London: Peregrinus on behalf of the Institution of Electrical Engineers) p30
- [11] Wang Q, Zhou H J, Yang C, Li B, Ye J 2013 High power Lasers and Particle Beams 25 3 (in Chinese) [王强,周海京,杨春,李彪,叶建 2013 强激光与粒子束 25 3]
- [12] Wang Q, Zhou H J, Yang C, Li B 2013 High power Lasers and Particle Beams 25 2 (in Chinese) [王强, 周海京, 杨春, 李彪 2013 强激光与 粒子束 25 21
- [13] Fan Y W, Zhong H H, Li Z Q, Shu T, Zhang J D, Zhang J, Zhang X P, Yang J H, Luo L 2007 J. Appl. Phys. 102 103304

Iterative method for multimode waveguide design

Wang $Oiang^{1)3}$

Zhou Hai-Jing²⁾ Yang Chun¹⁾ Li Biao¹⁾ He Xiao-Yang^{1)†}

1) (Institute of Engineering electrics, CAEP, Mianyang 621900, China)

2) (Institute of Applied Physics and Computational Mathematics, Beijing 100094, China)

3) (Department of Engineering Physics, Tsinghua University, Beijing 100084, China)

(Received 8 December 2012; revised manuscript received 25 February 2013)

Abstract

Coupled mode theory is an effective tool for analysis and synthesis of overmoded waveguides, but the inverse problem has not been solved yet. This paper completed the iterative procedure to solve the inverse problem. The new method can design automatically and fast various mode converters, mode transducers and horn antennas with special radial pattern. Compared with conventional methods, the structure design using the new method has more advantages in electromagnetic and structural properties. Two design examples are given: dual band $TM_{01}-TE_{11}$ mode converter and smooth-wall feed horn antenna. The two working frequencies of the dual band $TM_{01}-TE_{11}$ mode converter are 8.75 GHz and 10.3 GHz, and the radius is 16 mm. The converter efficiencies exceed 99% at the two working frequencies. The smooth-wall feed horn antenna converts the TE_{11} mode to Gaussian beam effectively. Simulation results agree well with the theoretical predictions.

Keywords: coupled mode theory, mode converter, mode transducer, iterative method

PACS: 52.35.Hr, 42.68.Ay, 92.60.Ta

DOI: 10.7498/aps.62.115204

[†] Corresponding author. E-mail: hexy789@163.com