物理学报 Acta Physica Sinica

带多孔硅表面缺陷腔的半无限光子晶体 Tamm 态及其折射率传感机理 陈颖 范卉青 卢波 Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism Chen Ying Fan Hui-Qing Lu Bo

引用信息 Citation: Acta Physica Sinica, 63, 244207 (2014) DOI: 10.7498/aps.63.244207 在线阅读 View online: http://dx.doi.org/10.7498/aps.63.244207 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2014/V63/I24

您可能感兴趣的其他文章 Articles you may be interested in

覆盖X和Ku波段的低雷达散射截面人工磁导体反射屏

A low radar crosssection artificial magnetic conductor reflection screen covering X and Ku band 物理学报.2015, 64(2): 024219 http://dx.doi.org/10.7498/aps.64.024219

有耗色散光子晶体带隙结构的本征值分析新方法

A novel eigenvalue method for calculating the band structure of lossy and dispersive photonic crystals 物理学报.2014, 63(18): 184210 http://dx.doi.org/10.7498/aps.63.184210

光子晶体中基于有效折射率接近零的光束准直出射

Collimating emission from photonic crystals based on the quasi-zero-effective-index 物理学报.2014, 63(17): 174204 http://dx.doi.org/10.7498/aps.63.174204

增益对一维周期结构慢光传输特性影响

Influence of gain on propagation properties of slow light in one-dimensional periodic structures 物理学报.2014, 63(17): 174202 http://dx.doi.org/10.7498/aps.63.174202

基于空气孔的光子晶体亚波长成像的特性研究

Research of the characteristics of photonic crystals based on air holes sub-wavelength imaging 物理学报.2014, 63(15): 154212 http://dx.doi.org/10.7498/aps.63.154212

带多孔硅表面缺陷腔的半无限光子晶体Tamm态 及其折射率传感机理^{*}

陈颖 范卉青 卢波

(燕山大学电气工程学院,测试计量技术及仪器河北省重点实验室,秦皇岛 066004)

(2014年5月4日收到;2014年7月4日收到修改稿)

结合表面缺陷半无限光子晶体 Tamm 态与多孔硅光学传感机理,在光子晶体表面缺陷腔中引入多孔硅, 并利用其高效的承载机制,提出基于多孔硅表面缺陷光子晶体 Tamm 态的折射率传感结构.在半无限光子晶 体中缺陷腔与原来的周期性分层介质结构的界面上存在 Tamm 态,通过入射角度调制使其在缺陷腔中实现多 次全反射,并在缺陷腔中加入吸收介质,使谐振波长在缺陷腔中完成衰荡,从而在反射谱中得到缺陷峰;调整 光子晶体参数,使缺陷峰的半高全宽得到优化,提高其品质因数 (Q值);在此基础上,根据 Goos-Hänchen 相 位移与谐振波长的关系,建立由待测样本折射率改变所导致的多孔硅表面吸附层有效折射率变化与缺陷峰 值波长漂移之间的关系模型,并分析其折射率传感特性.结果表明,此生物传感结构 Q值为1429,灵敏度为 546.67 nm/RIU,证明了该传感结构的有效性,可为高 Q值和高灵敏度折射率传感器的设计提供一定的理论 参考.

关键词: 光子晶体, 多孔硅, 表面缺陷腔, 折射率传感器 PACS: 42.70.Qs, 61.43.-j, 71.55.-i, 78.20.Ci

DOI: 10.7498/aps.63.244207

1引言

随着光学生物传感技术的发展,光学生物传 感器在生物分析、医疗诊断、食品安全和环境监测 等多方面得到广泛的应用.目前,光学生物传感器 的研究主要集中在表面等离子体谐振(SPR)型^[1,2] 和光子晶体型^[3]两大方面.其中,SPR型生物传感 器具有实时性好和无标记等优点^[4],是应用较为成 熟的光学生物传感器,在其结构设计中通常采用金 膜或银膜来作为检测表面.然而,金膜价格昂贵, 银膜又易被氧化,并具有较大的光吸收系数,导致 其特征谱线的半高全宽(FWHM)一般在20 nm以 上,因而此类传感器的品质因数(Q值)较低^[5];与 此同时,经棱镜耦合入射的光信号只在金属膜上反 射一次,因此待测样本层与表面等离子体波之间的 相互作用十分有限,对低浓度和小分子的检测精度 不高^[6].

光子晶体是折射率周期性调制的电介质结构, 通过在完整光子晶体中引入缺陷,可以在其光子 禁带中打开允带,从而调控光子的传播行为^[7,8]. 近年来,基于缺陷态光子晶体生物传感器的研究 异常活跃. Derbali 等^[9]设计了基于复合缺陷的光 子晶体折射率传感结构,并用时域有限差分法对 其结构参数进行优化,提高了传感器的灵敏度.江 斌等^[10]使用基于无源材料硅的双层光子晶体薄 板H1(DLPCS-H1)腔,利用上下两个光子晶体薄板 H1腔之间的立体耦合,来提高H1腔的偶极模的品 质因子,为其在生物传感等领域的应用提供了可 能. Zhang等^[11]在1550 nm处的波段实现SOI衬 底的多孔硅 (porous silicon)微腔传感器的制备,对 DNA进行生物检测,获得了具有纳米级别的高检

* 国家自然科学基金 (批准号: 61201112, 61172044)、河北省自然科学基金 (批准号: F2013203250, F2012203169) 和中国博士后科学基金 (批准号: 2012M510765) 资助的课题.

†通讯作者. E-mail: chenying@ysu.edu.cn

© 2014 中国物理学会 Chinese Physical Society

测极限. Wu等^[12]制作了多孔硅微谐振腔生物传 感器,利用光强法完成了葡萄糖溶液的浓度检测.

基于以上分析,结合表面缺陷半无限光子晶体 Tamm态^[13]与多孔硅光学传感的原理,本文在光 子晶体周期结构表面引入带多孔硅的缺陷腔,提出 了基于表面缺陷光子晶体Tamm态的光子晶体结 构,在分析了该结构折射率传感机理的基础上,利 用传输矩阵法进行数值模拟,调整周期层数实现对 光子晶体结构的优化,得出了待测有机蒸汽的折射 率与光子晶体缺陷腔谐振波长之间的关系.

2 结构模型与理论分析

2.1 传感模型建立

如图 1 所示, 光子晶体周期性部分由 TiO₂ 和 SiO₂ 两种高低折射率的材料交替排列而成, 其折 射率分别为 $n_{\rm H}$ 和 $n_{\rm L}$, 厚度分别为 $d_{\rm H}$ 和 $d_{\rm L}$. 在表 面缺陷腔中引入吸收介质 ZnS, TiO₂ 的厚度为 $d_{\rm H0}$, 多孔硅为表面吸附层, 折射率为 $n_{\rm PSi,eff}$. 棱镜与光 子晶体耦合, 光以角度 θ_0 从棱镜入射.

图1 表面缺陷半无限光子晶体折射率传感结构模型

2.2 理论分析

2.2.1 带表面缺陷腔的光子晶体 Tamm 态

当电磁波在完整的周期结构中传播时,由于布 拉格散射,电磁波受到调制形成能带,光子带隙出 现在能带之间.若在内部引入缺陷破坏光子晶体 的周期结构,则在光子带隙中形成相应的缺陷能 级,反映在反射谱上即为高反射带中出现窄带尖 峰;理论研究中,光子晶体的周期是无限的,而对 于半无限光子晶体,在光子晶体结构表面上加入缺 陷腔,在缺陷腔与原来的周期性分层介质结构之 间(即两者的交界面处)形成的表面模式,即光子晶体表面波,又称为光子晶体Tamm态.作为一种非辐射的光模式,其沿界面传输,在界面附近场强最强,界面两侧呈指数衰减,因此符合倏逝波的基本特性.调节入射光的入射角度,光的入射角度大于发生全反射的临界角时,光子晶体Tamm态与光子晶体缺陷态将会发生耦合,在缺陷腔中完成多次全反射,从而沿界面方向产生Goos-Hänchen位移.通过Goos-Hänchen位移建立起谐振波长随多孔硅中待测有机物折射率的变化关系,即可实现对待测物的监测.该缺陷态结构将改变光子晶体表面电磁场的分布,在缺陷腔中的多次全反射使电磁场得以增强,同时可使电磁场和待测样本生物分子充分作用,从而提高检测的灵敏度.

然而表面缺陷光子晶体中Tamm态对应的光 发生多次全反射后,最终仍将返回入射介质中,在 反射谱中不能观测到这个谐振频率的光.为了能 体现出谐振模式,因此在表面缺陷腔中引入吸收介 质,每发生一次全反射会有一部分的光波被吸收而 发生衰荡,则在反射谱中将会出现缺陷峰.吸收介 质的复折射率

$$\hat{n} = n(1 + \mathrm{i}k),\tag{1}$$

式中*n*为介质的实折射率,*k*为消光系数,表示对光 波的吸收性质.

引入吸收介质并不会改变缺陷峰的位置,但是随着 k 增大,吸收介质对局域光波的吸收作用变强, 经过几次反射便全部被吸收,因此需选择合适的材料作为吸收介质.

2.2.2 基于多孔硅表面缺陷腔的折射率传感 机理

由电磁场界面连续条件与Bloch原理,以TE 模式为例,可得表面缺陷光子晶体的Tamm态满足 方程

$$e^{iK\Lambda} - A - B = i\frac{k_{\text{eff}}}{k_{\text{H}x}}(e^{iK\Lambda} - A + B), \quad (2)$$

其中,

折射率变化周期

$$\begin{split} A &= d_{\rm H} + d_{\rm L}, \\ A &= {\rm e}^{{\rm i} k_{\rm Hx} d_{\rm H}} [\cos(k_{\rm Lx} d_{\rm L}) + ({\rm i}/2)((k_{\rm Lx}/k_{\rm Hx}) \\ &+ (k_{\rm Hx}/k_{\rm Lx}))\sin(k_{\rm Lx} d_{\rm L})], \\ B &= {\rm e}^{-{\rm i} k_{\rm Hx} d_{\rm H}} [({\rm i}/2)((k_{\rm Hx}/k_{\rm Lx}) \\ &- (k_{\rm Lx}/k_{\rm Hx}))\sin(k_{\rm Lx} d_{\rm L})], \end{split}$$

K为Bloch波矢, 波矢的切向分量

$$k_{\mathrm{H}x}^{2} = n_{\mathrm{H}}^{2} \left(\frac{\omega}{c}\right)^{2} - \beta^{2},$$

$$k_{\mathrm{L}x}^{2} = n_{\mathrm{L}}^{2} \left(\frac{\omega}{c}\right)^{2} - \beta^{2},$$

$$k_{\mathrm{eff}}^{2} = \beta^{2} - n_{\mathrm{PSi,eff}}^{2} \left(\frac{\omega}{c}\right)^{2}$$

由(2)式可见,多孔硅的有效折射率的变化会改变 表面缺陷光子晶体 Tamm 态的传输特性.

纳米级多孔硅的孔径远小于入射光波长,因此可以把其看作一种硅与空气均匀混合的介电材料,当此传感结构放在有一定浓度的有机蒸汽的环境中,由于多孔硅特有的量子海绵状微结构,可以有效地承载扩散在其内部的有机分子.当平衡压力达到蒸汽的饱和气压时,在毛细冷凝的作用下,蒸汽发生液化.附着有机物的多孔硅的折射率随着有机物的折射率和体积分数的变化而变化,由Bruggeman 介电函数近似模型^[14]可得多孔硅的有效折射率 *n*PSi.eff 为

$$(1-\rho)\frac{n_{\rm Si}^2 - n_{\rm PSi,eff}^2}{n_{\rm Si}^2 + 2n_{\rm PSi,eff}^2} + (\rho - V)\frac{n_{\rm air}^2 - n_{\rm PSi,eff}^2}{n_{\rm air}^2 + 2n_{\rm PSi,eff}^2} + V\frac{n_{\rm g}^2 - n_{\rm PSi,eff}^2}{n_{\rm g}^2 + 2n_{\rm PSi,eff}^2} = 0,$$
(3)

其中, ρ 为孔隙率,即多孔硅层中孔隙体积占被腐蚀 硅层总体积的百分数,通常用称重法^[15]测得; n_{Si} 和 n_{air} 分别为硅和空气的折射率; n_{g} 和V为有机物 的折射率和多孔硅内凝聚有机物的体积分数.

图 2 Goos-Hänchen 位移

光以某一角度入射进入传感结构中,在缺陷腔 中会发生全反射,经典理论认为入射和反射在同一 点发生.如图2所示,以S偏振为例,由电磁波的连 续条件,光波不是绝对地直接反射回缺陷腔中,而 是略微进入空气中传播,再返回缺陷腔中沿着反射 光方向射出,在界面间的少量电磁波即为倏逝波. Goos 和Hänchen的实验证明实际反射光相对于 理想的几何光学产生一个位移,即Goos-Hänchen 位移

$$D_{\rm s} = -\frac{\lambda}{2\pi} \frac{\mathrm{d}\delta_{\rm s}}{\mathrm{d}\theta},\tag{4}$$

其中,反射波的相移

$$\delta_{\rm s} = 2 \cdot \arctan \left(-\frac{\sqrt{\sin^2 \theta - (n_{\rm air}/n_{\rm d,eff})^2}}{\cos \theta} \right), \quad (5)$$

式中, θ为缺陷腔与空气的界面处的入射角 (大于全 反射的临界角), n_{d,eff}为由 TiO₂、吸收介质 ZnS、多 孔硅构成的缺陷腔的有效折射率. 由 (4) 和 (5) 式 可得

$$D_{\rm s} = \frac{\lambda n_{\rm d, eff} \sin \theta}{\pi \sqrt{n_{\rm d, eff}^2 \sin^2 \theta - n_{\rm air}^2}}.$$
 (6)

光波沿z方向的位移量为

$$\Delta = D_{\rm s}/\cos\theta$$
$$= \frac{\lambda n_{\rm d,eff}\tan\theta}{\pi\sqrt{n_{\rm d,eff}^2\sin^2\theta - n_{\rm air}^2}};$$
(7)

光波入射到该模型的角度为 θ_0 ,棱镜的折射率为 $n_{\rm p}$,由折射定律可得

$$n_{\rm p}\sin\theta_0 = n_{\rm d,eff}\sin\theta. \tag{8}$$

由 (7) 和 (8) 式可得, Goos-Hänchen 位移对应的相 位移为

$$\Delta \varphi = \frac{2n_{\rm d,eff} \tan \theta}{\sqrt{n_{\rm p}^2 \sin^2 \theta_0 - n_{\rm air}^2}}.$$
 (9)

光波在缺陷腔中经过多次反射,反射出来的光波发 生谐振的条件为

$$2 \cdot \frac{2\pi}{\lambda_{\rm d}} n_{\rm d, eff} d_{\rm d, eff} \cos \theta + \Delta \varphi$$
$$= (2m+1)\pi \quad (m=0,1,2,\cdots), \qquad (10)$$

其中, λ_d 为谐振波长, $d_{d,eff}$ 为缺陷腔的厚度. 分析 (2), (3), (9) 和 (10) 式可知, 若有机物的折射率 n_g 增大, 则多孔硅有效折射率 $n_{PSi,eff}$ 变大, 缺陷 腔有效折射率 $n_{d,eff} 与 n_{PSi,eff}$ 成正比, 因此, Goos-Hänchen 位移对应的相位移 $\Delta \varphi$ 增大, 谐振波长 λ_d 也随之增大.

通过上述理论分析可知,具有表面缺陷的半无 限光子晶体,由于表面缺陷光子晶体 Tamm 态的存 在,电磁波被局限于缺陷腔内,通过调节入射角可 使其在缺陷腔内发生多次全反射.多孔硅中凝聚 的有机物的折射率的改变引起了Goos-Hänchen位 移的变化,谐振尖峰发生漂移.因此,通过观测谐 振波长的变化即可实现监测有机物折射率变化的 目的.

3 数值模拟与分析

3.1 Q值分析及优化

光子晶体高低折射率介质分别为TiO₂与 SiO₂, 折射率 $n_{\rm H} = 2.33$, $n_{\rm L} = 1.44$, 中心波长 λ_0 选 为1550 nm, 由 $n_{\rm H}d_{\rm H} = n_{\rm L}d_{\rm L} = \lambda_0/4$, 厚度分别为 $d_{\rm H} = 166.31$ nm, $d_{\rm L} = 269.1$ nm, 吸收介质ZnS的 折射率为 $\hat{n}_{\rm ZnS} = 2.38 + 0.02i$, 吸收介质的厚度若较 小, 不能充分吸收谐振频率对应的光波, 光波大部 分被反射回去, 若较大会使光波在缺陷腔中经过几 次全反射便被吸收, 不能与多孔硅中的待测物充分 接触. 经过多次优化得到ZnS厚度 $d_{\rm ZnS} = 40$ nm. 缺陷腔中TiO₂的厚度 $d_{\rm H0} = 20$ nm, 多孔硅的孔隙 率 $\rho = 52\%$, 根据Bruggeman介电常数近似理论, 求得多孔硅的折射率为2.08.

利用传输矩阵法进行数值模拟,周期为6时,可得该带表面缺陷腔的光子晶体的反射光谱,如 图 3 所示.谐振峰的半高全宽 $\Delta\lambda$ 约为1 nm,则该 传感器结构的Q值为

$$Q = \frac{\lambda_{\rm d}}{\Delta\lambda} \approx 1429,\tag{11}$$

其中, λ_d 为缺陷峰值波长.可以看出,该结构的Q值高,这是由于光波在缺陷腔发生多次全反射,光 波可与多孔硅中待测物充分接触,从而Q值得到 提高.

影响Q值的主要因素是光子晶体的周期层数 N,利用传输矩阵法进行数值模拟,由图4可以看 出,随着周期层数的增加,半高全宽 $\Delta\lambda$ 减小,Q值 变大,同时谐振波长对应的反射率减小,周期层数 为6时,缺陷峰的 $\Delta\lambda$ 和反射率都较理想.由于考虑 到仪器设备分辨能力等实际情况,仿真计算时波长 精度为0.05 nm.而随着层数的继续增加,虽然谐 振峰的半高全宽 $\Delta\lambda$ 越来越尖锐,但受波长精度影 响程度越大,谐振波长对应的反射率反而变大,使 得在谐振峰最小反射率的谐振波长 λ_d 的检测产生 较大的误差.综合考虑Q值、反射率和仪器的分辨 率等因素,因此在传感结构设计中,将周期层数确 定为6.

3.2 折射率传感特性分析

以有机蒸汽为待测样本,对该结构进行折射率 传感特性分析.向该结构中持续充入有机蒸汽,蒸 汽在多孔硅层内不断扩散,直至达到吸附平衡.当 有机蒸汽达到饱和时,由Gurvisch原理,有机物的 液化体积分数近似为一定值.以异丙醇蒸汽为待测 样本,其折射率为1.377,当多孔硅孔洞里的平衡压 力等于其饱和蒸汽压时,便会凝聚为液态,其体积 分数恒定,约为0.33.由Bruggeman理论,凝聚有 异丙醇的多孔硅的有效折射率 *n*PSi.eff = 2.23.

图 5 为吸附异丙醇蒸汽前后表面缺陷光子晶体的反射谱漂移情况,可以看出,该传感结构的Q

值为756, 远大于SPR传感器. 与未吸附异丙醇蒸 汽的多孔硅相比, 充入异丙醇后, 谐振峰值波长发 生红移, 由1429 nm 漂移至1511 nm, 可见该传感 结构的谐振波长随着多孔硅中吸附待测有机蒸汽 的折射率增大而增大, 与公式推导符合. 其灵敏 度为

$$S = \frac{\delta\lambda}{\delta n} = 546.67 \text{ nm/RIU.}$$
(12)

因此,该结构灵敏度高,可实现高精度的测量.

4 结 论

提出了一种带多孔硅表面缺陷腔的半无限光 子晶体结构,表面吸附层采用多孔硅结构,其具有 比表面积大、生物兼容性好、易于制备和进行表面 修饰等特点,因此在小型化和高灵敏度传感器设计 中拥有独特的优势.缺陷腔中引入吸收介质ZnS, 从而使与谐振峰值波长对应的入射光光信号在谐 振腔中完成多次衰荡,进而在反射谱中得到缺陷 峰.通过对光子晶体周期层数的讨论,选择合适的 周期层数可优化其传感特性,其Q值可达1429.多 孔硅的折射率随着有机物折射率的变化而变化,可 通过观测谐振波长的漂移实现对待测物的监测.以 异丙醇为样本,比较吸附前后的谐振波长漂移,灵 敏度 S 为 546.67 nm/RIU. 该结构具有制备工艺简 单和结构紧凑等优点,对工业环境中有机蒸汽的在 线监测预警和生物传感等领域具有一定的理论和 实际应用价值.

参考文献

- [1] Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y, Wang P F 2012 *Chin. Phys. B* 21 020601
- [2] Zhang D C, Yan Y R, Li Q, Yu T X, Cheng W, Wang L, Ju H X, Ding S J 2012 J. Biotechnol. 160 123
- [3] Endo T, Ozawa S, Okuda N, Yanagida Y, Tanaka S, Hatsuzawa T 2010 Sens. Actuat. B: Chemical 148 269
- [4] Li Y H, Yan Y R, Lei Y N, Zhao D, Yuan T X, Zhang D C, Cheng W, Ding S J 2014 Colloids and Surfaces B: Biointerfaces 120 15
- [5] Chen F F, Fei W J, Sun L, Li Q H, Di J W, Wu Y 2014 Sens. Actuat. B: Chemical 191 337
- [6] Maharana P K, Jha R 2012 Sens. Actuat. B: Chemical 169 161
- [7] Chen Y, Wang W Y, Yu N 2014 Acta Phys. Sin. 63
 034205 (in Chinese) [陈颖, 王文跃, 于娜 2014 物理学报
 63 034205]
- [8] Feng S, Wang Y Q 2011 Chin. Phys. B 20 104207
- [9] Derbali J, Abdel Malek F, Bouchriha H 2013 Optik 124 3936
- [10] Jiang B, Liu A J, Chen W, Xing M X, Zhou W J, Zheng W H 2010 Acta Phys. Sin. 59 8548 (in Chinese) [江斌, 刘安金, 陈微, 邢名欣, 周文君, 郑婉华 2010 物理学报 59 8548]
- [11] Zhang H Y, Jia Z H, Lü X Y, Zhou J, Chen L L, Liu R X, Ma J 2013 Biosens. Bioelectron. 44 89
- [12] Wu C, Rong G G, Xu J T, Pan S F, Zhu Y X 2012 *Physica E* 44 1787
- [13] Rostami A, Khezri M, Golmohammadi S 2012 Optik 123 847
- [14] Zhang D L, Cherkaev E, Lamoureux M P 2011 Appl. Math. Computat. 217 7092
- [15] Sun P, Hu M, Liu B, Sun F Y, Xu L J 2011 Acta Phys. Sin. 60 057303 (in Chinese) [孙鹏, 胡明, 刘博, 孙凤云, 许路加 2011 物理学报 60 057303]

Tamm state of semi-infinite photonic crystal based on surface defect cavity with porous silicon and its refractive index sensing mechanism^{*}

Chen Ying[†] Fan Hui-Qing Lu Bo

(Hebei Province Key Laboratory of Test/Measurement Technology and Instrument, School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China)

(Received 4 May 2014; revised manuscript received 4 July 2014)

Abstract

A refractive index sensing structure based on the Tamm state of photonic crystal with surface defect is proposed by combing the Tamm state of semi-infinite photonic crystal with the optical sensing mechanism of porous silicon, in which the efficient bearing mechanism of the porous silicon is introduced into the surface defect cavity. The existence of Tamm state is demonstrated at the edge between the defect cavity and the periodical photonic crystal structure, and the total reflection in the defect cavity is formed by adjusting the incident angle. The resonant defect peak is obtained in the reflection spectrum by adding an absorbing medium into the defect cavity in order to reduce the reflectivity of the resonant wavelength. The full width at half maximum and the quality factor (Q value) can be optimized by adjusting the parameters of photonic crystal. Based on those results, according to the relationship between Goos-Hänchen phase shift and the resonant wavelength, the model for the relationship between the refractive index of the sample is established, and its refractive index sensing characteristics are analyzed. The numerical simulation results show that the Q value can attain to 1429 and the sensitivity is about 546.67 nm·RIU⁻¹, which can demonstrate the effectiveness of the structure design and provide some theoretical references for designing the refractive index sensors with high Qvalues and sensitivities.

Keywords:photonic crystal, porous silicon, surface defect cavity, refractive index sensorPACS:42.70.Qs, 61.43.-j, 71.55.-i, 78.20.CiDOI:10.7498/aps.63.244207

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 61201112, 61172044), the Natural Science Foundation of Hebei Province, China (Grant Nos. F2013203250, F2012203169), and the China Postdoctoral Science Foundation (Grant No. 2012M510765).

[†] Corresponding author. E-mail: chenying@ysu.edu.cn