表面态调控对GaN荧光光谱的影响

周楠 郑强 胡北辰 石德权 苗春雨 马春雨 梁红伟 郝胜智 张庆瑜[†]

(大连理工大学物理与光电工程学院三束材料改性教育部重点实验室,大连 116024)

(2013年11月21日收到;2014年3月14日收到修改稿)

采用高阻本征 GaN 薄膜,通过 H₃PO₄ 刻蚀和 SiO_xN_y 薄膜钝化方法对 GaN 薄膜进行表面态调控,研究 了表面态调控对 GaN 薄膜光致荧光光谱的影响.研究发现,H₃PO₄ 刻蚀对改善 GaN 薄膜的紫外荧光发射作 用不大,但显著增加可见荧光的强度;经 SiO_xN_y 薄膜表面钝化的 GaN 紫外荧光量子效率增加12—13 倍,同 时对可见荧光有明显增加.通过比较 H₃PO₄ 刻蚀和 SiO_xN_y 薄膜钝化的室温和低温荧光光谱,探讨了表面态 调控对 GaN 紫外荧光、蓝带荧光和黄带荧光的影响及相关物理机理.

关键词: GaN, 表面态调控, 荧光光谱 PACS: 78.55.Cr, 78.68.+m, 81.65.-b

1引言

GaN 是一种宽禁带直接带隙半导体材料,已经 在蓝光发光二极管、半导体照明、紫外半导体激光 器等光电子器件领域有着广泛的应用^[1-5].为了进 一步提高GaN基发光器件的荧光量子效率, GaN 表面态的调控逐渐受到人们的关注.研究发现.表 面吸附、N离子溅射、退火以及表面钝化均对 GaN 发光产生一定影响^[6-9],特别是表面钝化可以显著 提高GaN的荧光量子效率^[9]. Chevtchenko 等^[10] 发现, 经SiO₂和SiN_x 钝化处理后, 具有不同载流子 浓度的GaN 薄膜的紫外光致荧光(PL)光谱强度均 有不同程度的增加. 对于 SiO_2 和 SiN_x 钝化的GaN薄膜,最大PL增强分别为6.8倍和3倍.通过分析 钝化前后GaN表面能带弯曲的变化, Chevtchenko 等^[10]认为表面态密度的降低,进而导致表面复 合速率的下降是荧光增强的主要原因. SiO2和 SiN_x 是最常用的半导体钝化材料.在GaN基光电 器件中, SiO₂和SiN_x 钝化主要用于改善诸如GaN 肖特基晶体管、金属-绝缘体-半导体(MIS)结构、 GaAlN/GaN异质结构场效应晶体管(HFETs)等

DOI: 10.7498/aps.63.137802

的性能^[11-13]. Chevtchenko 等^[10]的研究结果表明,尽管SiO₂和SiN_x钝化可以明显提高GaN的荧光量子效率,但与GaAs高达2800倍的增强相比^[14],还要较大的提高空间.

本文报道了一种兼顾GaN光电子器件的电学性能和光学性能的SiO_xN_y钝化技术,使钝化后的GaN薄膜的紫外荧光量子效率增加12—13倍.通过与未处理GaN薄膜、H₃PO4刻蚀的对比,重点研究了SiO_xN_y表面钝化对GaN室温和低温PL谱的影响.研究结果表明,SiO_xN_y表面钝化不仅显著提高了GaN的荧光量子效率,而且明显改变了GaN的荧光光谱特征.

2 实验方法

GaN 薄 膜 是 在 AIXTRON 公 司 生 产 的 MOCVD 设备上制备的. GaN 薄膜生长条件为, 以 (0001) 面蓝宝石为基片,以三甲基镓和氮气为 气源,氮气和三甲基镓源流量比为130:1,生长温 度为1050°C,工作气压为2.5×10⁵ Pa,生长时间 2 h,厚度约为4 μm. 电学测量结果显示,GaN 薄膜 呈高阻特征,接近本征 GaN 薄膜.

[†]通讯作者. E-mail: qyzhang@dlut.edu.cn

^{© 2014} 中国物理学会 Chinese Physical Society

GaN的表面钝化是在室温条件下进行的. SiO_xN_y薄膜采用自制的低气压等离子体射流沉积方法制备. 钝化膜厚度约为30 nm, 薄膜中N和O的比例约为2:1. 钝化前, GaN基片分为H₃PO₄处理与未处理两组. H₃PO₄处理方法为:将GaN基片在浓度80% H₃PO₄中, 煮沸处理15 min.

利用 FLSP920 全功能型稳态/瞬态荧光光谱 仪对 GaN 薄膜进行 PL 光谱测量. 采用 450 W的 Xe900 氙灯作为激发光源. 低温光谱测量采用 ASR 液氦制冷机理冷, 温度测量范围为13 K 至室温. 采 用 DH2000-BAL 型氘-卤复合光源, 通过反射谱拟 合得到薄膜厚度的参数.

3 结果与分析

3.1 表面处理对GaN薄膜室温光致荧光的 影响

图1是 H_3PO_4 处理和SiO_xN_u钝化前后的室 温光致荧光谱. 从图中可以看出, 经H₃PO₄ 处理 后, GaN 薄膜的 PL 光谱发生了明显的变化, 其中 紫外荧光略有增加,而可见荧光增加显著.紫外处 荧光的增加说明了酸处理可以去除GaN薄膜的表 面污染层,从而减少了表面处的非辐射复合.如果 酸处理仅降低了表面非辐射复合比率,则处理前后 谱型应该不变.因此,我们认为酸处理同时也导致 了GaN薄膜近表面层缺陷密度的显著增加,显著 增加了可见荧光强度; 经SiO_xN_y表面钝化后, GaN 薄膜的紫外荧光和可见荧光均有明显增强. 与未经 处理的GaN薄膜相比,表面钝化后的紫外荧光峰 值强度增强了约12—13倍,是Chevtchenko等^[10] 采用 SiO₂ 和 SiN_x 钝化的 2 倍和 4 倍, 说明 SiO_xN_y 表面钝化具有更好的荧光增强效果. SiO_xN_y表面 钝化不仅显著增加了紫外荧光强度,同时,可见荧 光也有几乎相同比例的增加,说明表面钝化降低了 表面非辐射复合比率,荧光增强也来源于体内激子 复合过程. 一个值得注意的现象是, GaN 薄膜无论 是否经 H_3PO_4 刻蚀处理,经SiO_xN_y表面钝化后, 均具有非常相近的紫外荧光强度, 而经过H₃PO₄ 刻蚀预处理的样品钝化后具有更高的可见荧光强 度. 这一现象再次证明了H₃PO₄刻蚀处理导致了 样品近表面层的缺陷增加. 基于上述分析, 我们认 为GaN薄膜的表面吸附,如氧吸附,是导致GaN紫 外荧光量子效率下降的主要原因. 表面吸附对半导

体荧光发射的影响是非常复杂的.一般认为,表面 吸附质导致的表面态将表面费米能级钉扎在禁带 的中间位置,增加了表面复合中心的非辐射跃迁过 程的复合速率^[15].表面钝化层一方面可以有效去 除GaN表面的吸附质,从而减少表面非辐射跃迁 的复合中心密度,另一方面表面钝化层可以通过重 新钉扎GaN表面费米能级到导带从而提高表面复 合中心的辐射跃迁效率^[14,16].

图 1 H₃PO₄处理和SiO_xN_y钝化前后的室温光致荧光谱

图 2 H_3PO_4 处理和 SiO_xN_y 钝化前后荧光增强谱

为了进一步分析荧光增强的物理机理,我们 分析了荧光增强谱,即GaN薄膜处理前后荧光 强度的比值随波长的变化.图2是H₃PO₄处理和 SiO_xN_y钝化后GaN薄膜的荧光增强谱.从图中 可以看到,H₃PO₄处理对荧光光谱的影响主要体 现在400 nm以上的可见荧光部分,即导致GaN缺 陷荧光的增加.SiO_xN_y表面钝化对GaN荧光光 谱的增强则出现在400 nm以下的紫外荧光发射 和470 nm以上的可见荧光发射.对比H₃PO₄处理 和SiO_xN_y钝化的荧光增强谱,可以非常清楚地看 到, 实际上存在着两种不同类型的缺陷荧光.这两种缺陷荧光从图1的荧光光谱中也可以明显看出,其中峰值位于565 nm的可见荧光是著名的黄带荧光,一般认为与GaN体内的N空位缺陷(V_N)有关^[17-20],而峰位位于430 nm的蓝带荧光的起源一直存在着争议^[21-23].H₃PO4处理和SiO_xN_y钝化的荧光增强谱结果表明,430 nm的蓝带荧光应该与表面缺陷荧光发射有关.这是因为,一方面,酸处理导致蓝带荧光和体内V_N缺陷的黄带荧光同时增加,说明酸刻蚀处理在增加体内V_N缺陷密度的同时也增加了表面缺陷密度;另一方面,表面钝化处理主要增加了紫外荧光和体内V_N缺陷的黄带荧光,但对蓝带荧光的增加则相对较小,说明表面钝化将GaN的表面缺陷转变为界面缺陷,降低了表面缺陷密度.

蓝带荧光源于表面缺陷的结论也可以从酸处 理后再钝化的 GaN 薄膜的荧光增强谱中得到支持. 在经酸处理后再钝化的 GaN 薄膜的荧光增强谱中, 紫外荧光和黄带荧光均明显增加,这与酸处理导致 体内 V_N缺陷密度增加的结论是一致的.与紫外荧 光和黄带荧光增强不同,蓝带荧光强度则明显小于 单纯酸处理的 GaN 薄膜,但仍大于单纯表面钝化 的样品.这一结果说明尽管表面钝化可以减少表 面缺陷密度,但由于酸刻蚀处理增加了表面缺陷 密度,使得表面钝化后的表面缺陷荧光仍强于未 经酸刻蚀处理的样品.经酸处理后再表面钝化的 GaN 薄膜相对于单纯酸处理样品的荧光增强谱与 单纯表面钝化的 GaN 薄膜的荧光增强谱则是相似 的,说明表面钝化只影响 GaN 薄膜的表面态,不改 变其内部缺陷密度.

与缺陷荧光发射类似, GaN 的紫外荧光发射也 应该分为电子-空穴对的体内复合和表面复合两部 分.表面态调控对紫外荧光发射的影响主要表现在 对表面复合中心密度和表面复合速率的控制.对于 H₃PO₄处理的GaN薄膜,尽管表面形貌发生了改 变,但并没有消除表面吸附,所以紫外荧光并没有 明显增加.当表面经过SiO_xN_y钝化后,表面吸附 被有效去除.同时,表面钝化将表面态转变为界面 态,激子在表面的非辐射跃迁速率下降,使得激子 在体内复合的比例增加,表面钝化是导致荧光总量 子效率增加的根本原因.这一荧光增强机理可以从 经酸处理后再钝化的GaN薄膜的荧光增强谱得以 证明.酸处理显著增加了体内缺陷密度,而再经表 面钝化后,其紫外荧光和体内缺陷荧光仍保持着相似的增长,充分说明此时激子的体内复合成为荧光 发射的主体.

3.2 表面处理对GaN低温荧光光谱的影响

图 3 是 H₃PO₄ 处 理 和 SiO_xN_y 钝 化 前 后 的 GaN 薄膜低温 (13 K) 荧光光谱.低温下,GaN 薄膜 的激子复合发光受应力影响很大,表现为峰位的移 动和峰型的展宽^[24].通过荧光光谱随温度的变化 可以确认,位于 3.496 eV 处的荧光峰是 GaN 基态 A 自由激子的复合发光 (FX_A),而位于 3.490 eV 处的 荧光峰是 GaN 的 A 束缚激子复合发光 (D⁰X_A), A 束缚激子的局域化能量为 6 meV,与文献报道的一致^[25].此外,有关 A 自由激子第一激发态、A 束缚 激子的双电子卫星峰 (TES) 和声子伴线的指认均 以文献 [25] 为参考.

图 3 (a) SiO_xN_y 钝化前后的 GaN 薄膜低温荧光光谱; (b) H₃PO₄ 处理样品经 SiO_xN_y 钝化前后的 GaN 薄膜低 温荧光光谱

从图3(a)和(b)可以看到,酸处理对GaN的紫外荧光影响不大,与室温荧光光谱的结果一致. GaN 薄膜的表面经SiO_xN_y薄膜钝化以后,低温紫 外荧光发射的峰型则发生了显著改变.第一,表面 钝化前, GaN薄膜的FXA荧光峰强度大于D⁰X;表 面钝化后, 二者的荧光强度发生了反转, 这一结果 与我们提出的表面钝化导致紫外荧光发射增强的 物理机理是相符的. D⁰X_A 是束缚在体内缺陷上的 激子复合发射, FXA 是晶体中自由运动的激子复 合发射.因此,表面钝化只影响自由激子在GaN表 面的复合过程,对束缚激子荧光的影响不大.低温 下,当GaN表面没有钝化时,自由激子在表面的复 合速率较大, FX_A的荧光强度大于D⁰X_A; 表面钝 化后,自由激子在表面(界面)的复合对紫外荧光发 射贡献大大下降, FXA的相对荧光强度降低. 第二, 表面钝化后, 与束缚激子相关的荧光发射增强, 如 D⁰X的声子伴线和TES,而与自由激子相关的荧光 峰,如自由激子的第一激发态,明显减弱,这与表面 钝化导致D⁰X和FX_A荧光强度反转是一致的. 第 三, 光子能量小于 D⁰X 的连续荧光背景, 一般认为 是下支激子极化子(LPB)的贡献,具有自由激子的 特性^[26].可以看到,表面钝化后,LPB导致的荧光 背景明显降低,与自由激子荧光相对强度的下降是 相似的. 正是由于LPB 导致的荧光背景的下降和 D⁰X 荧光强度的增加才使得 TES 荧光峰出现在表 面钝化的GaN薄膜的低温荧光光谱中.

表面态调控前后的荧光光谱分析充分说明, GaN 薄膜的荧光发射来源于表面复合和体内复合, 二者对荧光强度的贡献与GaN表面的复合速率和 体内激子寿命有关. 对于高质量的本征 GaN 薄膜, 激子寿命较大,表面复合速率对荧光发射的影响 较大. 随着薄膜结晶质量的下降, 如掺杂, 激子寿 命降低,表面复合速率对荧光发射的影响较小,表 面钝化对荧光增强的作用也逐渐减小.实际上, Chevtchenko 等^[10] 发现, 随着 n 型载流子浓度的增 加,无论采用 SiO₂ 还是 SiN_x 对 GaN 表面进行钝化 均导致荧光增强倍数的下降,这与我们的结论是一 致的.因此,表面钝化导致GaN荧光量子效率的 增加不仅仅是表面态密度的降低, 而是通过将表面 态转变为界面态,使得表面复合中心的非辐射跃迁 速率降低,从而提高了激子体内复合对荧光发射的 贡献.

4 结 论

1. 使用H₃PO₄刻蚀和SiO_xN_y薄膜钝化方法 对GaN薄膜进行了表面态调控研究. PL光谱分析 表明, H₃PO₄刻蚀对改善GaN薄膜紫外荧光发射 作用不大, 但显著增强可见发光强度. 经SiO_xN_y 薄膜表面钝化后, GaN紫外荧光增强12—13倍, 同 时可见荧光也有几乎相同比例的增强.

H₃PO₄刻蚀处理在增加体内V_N缺陷的密度的同时,也增加了表面缺陷密度;表面钝化降低了表面缺陷密度,但不改变体内缺陷密度.

3. 酸处理对GaN低温紫外峰型几乎没有影响, 而表面钝化导致D⁰X和FX_A的相对强度发生 了反转.

4. GaN 薄膜的荧光发射来源于表面复合和体 内复合. 而表面钝化会使 GaN 荧光量子效率增加, 主要与表面态密度降低, 和表面复合中心的非辐射 跃迁速率下降有关.

参考文献

- Nakamura S, Pearton S, Fasol G 2000 The Blue Laser Diode (New York: Springer) pp193–273
- [2] Nagahama S, Yanamoto T, Sano M, Mukai T 2002 Phys. Status. Solidi A 190 235
- [3]~ Guha S, Bojarczuk N A 1998 Appl. Phys. Lett. ${\bf 72}~415$
- [4] Luo Y, Guo W P, Shao J P, Hu H, Han Y J, Xue S, Wang L, Sun C Z, Hao Z B 2004 Acta Phys. Sin. 53 2720 (in Chinese)[罗毅, 郭文平, 邵嘉平, 胡卉, 韩彦军, 薛 松, 汪莱, 孙长征, 郝智彪 2004 物理学报 53 2720]
- [5] Liu N X, Wang H B, Liu J P, Niu N H, Han J, Shen G D 2006 Acta Phys. Sin. 55 1424 (in Chinese)[刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩军, 沈光地 2006 物理学报 55 1424]
- [6] Adelmann C, Brault J, Mula G, Daudin B, Lymperakis
 L, Neugebauer J 2003 Phys. Rev. B 67 165419
- [7] Lee J M, Chang K M, Kim S W, Huh C, Lee I H, Park S J 2000 J. Appl. Phys. 87 7667
- [8] Guha S, Keller R C, Yang V, Shahedipour F, Wessels B W 2001 Appl. Phys. Lett. 78 58
- Chevtchenko S, Reshchikov M A, Zhu K, Moon Y T, Baski A A, Morkoç H 2006 Mater. Res. Soc. Symp. Proc. 892 575
- [10] Chevtchenko S A, Reshchikov M A, Fan Q, Ni X, Moon Y T, Baski A A, Morkoç H 2007 J. Appl. Phys. 101 113709
- [11] Adivarahan V, Simin G, Yang J W, Lunev A, Asif Khan M, Pala N, Shur M, Gaska R 2000 Appl. Phys. Lett. 77 863
- [12] Bae C, Krug C, Lucovsky G, Chakraborty A, Mishra U 2004 J. Appl. Phys. 96 2674
- [13] Green B M, Chu K K, Chumbes E M, Smart J A, Shealy J R, Eastman L F 2000 *IEEE Electron Dev. Lett.* 21 268
- [14] Skromme B J, Sandroff C J, Yablonovitch E, Gmitter T 1987 Appl. Phys. Lett. 51 2022

- [15] Aspnes D E 1983 Surf. Sci. 132 406
- [16] Song J O, Park S J, Seong T Y 2002 Appl. Phys. Lett. 80 3129
- [17] Lai T S, Lin W Z, Mo D 2002 Acta Phys. Sin. 51 1149
 (in Chinese)[赖天树, 林位株, 莫党 2002 物理学报 51 1149]
- [18] Lai T S, Fan H H, Liu Z D, Lin W Z 2003 Acta Phys. Sin. 52 2638 (in Chinese)[赖天树, 范海华, 柳振东, 林位 株 2003 物理学报 52 2638]
- [19] Neugebauer J, Van de Walle C G 1996 Appl. Phys. Lett.
 69 503
- [20] Polenta L, Castaldini A, Cavallini A 2007 J. Appl. Phys. 102 063702
- [21] Li S T, Wang L, Xin Y, Peng X X, Xiong C B, Yao D M, Jiang F Y 2000 Chin. J. Lumin. 21 29 (in Chinese)[李

述体,王立,辛勇,彭学新,熊传兵,姚冬敏,江风益 2000 发 光学报 21 29]

- [22] Reshchikov M A, Morkoç H 2005 J. Appl. Phys. 97 061301
- [23] Reshchikov M A, Shahedipour F, Korotkov R Y, Wessels
 B W, Ulmer M P 2000 J. Appl. Phys. 87 3351
- [24] Xu B, Yu Q X, Wu Q H, Liao Y, Wang G Z, Fang R C
 2004 Acta Phys. Sin. 53 204 (in Chinese)[徐波, 余庆选,
 吴气虹, 廖源, 王冠中, 方容川 2004 物理学报 53 204]
- [25] Yao T, Hong S K 2009 Oxide and Nitride Semiconductors (New York: Springer) pp316–320
- [26] Shen X C 2002 Semiconductor Spectroscopy and Optical Properties (Beijing: Science Press) p288 (in Chinese) [沈 学础 2002 半导体光谱和光学性质 (北京:科学出版社) 第 288页]

Effects of controlled surface states on the photoluminescence emission of GaN film

Zhou Nan Zheng Qiang Hu Bei-Chen Shi De-Quan Miao Chun-Yu Ma Chun-Yu Liang Hong-Wei Hao Sheng-Zhi Zhang Qing-Yu[†]

(Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Opto-electronic Technology, Dalian University of Technology, Dalian 116024, China)

(Received 21 November 2013; revised manuscript received 14 March 2014)

Abstract

Hot phosphor acid (H₃PO₄) etching and/or SiO_xN_y surface passivation are used to change the surface states of high-resistance intrinsic GaN films. The films are investigated to reveal the influence of controlled surface states on photoluminescence (PL) emission. It is found that H₃PO₄ etching cannot improve the ultraviolet (UV) PL emission obviously, but the PL spectrum in the range of visible light is considerably enhanced. After passivation with SiO_xN_y film, the quantum efficiency of UV PL is increased by a factor of 12–13. Meanwhile, the visible PL is significantly enhanced. By analyzing the PL spectra of the etched and passivated samples obtained at room temperature and low temperatures, we discuss the role of surface states in PL emission in the range of UV, blue and yellow bands, and the related physical mechanisms.

Keywords: GaN, controlled surface states, photoluminescence

PACS: 78.55.Cr, 78.68.+m, 81.65.-b

DOI: 10.7498/aps.63.137802

[†] Corresponding author. E-mail: qyzhang@dlut.edu.cn