氦、氘对纯铁辐照缺陷的影响*

姜少宁1) 万发荣1)† 龙毅1) 刘传歆2) 詹倩1) 大貫惣明2)

(北京科技大学材料科学与工程学院,北京 100083)
(北海道大学工学研究院,札幌 060-8628,日本)
(2012年12月26日收到;2013年5月6日收到修改稿)

在核聚变堆的辐照环境中,核嬗变产物氢、氦对结构材料的抗辐照性能将产生很大的影响.本实验采用离子注 入和电子辐照模拟研究了氦和氘对具有体心立方结构的纯铁的影响.采用离子加速器在室温分别对纯铁注入氦离 子和氘离子,经500°C时效1h后在高压电镜下进行电子辐照.结果表明:室温注氦和室温注氘的纯铁在500°C时 效后分别形成间隙型位错环和空位型位错环.在电子辐照下,间隙型位错环吸收间隙原子而不断长大,而空位型位 错环吸收间隙原子不断缩小.通过计算位错环的变化速率发现,空位型位错环比间隙型位错环吸收了更多的间隙原 子,即室温注氘纯铁的位错偏压比室温注氦纯铁的偏压参量大,这意味着相同实验条件下空位型位错环对辐照肿胀 的贡献大于间隙型位错环对辐照肿胀的贡献.利用氦 - 空位复合体和氘 - 空位复合体的结构,分析了注氦和注氘后 在纯铁中形成不同类型位错环的原因.

关键词:氦,氘,辐照损伤,位错环 PACS: 68.37.Lp, 61.72.Ff

1 引 言

相比核裂变能,核聚变能具有污染小及近乎无 限的资源,引起了人们的广泛关注.核聚变反应堆 中产生的氘氚聚变反应会释放出具有 14 MeV 能量 的中子,从而在聚变堆结构材料中造成严重的辐照 损伤^[1]. 此外, (n, p), (n, α) 核嬗变反应放出大量的 气体元素氢、氦,这些氢、氦的存在对结构材料的 抗辐照性能将产生很大的影响^[2]. 了解这些气体原 子对材料辐照损伤的行为对研究开发核聚变堆结 构材料十分重要,但是高中子通量下的材料辐照实 验难度很大,因此作为模拟辐照实验,可以借助于 电子辐照技术^[3].利用超高压透射电子显微镜对 材料进行电子辐照时,其离位损伤能够产生纯粹的 Frenkel 点缺陷对, 而没有级联效应, 从而可以简化 缺陷团簇与辐照点缺陷的相互作用. 通过分析这些 点缺陷与缺陷团簇的相互作用,有可能了解缺陷团 簇的性质^[4].利用超高压透射电子显微镜还可以进

DOI: 10.7498/aps.62.166801

行原位观察^[5],从而可以对缺陷团簇的形成过程有 更多的理解.

过去的研究表明,具有体心立方结构的材料会 表现出比较好的抗辐照性能^[6].未来的核聚变反应 堆的结构材料有可能采用体心立方结构的材料,如 铁、钒、钨等. 所以, 研究体心立方结构材料的辐 照行为,对于发展核聚变技术具有重要的意义.一 般的辐照实验中,在纯铁中观察到的位错环都是间 隙型位错环,这些间隙型位错环在电子辐照下不断 长大^[7]. 但 Huang 等^[8] 研究发现, 室温注氢纯铁在 500°C 时效后形成了空位型位错环. 作为氢同位素 研究的一个内容,有关室温注氘纯铁中位错环的研 究较少.此外.对注氦材料的研究多是氦泡的模拟 研究^[9-11],而针对实验的数据较少^[12],但纯铁中 氦与铁的相互作用需要实验验证. 本实验通过离子 注入和电子辐照,研究室温注氦、注氘纯铁 500°C 时效形成的位错环的类型及其变化.并分析辐照下 氦、氘与辐照缺陷的相互作用,从而探讨氦、氘对

*国家重点基础研究发展计划(批准号: 2011GB108002)、国家自然科学基金(批准号: 50971030, 11275023, 51071021)和日本学术振兴会 Asia-Core 计划资助的课题.

[†]通讯作者. E-mail: wanfr@mater.ustb.edu.cn

核聚变堆结构材料辐照损伤的影响.

2 实 验

试样采用纯度为 99.9995%的高纯铁, 经电弧 熔炼及机械减薄后, 制成厚度约为 100 μm, 直径 为 3 mm 的圆片. 为消除制样过程中可能产生

的应力, 将圆片密封在真空石英管内进行热处理 (700 °C/0.5 h/空冷). 随后利用电解双喷法制备透射 电镜样品. 离子注入实验采用中国科学院半导体研 究所的 LC-4 型高能离子注入机, 注入离子分别为 He⁺ 和 D₂⁺, 注入剂量均为 1×10^{17} /cm², 注入温度 为室温. 离子注入能量采用 SRIM (stopping range of ions in matter) 软件计算, 如图 1 所示.

图 1 铁中氦离子和氘离子的注入能量与注入深度

为了保证相同剂量的氦离子和氘离子注入纯 铁中产生相同的辐照损伤,离子注入需要产生相 同的空位.氦离子注入后 240 nm 处与氘离子注入 后 400 nm 处产生的空位数量相同.氦离子注入后 25 nm 处也产生同等数量的空位,但位错等缺陷一 般存在于 300 nm 左右的深度,较薄的区域即便产 生损伤,位错也容易逃逸.根据以上分析,最终确定 注氦纯铁加速电压为 100 keV,注氘纯铁加速电压 为 58 keV.离子注入后的样品在超高压透射电镜的 加热试样台中时效.根据文献 [8],借鉴课题组前期 实验中的时效温度,选择 500 °C 时效 1 h.随后进行 电子辐照,由于低活化铁素体/马氏体钢在核聚变堆 中的工作温度可能在 500 °C 附近,因此电子辐照的 温度选择 500 °C.时效及电子辐照采用日本北海道 大学的 JEM-ARM1300 型超高压透射电子显微镜, 加速电压为 1250 kV, 辐照损伤速率为 1.7×10⁻³ dpa/s.

3 结果及分析

材料受到高能粒子辐照后可以产生微观结构 的变化,这是由于高能粒子和材料的点阵原子实发 生一系列碰撞,从而在材料内部产生大量的点缺陷. 图 2 为室温注氦和室温注氘前后纯铁样品的微观 结构.离子注入后,两种样品中均产生了大量的缺 陷.这些缺陷尺寸小,密度大,在电镜照片中呈现为 黑斑.注入的离子将被这些缺陷捕获,从而比较稳 定地存在于试样中.

图 2 室温注氦及室温注氘前后纯铁的微观形貌 (a) 注氦前; (b) 注氦后; (c) 注氘前; (d) 注氘后

离子注入产生的缺陷在高温下扩散、聚集,形 成较大尺寸的缺陷.温度足够低时,缺陷只是密度 增加但尺寸不变,在电镜下呈现为黑斑 (black dots) 形貌.温度高时,缺陷可以长大成位错环,位错环又 可以和电子辐照时产生的纯 Frenkel 点缺陷对相互 作用^[13].通过分析这些作用,可以研究所形成的位 错环的性质.室温注入离子后形成的高密度小尺寸 的缺陷经 500 °C 时效,会互相聚集长大成低密度大 尺寸的位错环.在电子辐照下,这些位错环进一步 吸收电子辐照产生的点缺陷而发生变化.由于注入 的离子不同,在电子辐照下位错环发生的变化也可 能有所不同.

图 3 表示室温注氦纯铁在电子辐照下位错环 的变化过程.双束衍射条件下,根据等厚条纹和消 光系数计算了样品的深度,观察深度选择 240 nm 处.在 500°C 时效 1 h 后 (如图 3(a) 所示),位错环的 平均尺寸约为 50 nm.随着电子辐照剂量的增加,位 错环的尺寸逐渐增大.到 2.86 dpa 的辐照剂量 (如 图 3(g) 所示),位错环的平均尺寸约为 90 nm.

为了避免位错环在试样深度方向分布的影响, 随机选取了同一深度不同的区域进行辐照实验. 图 4 为同一样品另一区域在电子辐照下微观结构的 变化. 与图 3 相似,在 500 °C 时效后产生了尺寸为 20—60 nm 的位错环 (如图 4(a) 所示).在电子辐照 下,这些大尺寸的位错环继续长大,当位错环的尺 寸长大到一定值后,发展为网状位错 (图中箭头所 示). 位错环的最大直径 R_{max} 由位错环的密度 ρ_{L} 决 定 ^[14],即 (4 $\pi\rho_{\text{L}}/3$) $R_{\text{max}}^3 = 1$.

室温注氦产生的缺陷在 500 °C 时效后长大成 尺寸较大的位错环.在电子辐照下,位错环与电子 辐照产生的缺陷相互作用而长大.电子辐照产生了 同等数量的间隙原子和空位,由于间隙原子的迁移 能比空位低,更易于扩散并聚集,因此位错环对间 隙原子的吸引力一般都远大于对空位的吸引力^[15]. 位错环吸收的间隙原子总是比吸收的空位多.根据 同类位错环吸收同类缺陷长大的原理,间隙型位错 环吸收间隙原子后不断长大,由此判定注氦产生的 位错环为间隙型位错环^[16].

同样的实验条件下,注氘对纯铁微观结构的影响与注氦的影响则有所不同,如图 5 和图 6 所示. 室温注氘纯铁的观察深度约 400 nm.

由图 5 可以看出,室温注氘纯铁在 500 °C 时效 1 h 后形成了尺寸较大的位错环 (如图 5(a) 所示), 尺寸约为 120 nm. 对这一区域进行电子辐照可以观 察到,随着辐照剂量的增加位错环不断缩小. 因为 空位型位错环吸收间隙原子后不断缩小,因此可以 判断本实验中观察到的电子辐照下缩小的位错环 为空位型位错环^[17].

图 3 室温注氦纯铁在 500°C 电子辐照下位错环的长大过程 (a) 0 dpa; (b) 0.10 dpa; (c) 0.31 dpa; (e) 1.02 dpa; (f) 1.84 dpa; (g) 2.86 dpa

图 4 室温注氦纯铁 500 °C 电子辐照后位错环的长大过程 (a) 0 dpa; (b) 0.31 dpa; (c) 0.92 dpa; (d) 2.04 dpa; (e) 3.06 dpa

图 5 室温注氘纯铁 500 °C 电子辐照后位错环的缩小过程 (a) 0 dpa; (b) 0.1 dpa; (c) 0.25 dpa; (d) 0.28 dpa; (e) 0.32 dpa; (f) 0.35 dpa; (g) 0.38 dpa; (h) 0.42 dpa

图 6 室温注氘纯铁 500°C 电子辐照后位错环的缩小过程 (a) 0.31 dpa; (b) 0.44 dpa; (c) 0.60 dpa; (d) 0.70 dpa; (e) 0.84 dpa; (f) 1.00 dpa

图 6 为室温注氘纯铁另一辐照区域的结果. 图中的空位型位错环随着电子辐照剂量的增加逐 渐缩小,但缩小速率很慢,位错环完全消失需要约 0.70 dpa 的辐照剂量.另外,在缩小的空位型位错环 旁边,随着辐照剂量的增加,新生成了不断长大的 位错环,这在以前的很多文献中都提到过^[18],在纯 电子辐照下会产生不断长大的间隙型位错环.

由于位错环吸收的间隙原子比空位多,在基体 中剩余的空位也会越积越多,空位浓度达到一定过 饱和后,会沿三维方向聚集在一起形成空洞,出现 所谓的辐照肿胀,导致材料脆化.因此,研究位错环 对间隙原子和空位的吸收数量的差别,即偏压参量 *S*,对探讨材料的辐照损伤具有重要的意义.偏压参 量公式如下:

$$s = \frac{z_{\rm id} - z_{\rm vd}}{z_{\rm id}},\tag{1}$$

其中, z_{id}, z_{vd} 分别表示位错对间隙原子和空位的吸 收截面积 (单位为: nm²). 根据 (1) 式可知, 偏压参量 越大, 说明单位时间内位错环吸收的间隙原子越多. 吸收了更多的间隙原子, 位错环的变化速率 (长大 或者缩小) 也会随之增大. 因此, 虽然无法准确计算 位错环吸收的间隙原子和空位的数量, 但可以通过 位错环的长大或缩小速率判断偏压参量的大小, 根 据偏压参量可以比较位错环吸收的间隙原子数量 的多少. 将室温注氦纯铁和室温注氘纯铁在电子辐 照下位错环的尺寸随辐照剂量的变化进行对比,来 估算两种试样中位错环的长大或缩小速率,如图 7 和图 8 所示.

图 7 注氦纯铁在电子辐照下辐照剂量与位错环的关系

同一试样中不同的位错环在尺寸上稍有差别, 但它们的变化速率基本相同.在计算了不同辐照剂 量下位错环的尺寸之后,进行了数据拟合.根据图 7 和图 8 中注氦、注氘纯铁位错环的拟合直线及其 公式可知,注氘纯铁中位错环的缩小速率比注氦纯 铁中位错环的长大速率大得多(变化速率与斜率的 绝对值成正比),这说明注氘纯铁中空位型位错环的 偏压参量比注氦纯铁中的间隙型位错环大.结合偏 压理论可以判定,相同实验条件下,注氘纯铁中空 位型位错环对辐照肿胀的贡献要大于间隙型位错 环对辐照肿胀的贡献.

图 8 注氘纯铁在电子辐照下辐照剂量与位错环的关系

注氦纯铁中形成间隙型位错环,而注氘纯铁 中形成空位型位错环. 氘离子注入后,试样中除了 产生间隙原子和空位之外,还会产生间隙原子团 (Is)和空位团(Vs). 这四种缺陷都可以成为氘的陷 阱. 因此, 氘离子注入后试样中可能存在 D-I, D-V, D-Is, D-Vs 四种氘和缺陷的复合体^[19]. 低温时效 (300—450°C)时, D-I和 D-Is两种复合体开始移动 并聚集在一起形成间隙型位错环. 当时效温度高于 450°C时, D-V 复合体开始移动. 450—500°C 范围 内, D-V 复合体聚集在一起形成空位型位错环. 电 子辐照下,这些空位型位错环吸收间隙原子而不断 缩小, 以至最后消失.

D-V 复合体聚集生成的二次缺陷是空位型位 错环而不是空洞的原因,可能与氘在空位处被俘获 的位置有关.离子沟道实验表明^[20],铁中氢在空位 处被俘获的位置不是空位的中心而是空位旁边的 八面体间隙附近. 这样, 氢与空位结合形成的复合 体将呈哑铃状, 具有明显的各向异性. 这些哑铃状 的 H-V 复合体将沿某一平面聚集, 最后形成空位型 位错环. 注氦试样时效形成间隙型位错环的原因也 可以用 He-V 复合体的结构来解释. 氦在空位的中 心处被俘获, He-V 复合体基本上为各向同性, 它们 聚集时易于形成表面能更低的三维的空洞^[21].

以前,对于注氢纯铁中形成的空位型位错环, 利用透射电镜的 Inside-Outside 实验方法测定了位 错环的柏氏矢量等参数^[8].本文中的注氘纯铁中 的空位型位错环和注氦纯铁中的间隙型位错环,也 应该利用 Inside-Outside 方法测定它们的柏氏矢量 等参数.但是,该实验的工作量较大,有待后续工 作完成.

4 结 论

室温注氦纯铁在 500°C 时效形成了间隙型位 错环, 而室温注氘纯铁在 500°C 时效形成空位型位 错环.在电子辐照下,两种位错环均吸收了迁移速 率更快的间隙原子而变化;间隙型位错环不断长大, 空位型位错环则不断缩小. 室温注氘纯铁中的空位 型位错环的缩小速率远大于室温注氦纯铁中间隙 型位错环的长大速率,这说明空位型位错环的偏压 参量大于间隙型位错环的偏压. 形成不同类型的位 错环的原因可能是氦和氘在铁中空位处被捕获的 位置不同. 氦和氘分别与空位形成 He-V 和 D-V 复 合体. 氦在空位的中心处被捕获, He-V 复合体基本 上为各向同性,它们聚集时易于形成表面能更低的 三维的空洞. 氘在空位处被捕获的位置是空位旁边 的八面体间隙附近, D-V 复合体呈哑铃状, 具有明 显的各向异性. 这些哑铃状的 D-V 复合体将沿某一 平面聚集,最后形成二维的空位型位错环.

- [1] Klueh R L, Nelson A T 2007 J. Nucl. Mater. 371 37
- [2] Hunn J D, Lee E H, Byun T S, Mansur L K 2000 J. Nucl. Mater. 282 131
- [3] Wolfeden A 1976 Micron 7 55
- [4] Osetsky Y N, Bacon D J, Serra A, Singh B N, Golubov S I 2000 J. Nucl. Mater. 276 65
- [5] Gao Y Z, Sun G R, Zhang T H, Ji C Z, Yang J H 1990 Chin. Phys. Lett. 8 82
- [6] Zinkle S J 2004 APS Division of Plasma Physics 46th Annual Meeting Savannah, GA, November 15–19, 2004

- [7] Arakawa K, Mori H, Ono K 2002 J. Nucl. Mater. 307-311 272
- [8] Huang Y N, Wan F R, Jiao Z J 2011 Acta Phys. Sin. 60 036802 (in Chinese) [黄依娜, 万发荣, 焦志杰 2011 物理学报 60 036802]
- [9] Deo C S, Okuniewski M A, Srivilliputhur S G, Maloy S A, Baskes M I, Michael R J, Stubbins J F 2007 J. Nucl. Mater. 361 141
- [10] Stewart D M, Osetsky Y N, Stoller R E, Golubov S I, Seletskai T, Kamenski P J 2010 Philos. Mag. 90 935
- [11] Zheng H 2007 Acta. Phys. Sin. 56 389 (in Chinese) [郑晖 2007 物理 学报 56 389]
- [12] Chen J, Jung P, Hoffelner W, Ullmaier H 2008 Acta. Mater. 56 250

- [13] Alonso E, Caturla M J, Díaz de la Rubia T 2000 J. Nucl. Mater. 276 221
- [14] Gary S W 2007 Fundamentas of Radiation Materials Science (Newyork: Springer) p144
- [15] Gilbert M R, Yao Z, Kirk M A, Jenkins M L, Dudarev S L 2009 J. Nucl. Mater. 386–388 36
- [16] Trinkaus H, Singh B 2003 J. Nucl. Mater. 323 229
- [17] Jiao Z J 1998 M. S. Dissertation (Beijing: University of Science and Technology Beijing) (in Chinese) [焦志杰 1998 硕士学位论文 (北京:

北京科技大学)]

- [18] Wolfenden A 1998 Micron 9 211
- [19] Wan F R, Zhu X F, Xiao J M, Yuan Y 1990 Acta Phys. Sin. 39 1093 (in Chinese) [万发荣, 朱晓峰, 肖纪美, 袁逸 1990 物理学报 39 1093]
- [20] Myers S M, Richards P M, Wampler W R 1985 J. Nucl. Mater. 165 9
- [21] Yao B, Edwards D J, Kurtz R J, Odette G R, Yamamoto T 2011 Fusion Reactor Materials Program Oak Ridge, US, December 31, 2011 pp85–89

Effects of helium and deuterium on irradiation damage in pure iron*

Jiang Shao-Ning¹) Wan Fa-Rong¹[†] Long Yi¹) Liu Chuan-Xin²) Zhan Qian¹) Ohnuki Somei²)

1) (School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

2) (Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan)
(Received 26 December 2012; revised manuscript received 6 May 2013)

Abstract

Productions of transmute elements (hydrogen and helium) have great influences on the resistance to irradiation damage in structural materials for fusion reactor. The evolution of irradiation damage in bcc iron is investigated with ion implantation and electron irradiation. Pure iron implanted by He⁺ or D⁺ ions at room temperature are aged at 500 °C for 1 h, then irradiated by electrons under high voltage electron microscope. The results show that interstitial loops (*i*-loop) and vacancy loops (*v*-loop) are formed in He⁺-implanted iron and D⁺-implanted iron respectively. Under electron irradiation, due to the absorption of interstitial atom, *i*-loop grows up while *v*-loop shrinks. According to the rate of variation of dislocation loop, *v*-loop absorbs more interstitial atoms, i.e., the dislocation bias of D⁺-implanted iron is larger than that of He⁺-implanted iron, which means that the *v*-loop has the more contributions to irradiation swelling than *i*-loop. The causes of the different natures of dislocation loops formed in D⁺-implanted iron and He⁺-implanted iron are analyzed by the structures of He-V and D-V complexes.

Keywords: helium, deuterium, irradiation damage, dislocation loop

PACS: 68.37.Lp, 61.72.Ff

DOI: 10.7498/aps.62.166801

† Corresponding author. E-mail: wanfr@mater.ustb.edu.cn

^{*} Project supported by the National Basic Research Program of China (Grant No. 2011GB108002), the National Natural Science Foundation of China (Grant Nos. 50971030, 11275023, 51071021), and the Asia Core University Program of Japan Society for the Promotion of Science.