物理学报 Acta Physica Sinica

花状掺杂W-VO₂/ZnO热致变色纳米复合薄膜研究

朱慧群 李毅 叶伟杰 李春波

Thermochromic properties of W-doped VO_2/ZnO nanocomposite films with flower structures Zhu Hui-Qun Li Yi Ye Wei-Jie Li Chun-Bo

引用信息 Citation: Acta Physica Sinica 63, 238101 (2014) **DOI:** 10.7498/aps.63.238101 在线阅读 View online: http://dx.doi.org/10.7498/aps.63.238101 当期内容 View Table of Contents: http://wulixb.iphy.ac.cn/CN/volumn/home.shtml

您可能感兴趣的其他文章

Articles you may be interested in

衬底位置对化学气相沉积法制备的磷掺杂 p型 ZnO 纳米材料形貌和特性的影响 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢 2014, 63(16): 168101. 全文: PDF (4505KB)

ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究 景蔚萱, 王兵, 牛玲玲, 齐含蒋庄德, 陈路加, 周帆 2013, 62(21): 218102. 全文: PDF (15199KB)

室温生长 ZnO 薄膜晶体管的紫外响应特性 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国 2013, 62(1): 018101. 全文: PDF (2868KB)

衬底温度对反应磁控溅射 W 掺杂 ZnO 薄膜的微观结构及光电性能的影响 张翅, 陈新亮, 王斐, 闫聪博, 黄茜, 赵颖, 张晓丹, 耿新华 2012, 61(23): 238101. 全文: PDF (6848KB)

脉冲磁场对水热法制备 Mn 掺杂 ZnO 稀磁半导体的影响 王世伟,朱明原,钟民,刘聪,李瑛,胡业旻,金红明 2012, 61(19): 198103. 全文: PDF (7262KB)

花状掺杂W-VO₂/ZnO热致变色纳米 复合薄膜研究*

朱慧群^{1)†} 李毅²⁾ 叶伟杰¹⁾ 李春波¹⁾

(五邑大学应用物理与材料学院,江门 529020)
 (上海理工大学光电信息与计算机工程学院,上海 200093)
 (2014年6月19日收到;2014年7月22日收到修改稿)

为解决掺杂引起的二氧化钒薄膜的红外调制幅度下降以及二氧化钒复合薄膜相变温度需要进一步降低等问题,采用纳米结构、掺杂改性和复合结构等多种机理协同作用的方案,利用共溅射氧化法,先在石英玻璃上制备高(002)取向的ZnO薄膜,再在ZnO层上室温共溅射沉积钒钨金属薄膜,最后经热氧化处理获得双层钨掺杂W-VO₂/ZnO纳米复合薄膜.利用X射线衍射、X射线光电子能谱、扫描电镜和变温光谱分析等对薄膜的结构、组分、形貌和光学特性进行了分析.结果显示,W-VO₂/ZnO纳米复合薄膜呈花状结构,取向性提高,在保持掺杂薄膜相变温度(约39°C)和热滞回线宽度(约6°C)较低的情况下,其相变前后的红外透过率差量增加近2倍,热致变色性能得到协同增强.

关键词: VO₂, ZnO, W掺杂, 热致变色 PACS: 81.07.-b, 81.15.Cd, 68.55.-a, 74.25.nd

DOI: 10.7498/aps.63.238101

1引言

VO₂具有金属-半导体可逆相变特性^[1,2],常 规相变温度为68°C,与室温最接近,相变前后其 由低温单斜(P2₁/C, M₁)红外透明态变为高温四 方(P4₂/mnm, R)红外低透态,且伴随着光学性 质的急剧变化,但其在可见光区的透过率变化很 小,因此,VO₂在热致变色智能窗材料领域备受关 注^[3-5].由于块材VO₂相变温度离室温仍偏高,无 法满足智能窗要求^[6-8].最近,国内外研究组^[9-11] 和本实验室^[12]均报道了通过掺杂可以使VO₂相 变温度大幅降至40°C左右,并且证实了原子半径 尺寸、化合价大于V⁴⁺的一些高价阳离子(如W⁶⁺, Mo⁶⁺等)是十分有效的掺杂物.但单纯掺杂后薄 膜会形成区域能级,易受激产生离域电子吸捕红外 光子,进而导致VO₂的红外透过率差量出现下降现 象^[12,13],并且低于未掺杂薄膜样品,这极大地限制 了VO₂在智能节能领域的实际应用.另一方面,本 课题组^[14]研究报道过采用高取向、高透明金属氧 化物ZnO作为复合层,获得的双层超薄VO₂/ZnO 纳米复合薄膜能够大幅提高红外透过率差量超过 两倍.基于上述研究,本文采用杂质掺杂、纳米结构 与复合结构等多种机理协同调控VO₂热致变色特 性的方法,在VO₂/ZnO纳米复合结构下实施掺杂, 利用VO₂/ZnO复合薄膜具有增强红外透过率差量 的特点,以增强传统钨掺杂VO₂薄膜对太阳能热辐 射的调节幅度,综合提高作为智能窗材料的热致变 色薄膜的关键性能,同时理解材料新的结构如何在 纳米范围内调制和影响钨掺杂作用、复合作用和热

^{*} 国家高技术研究发展计划(批准号: 2006AA03Z348)、广东省自然科学基金(批准号: 10152902001000025)、广东高校省级重点平台 和重大科研项目特色创新项目(批准号: 2014)、广东省大学生创新创业训练计划(批准号: 教发[2012]62)和江门市产业技术研究与 开发项目(批准号: 江财工[2012]156)资助的课题.

[†]通讯作者. E-mail: huiqunzhu@163.com

^{© 2014} 中国物理学会 Chinese Physical Society

致变色特性的变化.

2 实 验

本实验采用单一钒、钨两种金属的复合靶,含 钨比例为1.4%,利用共溅射氧化法,选择一定的溅 射功率、衬底温度、气体组分和热氧化等条件,研 制新型热致变色掺杂纳米复合薄膜. 由于W元素 与O原子配位时,对温度和氧的敏感不同于非掺 杂薄膜,因此实施掺杂时要使特定的共溅射沉积 工艺和热氧化工艺相匹配, 以期在纳米尺度下控 制掺钨VO2与ZnO薄膜的形核复合生长过程.实 验所用靶材的纯度为4N, ZnO陶瓷靶和钒钨金属 复合靶的尺寸均是直径为120mm,厚为5mm.所 用衬底依次用丙酮、乙醇和去离子水进行超声清 洗,然后用氮气吹干后送入真空室.本底真空压 强达10⁻⁴ Pa量级,工作压强为0.4—0.5 Pa. 以分 步法先后在石英玻璃衬底上制备ZnO薄膜和单 层掺钨VO2薄膜(W-VO2);在ZnO层上沉积钒钨 金属薄膜; 经不同热氧化合成双层掺钨VO₂/ZnO 薄膜 (W-VO₂/ZnO), 具有 W_xV_{1-x}O₂/ZnO/SiO₂ (x = 0 - 0.014)结构. 实验过程主要分以下三 步: 第一步采用射频溅射法在SiO2上室温沉积 ZnO薄膜,利用前期制备ZnO薄膜的最佳氧氩气 氛和溅射功率等条件[14],获得晶格较完善且具 有高(002)取向的ZnO复合层,厚度约为180 nm; 第二步采用直流共溅射方法,在ZnO层和石英 玻璃上以室温沉积钒钨金属薄膜层; 第三步对 沉积在ZnO层和石英玻璃上的钒钨金属薄膜进 行热氧化处理, 热氧化温度为360-410°C, 时间 为2-4 h,产物为单层W-VO₂/SiO₂薄膜和双层 W-VO₂/ZnO/SiO₂薄膜, 掺杂薄膜中VO₂厚度约 为70 nm.

所制备的薄膜其表面形貌扫描采用NoVaTM Nano SEM 430型超高分辨率热场发射扫描电子 显微镜 (SEM); 晶相结构分析采用X' Pert PRO 型多功能X射线衍射 (XRD) 仪, 采用Cu K_α为靶 源, θ与2θ同步转动以及掠入射扫描方式; 热致 变色特性测试采用Lambda 9型UV/VIS/NIR分 光光度计 (280—3200 nm)和AG6370型光谱分析 仪, AQ4305型光源和KER3100-08S 精密恒温工 作台等设备组成的变温光学测试平台; 组分和价 态分析采用ESCALAB 250型X射线光电子能谱 (XPS) 仪.

3 结果与讨论

3.1 相结构与形貌的变化

图1的XRD 谱显示,所制备的ZnO 薄膜晶体 具有高(002) 晶面取向的六方纤锌矿结构,在ZnO 上室温沉积钒钨金属薄膜后,在热氧化过程中,氧 离子不断进入钒钨金属薄膜形成钒氧化物,同时随 着氧的不断进入也填充了ZnO表面的氧空位,使得 ZnO的表面态和缺陷不断减少,最后在ZnO表面 形成以VO₂为主的双层W-VO₂/ZnO热致变色掺 钨纳米复合薄膜.

图 1 制备的 ZnO 薄膜、单层 W-VO₂ 薄膜和双层 W-VO₂/ZnO 薄膜的 XRD 谱

双层W-VO₂/ZnO薄膜的相结构和结晶状态 由XRD表征. 图1显示了相同厚度的双层W-VO₂/ZnO纳米复合薄膜和单层W-VO₂薄膜的 XRD谱. 从图1可以看出, 单层W-VO2薄膜出现 了3个主要衍射峰,峰位角 2θ 约在 37° , 39° 和 55° 附近,分别表征 VO₂(200), VO₂(020) 和 VO₂(220) 晶面的衍射. 双层W-VO₂/ZnO纳米复合薄膜只 有两个衍射峰,峰位角2θ约在37°和55°附近,分 别表征 VO₂(200) 和 VO₂(220) 晶面的衍射. 掺杂引 起晶格重构,薄膜的衍射峰均出现在2θ值较大处. VO₂(020)消失, 表明在异质 ZnO 层上经过热氧化 合成的W-VO₂/ZnO薄膜,其晶格取向性比单层掺 钨薄膜更为完善, V原子与O原子在ZnO界面上按 VO₂(200)和VO₂(220)取向生长形成了M相VO₂ 薄膜. XRD 谱显示, VO2 薄膜没有和 ZnO 发生化 学反应,也没有形成V, Zn, W的混合氧化物,没 有产生其他新相,这说明W元素成功掺入VO2薄

膜中.

图 2 花状结构的单层与双层掺钨薄膜、ZnO 薄膜的表面 形貌 (a) 单层 W-VO₂ 薄膜; (b) 双层 W-VO₂/ZnO 薄 膜; (c) ZnO 薄膜

对比图1所示的衍射峰位置,单层W-VO₂薄 膜和双层W-VO₂/ZnO纳米复合薄膜的(200)衍 射峰对应的20值分别约为37.15°和37.11°,半高 全宽分别约为0.213°和0.382°,根据Bragg公式和 Scherer公式,得到其对应的晶面间距*d*₂₀₀分别为 0.24181 nm和0.24207 nm,对应的晶粒平均直径 分别约为41 nm和23 nm.此结果显示,双层W-VO₂/ZnO复合薄膜的晶粒尺寸减少近一半,出现 纳米化效应,即由于ZnO的界面作用,双层复合薄 膜的纳米晶粒更加小,纳米花的片状花瓣尺寸明显 减少(图2).此外,由于W元素掺入VO₂薄膜中, 使得晶面间距*d*₂₀₀值增大,内部的切向压应力增 加,薄膜自适应组织生长呈花状结构,相对于单层 薄膜W-VO₂,双层W-VO₂/ZnO纳米复合薄膜的 *d*₂₀₀值进一步增大,内部的切向压应力更大,花状 结构更加明显突出(图2).

图2是薄膜表面形貌SEM照片.图2(a)显示, 在SiO2 衬底上生长的单层掺杂W-VO2 薄膜中,钨 离子改变了薄膜相和衬底相的界面能, 掺钨薄膜 为寻求最低异质成核能量势垒路径[15,16],会出现 自组织生长形成花状结构,其花瓣片单元尺寸约 为150—400 nm. 图2(c)是ZnO异质层的表面形 貌SEM图. 从图2(c) 可以看到, 所制备的ZnO薄 膜的晶团尺寸比较均匀,控制在15 nm 左右,垂直 衬底表面生长. 在此纳米ZnO异质层上, 钒钨金 属薄膜热氧化生成VO2的成核过程中,双层掺杂 W-VO₂/ZnO薄膜自组织生长形成花状结构薄膜, 如图2(b)所示,其纳米花瓣为薄片状,尺寸约为 100-300 nm, 明显比单层W-VO2薄膜的花瓣片 尺寸小,且纳米花状结构突出,花状更加明显、精 细、紧密,自组织更加有序,有ZnO柱状基底模板痕 迹,形貌发生显著变化.这说明在双层掺钨复合薄 膜W-VO₂/ZnO中,这种自组织成核没有受到ZnO 复合层的影响, 掺钨后不但出现花状结构, 而且更 加紧密,双层薄膜样品的单元尺寸变小,呈花瓣片 状自组织生长. 双层掺杂复合薄膜是基于钨掺杂成 核生长和VO₂/ZnO复合结构的协同机制下形成的 综合产物.

3.2 XPS分析

双层W-VO₂/ZnO 掺钨纳米复合薄膜的价态 和组分由 XPS 表征,图 3 给出了W-VO₂/ZnO 复合 薄膜的表面宽程 XPS,表明样品表面的主要元素为 V,W,Zn,O,C,其中C是表面吸附造成.图 3 所 示的全谱图中W 4f峰并不明显,这是因为W 的含 量太少,且 XPS 检测的只是表面成分,造成所测得 的钨含量很低,右插图为W 4f 附近放大图,峰位 35.6 eV 和 37.3 eV 分别对应W 4f_{7/2} 和W 4f_{5/2},说 明W元素主要是以+6 价离子的形式存在.左插图 为V 2p-O 1s 窄程扫描谱,峰位 530 eV 对应O 1s, 可作为氧化钒薄膜 XPS 标定^[17],V 2p 的自旋作 用分裂成V 2p_{3/2}和V 2p_{1/2}两个典型氧化钒特征 峰^[18],其中代表V 价态信息的特征峰V 2p_{3/2} 的 电子结合能约为516.3 eV,较靠近 VO₂ 的该特征 峰,与文献[17,18] 报道的峰位一致,说明薄膜中 钒主要是以+4价离子的形式存在. XPS结果显示, W-VO₂/ZnO 薄膜主要由VO₂和W⁶⁺构成,W元 素以高价阳离子形式掺入复合薄膜中,这与上述 XRD的结果一致.可见,在ZnO复合层上,掺杂机 理能够基本得到保持,在成核过程中,W原子取代 V原子与O原子成键,通过更加紧密的花状结构以 调整最优化V—O原子排布方式以达到能量最低, 从而内部具有适当的应力和有效缺陷数目,引起 电子结构和能级的变化.对比文献[19]报道的以 相同方法制备的纯VO₂薄膜的V 2p_{3/2}结合能(约 516.8 eV)可知,掺杂使得W-VO₂/ZnO复合薄膜中 V 2p_{3/2}的结合能下降.我们知道,禁带宽度主要 取决于薄膜的晶格结构、内部应力、原子组成和成 键状态以及杂质和缺陷的影响^[9,20,21],因此,材料 的有效缺陷和掺杂产生的内应力会导致半导体态 VO₂禁带中载流子浓度的显著变化,进而影响材料 的带隙,从而影响材料的光学特性.W原子取代V 原子的晶格位置后,被束缚在W⁶⁺杂质周围的负 电荷在靠近半导体导带底处产生施主能级,破坏半 导体的导带中原本晶格点阵的周期性,降低了材料 的带隙宽度,导致受热激发产生的载流子浓度增 加,进而可以在更低的温度下发生半导体-金属态 的相转变.

图 3 双层 W-VO₂/ZnO 薄膜的 XPS

SEM, XRD, XPS的分析结果表明, 钨以W⁶⁺的形式成功掺入到VO₂中, 引起电子结构的变化, 禁带宽度减少, 能级发生调整以达到能量最低, "纳 X + 26 +掺杂"结构显著改变了薄膜的形貌、取 向性和晶粒尺寸, 使得所形成的双层W-VO₂/ZnO 纳米复合薄膜呈更紧密的纳米花自组织结构, 片状 花瓣尺寸变小, 对应的晶粒单元尺寸缩减近一半, 薄膜呈纯 *M* 相纳米 VO₂ 结构, 晶相位置、取向性保 持良好并有改善.

3.3 红外光学特性的变化

ZnO薄膜具有高透明度,外观上,ZnO薄膜 的透明度极高,肉眼几乎看不见ZnO薄膜的存在. 图4是所制备的ZnO薄膜的吸收谱,图中显示所 有测试的ZnO薄膜样品的吸收谱在375 nm附近 都具有相似陡峭的吸收边,对应的光学禁带宽度 为3.36 eV, 对可见光的吸收几乎为零, 这表明薄 膜中的纳米晶粒尺寸均匀, 对太阳光可见光部分 不吸收, 可见光的透过率十分高, 而且对紫外光基 本完全吸收. ZnO薄膜的上述光学测试在高低温 条件下没有变化, 对可见光和红外光的透过率稳 定在 80% 以上, 不吸收. 图4内插图给出了所制备 的 ZnO 薄膜的透过率, 扫描范围是 280—3200 nm, 2728 nm 附近的谱谷是石英玻璃衬底的背景信 号. 图4显示 ZnO 薄膜在 280—375 nm 范围截止 透过, 在 375—3200 nm 的宽范围内透过率稳定在 80%—95% 之间, 平均约 90%. 可见, 所制备的 (002) 高取向 ZnO 薄膜在可见光和近红外范围均具 有稳定的高透过率.

图5和图6测试比较了双层掺杂薄膜与单层 掺杂薄膜在相变过程的透过率随样品温度的变 化,发现在相变前后,W-VO₂/ZnO复合薄膜热致 变色效应显著增强.图5给出了W-VO₂/ZnO复合 薄膜的高温(80°C)透过率 $T_{\rm H}$ 和低温(20°C)透过 率 $T_{\rm L}$ 随波长 λ 的变化.扫描范围为280—2500 nm. 从图5可以看出,超薄W-VO₂/ZnO复合薄膜表 现出强烈的VO₂金属-半导体特性,在红外波段 (2500 nm)的高温透过率 $T_{\rm H}$ 和低温透过率 $T_{\rm L}$ 分 别约为16%和38%,其透过率差量 $\Delta T(\Delta T = T_{\rm L} - T_{\rm H})$ 为22%.W-VO₂/ZnO复合薄膜的热滞 回线如图5内插图所示,图中显示其相变温度约为 39°C,可逆相变过程中热滞回线宽度为6°C.

图5 W-VO₂/ZnO 薄膜透过率曲线

从图6可以看出,对于相同厚度的单层W-VO₂薄膜,其在红外波段(如2500 nm)的高温透 过率和低温透过率分别约为15%和27%,透过率差 量 ΔT 为12%,内插图为W-VO₂薄膜的热滞回线, 图中显示其相变温度约为35°C,可逆相变过程中 热滞回线宽度为4°C.

对比图 5 和图 6 可见, W-VO₂/ZnO 复合薄膜的 ΔT 增加接近两倍, 不仅补偿了掺杂损失, 而且

大幅提高了掺杂薄膜的 ΔT ,同时,能够保持掺钨 薄膜相变温度较低、热滞回线较窄的优势,而且,与 单层W-VO2薄膜相比,可见光的透过率最大值提 高5%,且随温度的变化极少.上述这些热致变色 特性的变化是由于掺杂和复合两种机制协同作用 的结果,与掺杂、复合过程的薄膜生长和薄膜质量 等有关. 传统单一掺杂能够使相变温度降低, 但对 红外透过率差量有负面影响,更难以提高红外透 过率差量. 本文实验结果表明, 掺杂与ZnO异质 复合相结合的方法提供了有效解决这一问题的途 径. 由于ZnO具有独特的六角柱状生长结构,可以 抑制VO2 晶粒的长大, ZnO表面晶界间隙、亚晶界 等使得 VO_2 晶体的颗粒产生纳米化(图₂(b)), 出 现纳米声子局域效应[14];此外,钨原子掺入取代钒 原子晶格重构时, VO2尺寸减小, 缩小的花瓣片在 自组织形成紧密花状结构时形核势垒低,相变时片 状横向生长的应变能小,进而使得热滞回线宽度减 小[14,18]. 再者,从反射率和透过率的理论计算可 知, $T = (1 - R) \exp(-3\pi^3 r^3 (n^2 - 1)^2 d/(4\lambda^4))^{[22]}$, 对于一定的薄膜厚度d和入射光波 λ . 减小晶粒的 平均粒径r,透过率随之增加,因此纳米化的双层 W-VO₂/ZnO薄膜的低温相透过率 T_L 较大;随着 样品温度的升高,相变过程中,高温相纳米VO₂ 具有金属晶粒的量子尺寸效应和等离子体共振 吸收^[23,24],对红外区域的吸收和漫反射等比单层 W-VO₂薄膜强, 使得高温透过率 $T_{\rm H}$ 降低, ΔT 大 幅提高;同时ZnO复合层还改善了VO2的晶体结 构,因此W-VO₂/ZnO材料的红外调控能力得到显 著增强.

图6 W-VO2 薄膜透过率曲线

综上所述,利用掺杂与复合等机理协同作用, 有效提高和改善了VO2薄膜的热致变色的综合性 能. 对于相同工艺制备的厚度相同的薄膜, 与单层 掺钨薄膜W-VO2相比, 双层W-VO2/ZnO复合薄 膜红外透过率差量大幅增加至近两倍; 与未掺杂 VO2/ZnO双层复合薄膜比较, 双层W-VO2/ZnO 复合薄膜相变温度大幅下降至39°C, 热滞回线 明显收窄至6°C; 与纯VO2薄膜比较, 双层W-VO2/ZnO复合薄膜红外透过率差量大幅增加, 相 变温度和热滞回线宽度大幅下降. 综合各方面效 果, 双层掺杂纳米复合薄膜的综合性能得到显著 优化.

4 结 论

本文设计了"纳米+掺杂+复合"相结合薄膜 体系,采用室温共溅射沉积和热氧化工艺相结合的 方案,利用分步法成功研制出具有热致变色特性 的超薄W-VO₂/ZnO/SiO₂掺钨纳米复合薄膜,薄 膜呈花状结构,花瓣片尺寸小,复合层ZnO改善了 VO₂的取向生长和薄膜质量,并使VO₂晶粒减小 约一半,产生纳米化效应,该薄膜在相变前后红外 (2500 nm)透过率差量比单层纯掺钨薄膜大近两 倍,表明了相变的尺寸效应.由于钨掺杂、VO2与 ZnO界面协同作用, W-VO₂/ZnO/SiO₂薄膜既具 有双层复合薄膜的高红外调制能力,又具有掺钨薄 膜的相变温度低和热滞回线窄的特点;克服了传统 掺杂引起的透过率损失问题, 大幅提高了掺钨薄膜 的红外透过率差量;降低了超薄VO₂/ZnO的相变 温度和热滞回线宽度. 整体而言, 掺杂纳米复合光 学薄膜的相变温度、红外光透过率差量、热滞回线 宽度等热致变色性能得到协同增强,提升了它在智 能窗的应用潜力.

参考文献

- [1] Morin F J 1959 Phys. Rev. Lett. **3** 34
- [2] Gao Y F, Luo H J, Zhang Z T 2012 Nano Energy 1 221
- [3] Granqvist C G, Lansaker P C, Mlyuka N R 2009 Sol. Energy Mater. Sol. Cells 93 2032
- [4] Zhu N W, Hu M, Xia X X, Wei X Y, Liang J R 2014 Chin. Phys. B 23 048108

- [5] Wang X J, Liu Y Y, Li D H, Feng B H, He Z W, Qi Z 2013 Chin. Phys. B 22 066803
- [6] Joyeeta N, Haglund Jr R F 2008 J. Phys.: Condens. Matter 20 264016
- [7] Saeli M, Binions R, Piccirillo C 2009 Appl. Surf. Sci. 255 7291
- [8] Kyoung J, Seo M, Park H, Koo S, Kim H, Park Y, Kim B J, Ahn K, Park N, Kim H, Kim D S 2010 Opt. Express 18 16452
- [9] Peng Z F, Wang Y, Du Y Y, Lu D, Sun D Z 2009 J. Alloys Compd. 480 537
- [10] Li J, Liu C Y, Mao L J 2009 J. Solid State Chem. 182 2835
- [11] Wang Y L, Chen X K, Li M C 2007 Surf. Coat. Technol. 201 5344
- [12] Zhou S, Li Y, Zhu H Q, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2012 Surf. Coat. Technol. 206 2922
- [13] Shi J Q, Zhou S X, You B, Wu L M 2007 Sol. Energy Mater. Sol. Cells 91 1856
- [14] Zhu H Q, Li Y, Zhou S, Huang Y Z, Tong G X, Sun R X, Zhang Y M, Zheng Q X, Li L, Shen Y J, Fang B Y 2011 Acta Phys. Sin. 60 098104 (in Chinese) [朱慧群, 李毅, 周晟, 黄毅泽, 佟国香, 孙若曦, 张宇明, 郑秋心, 李榴, 沈雨剪, 方宝英 2011 物理学报 60 098104]
- [15] Kiri P, Warwick M E A, Ridley I, Binions R 2011 Thin Solid Films 520 1363
- [16] Yan J Z, Zhang Y, Liu Y S, Zhang Y B, Huang W X, Tu M J 2008 *Rare Metal Mater. Eng.* **37** 1648 (in Chinese)
 [颜家振, 张月, 刘阳思, 张玉波, 黄婉霞, 涂铭旌 2008 稀有 金属材料与工程 **37** 1648]
- [17] Wang L X, Li J P, He X L, Gao X G 2006 Acta Phys. Sin. 55 2846 (in Chinese) [王利霞, 李建平, 何秀丽, 高晓 光 2006 物理学报 55 2846]
- [18] Xu X, Yin A Y, Du X L 2010 Appl. Surf. Sci. 256 2750
- [19] Zhu H Q, Li Y, Guo G X, Fang B Y, Wang X H 2013 Adv. Mater. -Rapid Commun. 7 1015
- [20] Case F C 1987 Appl. Opt. **26** 1550
- [21] Yan J Z, Zhang Y, Huang W X, Tu M J 2008 Thin Solid Films 516 8554
- [22] He Q, Xu X D, Wen Y J, Jiang Y D, Ao T H, Fan T J, Huang L, Ma C Q, Sun Z Q 2013 Acta Phys. Sin.
 62 056802 (in Chinese) [何琼, 许向东, 温粤江, 蒋亚东, 赦天宏, 樊泰君, 黄龙, 马春前, 孙自强 2013 物理学报 62 056802]
- [23] Pauli S A, Herger R, Willmott P R, Donev E U, Suh J Y, Haglund Jr R F 2007 J. Appl. Phys. **102** 073527
- [24] Lopez R, Feldman L C 2004 Phys. Rev. Lett. 93 177403

Thermochromic properties of W-doped VO_2/ZnO nanocomposite films with flower structures^{*}

Zhu Hui-Qun^{1)†} Li Yi²⁾ Ye Wei-Jie¹⁾ Li Chun-Bo¹⁾

(School of Applied Physics and Material, Wuyi University, Jiangmen 529020, China)
 (College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology,

Shanghai 200093, China)

(Received 19 June 2014; revised manuscript received 22 July 2014)

Abstract

Based on the nanocomposite structure and doping modification, we have studied the preparation technology of high performance nanocomposite thin film and its characterization methods. The W-doped VO₂/ZnO nanocomposite thin films are prepared successfully on SiO₂ substrates by the three-step method. The structure and morphology of the Wdoped VO₂/ZnO/SiO₂ films are analyzed by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscope. Results show that the films are mainly composed of VO₂ and high valence cation W^{6+} replacing the V ion in the W-doped VO₂/ZnO/SiO₂ films. It is found that the flake nanocrystallines resemble a flower in shape, and its size and orientational growth are reduced. The thermochromic properties of W-doped VO₂/ZnO films are measured and compared with the single-layer W-doped VO₂ films on SiO₂ substrates with the same thickness. The variation of infrared transmittance of the W-doped VO₂/ZnO/SiO₂ nanocomposite film is increased nearly two times, the phase transition temperature reduced approximately to 39 °C, and the width of the thermal hysteresis loop is about 6 °C. The W-doped VO₂/ZnO/SiO₂ nanocomposite film has a high infrared modulation ability, a lower phase transition temperature, and a narrower thermal hysteresis loop. Thus the potential application of this nanocomposite film is significantly improved.

Keywords: VO₂, ZnO, W-doped, thermochromism **PACS:** 81.07.-b, 81.15.Cd, 68.55.-a, 74.25.nd

DOI: 10.7498/aps.63.238101

^{*} Project supported by the National High Technology Research and Development Program of China (Grant No. 2006AA03Z348), the Natural Science Foundation of Guangdong Province, China (Grant No. 10152902001000025), the Distinctive Innovations Project of Provincial Key Platform and Major Scientific Research Project of Universities in Guang-dong Province, China (Grant No. 2014), the Innovation and Entrepreneurship Training Project for Undergraduate of Guangdong Province, China (Grant No. JF [2012]62), and the Industrial Technology Research and Development Project of Jiangmen City, China (Grant No. JCG [2012]156).

[†] Corresponding author. E-mail: huiqunzhu@163.com