物理学报 Acta Physica Sinica

基于照射 反射模型和有界运算的多谱段图像增强

毕国玲 续志军 赵建 孙强

Multispectral image enhancement based on irradiation-reflection model and bounded operation

Bi Guo-Ling Xu Zhi-Jun Zhao Jian Sun Qiang

引用信息 Citation: Acta Physica Sinica, 64, 100701 (2015) DOI: 10.7498/aps.64.100701 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.100701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I10

您可能感兴趣的其他文章 Articles you may be interested in

基于复振幅场信息复用和RSA算法的非对称多幅图像认证方法

Asymetric multiple-image authentication based on complex amplitude formation multiplexing and RSA algorithm

物理学报.2015, 64(11): 110701 http://dx.doi.org/10.7498/aps.64.110701

一种基于抖动和混沌技术的数字图像篡改检测及修复算法

A novel image authentication and recovery algorithm based on dither and chaos 物理学报.2014, 63(21): 210701 http://dx.doi.org/10.7498/aps.63.210701

一种基于混沌和汉明码的数字图像篡改检测及修复算法

A novel image authentication and recovery algorithm based on chaos and Hamming code 物理学报.2014, 63(2): 020701 http://dx.doi.org/10.7498/aps.63.020701

基于双阈值 Huber 范数估计的图像正则化超分辨率算法

A regularized super resolution algorithm based on the double threshold Huber norm estimation 物理学报.2013, 62(20): 200701 http://dx.doi.org/10.7498/aps.62.200701

高分辨率合成孔径雷达图像的 Gamma 分布下最大后验概率降斑算法

Gamma-distributed maximum a posteriori despeckling algorithm of high-resolution synthetic aperture radar images

物理学报.2013, 62(18): 180701 http://dx.doi.org/10.7498/aps.62.180701

基于照射_反射模型和有界运算的多谱段 图像增强*

毕国玲^{1)2)†}续志军¹⁾赵建¹⁾孙强¹⁾

(中国科学院长春光学精密机械与物理研究所,长春 130033)
 2)(中国科学院大学,北京 100049)

(2014年11月17日收到;2014年12月24日收到修改稿)

根据多尺度照射_反射模型,结合广义有界运算模型和引导滤波,能够有效地解决多谱段降质图像的增强问题.算法采用自适应的引导滤波核函数作为环绕函数,估计反映图像整体结构的不同尺度的低频照射分量;利用有界广义对数比 (general log-radio, GLR)模型加法代替 Retinex 理论中的对数变换运算;再由 GLR 模型减法去除照射分量,将不同尺度的反射分量从原始图像中分割出来;对不同尺度反射分量的有效信息采 用有界 GLR模型乘法和加法进行融合,有效地避免光晕伪影现象及越界现象的发生,得到多尺度反射分量图 像,即最终的增强图像.通过对可见光波段的低照度图像和雾霾图像、红外图像、X 光医学图像四组多谱段降 质图像实验分析,以对比度和信息熵作为评价指标,与同类算法进行了图像增强效果的定性和定量对比,结果 表明本文算法增强后的图像纹理和边缘细节更加丰富、对比度更高、视觉效果更佳,可广泛地应用于多种图像 增强领域.

关键词:图像增强,照射_反射模型,有界运算,引导滤波 PACS: 07.05.Pj, 42.79.Ls, 87.63.lm, 95.75.Mn

DOI: 10.7498/aps.64.100701

1引言

随着科学技术的发展,各谱段的成像技术在工 业监测、军事侦查、医疗诊断、航空航天等领域都 得到了广泛的应用.但在实际工程中,由于受外界 环境或谱段自身性质的限制,如可见光波段易受天 气、能见度、光线等因素影响,红外谱段成像受红外 传感器本身固有特性及外界大气环境因素干扰,X 光成像系统受X光散射、光量子噪声等各种不利因 素影响,导致降质图像的存在,严重影响其后期的 图像观察及分析.因此,突出图像的有用信息,改 善图像的视觉效果是亟待解决的问题.

传统的图像增强方法包括空域法和频域法,如 直方图均衡(histogram equalization, HE)、灰度变 换、Retinex算法、小波变换^[1]、同态滤波、梯度 域变换等^[2].还有基于物理模型的图像增强方法, 如采用大气衰减模型或光照反射模型.Tan^[3]利 用最大化复原图像对比度来增强图像;He等^[4]根 据暗原色原理,提高雾天图像的清晰度,取得了良 好的视觉效果.还有其他一些增强方法^[5,6],其中 Retinex 模型^[7]是Land基于颜色恒常知觉的计算 机理论提出的照射_反射模型.此后出现的改进 算法如随机路径算法、同态滤波算法、泊松方程算 法等,其中广泛研究的中心环绕Retinex方法^[8]包 括单尺度Retinex算法、多尺度Retinex 算法、可变 框架的算法等.多尺度Retinex 算法、可变 框架的算法等.多尺度Retinex 算法、可变 框架的算法等.为此,在估计光照分量时采用 meanshift 滤波方法^[9]、自适应滤波方法^[10]、改进 各向异性扩散方法^[11],都有效地去除了高对比度

^{*} 国家自然科学基金(批准号: 60977001)资助的课题.

[†]通信作者. E-mail: bigl_ciomp@163.com

^{© 2015} 中国物理学会 Chinese Physical Society

区域的噪声和消除光晕伪影现象. 文献 [12] 提出一 种基于平稳小波变换和多尺度Retinex的红外图像 增强方法,改善了图像的整体视觉效果. 文献 [13] 指出, 传统的数字图像处理过程中, 直接利用传统 运算对图像灰度进行操作,可能有超出图像灰度范 围的运算过程,这样就会导致在图像处理过程中大 量图像细节信息的丢失,因此提出了一种对数图像 处理模型LIP(logarithmic image processing), 重新 定义加、减、乘、除等传统运算规则,能在指定的区 间内对图像灰度进行处理,避免传统运算的越界问 题. 文献 [14, 15] 利用参数化的对数图像处理模型 (parameter logarithmic image processing, PLIP), 在图像增强中得到了较好的视觉效果. 文献 [16---19]提出根据图像噪声及掩膜性质等实际要求,重 新定义和设计一些广义的加、减、乘等线性运算模 型,能在有界范围内处理图像的灰度,图像处理过 程中不会产生超出界限的值,很好地保持了图像的 细节信息.

本文提出了一种多尺度照射 反射模型,结合 有界运算和引导滤波算法,能够有效地处理多谱段 降质图像的增强问题. 采用不同尺度的引导滤波核 函数作为低通滤波算子,估计反映图像整体结构的 低频照射分量;根据有界GLR模型中的加法代替 Retinex 算法中的对数运算;再由GLR模型的减法 去除照射分量,将不同尺度的反射分量从原始图像 中分割出来;利用梯度图像得到自适应增益函数, 对不同尺度反射分量的有效信息采用有界GLR模 型乘法和加法进行融合,得到最终的多尺度反射分 量图像,即最终的增强图像.实验结果表明,本算 法采用了引导滤波和有界的GLR模型,避免了光 晕伪影现象和运算越界的问题,实现了可见光低照 度图像和雾霾图像、红外图像、X光医学图像等多 谱段降质图像纹理细节的增强和对比度及清晰度 的提高,具有较强的抗噪声能力,可广泛地应用于 多种图像增强领域.

2 基本理论

2.1 多尺度照射__反射模型算法及局限性

由 Retinex 理论提出的照射_反射模型中, 照 射分量反映图像的低频部分, 反射分量反映图像 的高频细节, 决定着图像的本质特征. 一幅图像 I(x,y)可用反射分量 R(x,y)和照射分量 L(x,y)的 乘积表示, 并在对数域中将从原始图像中的照射分 量去除,便可得到反映物体本质属性的反射分量. 而照射分量的计算,在数学上是一个奇异问题,没 有统一的数学模型求解,只能通过近似估计来获 取.因此,多尺度照射_反射模型算法,即多尺度 Retinex (multi-scale Retinex, MSR)算法通用模型 可用(1)式表示:

$$R(x,y) = \sum_{i=1}^{k} w_i \{ \log I(x,y) - \log[I(x,y) * G(x,y)] \}, \quad (1)$$

其中,环绕函数*G*(*x*, *y*)为低通函数,用于模拟原始 图像中变换缓慢的信号,即可从原始图像中估计出 照射分量*L*(*x*, *y*).*G*(*x*, *y*)一般采用具有较强动态 压缩能力的函数形式,传统上采用高斯函数.

经MSR算法增强的图像整体对比度能得到提高,然而在明暗对比度强烈的部分易出现光晕伪影现象.此现象的出现主要是由传统的Retinex算法认为空间照度是缓慢变化与实际场景的成像亮度突变情况不符造成的.MSR是利用高斯卷积模板进行照射分量估计,而高斯滤波是一种各向同性的滤波过程,只考虑到像素间的距离,它在滤波时虽然对边缘进行了平滑,但不具备边缘保留能力,导致像素值变化剧烈的边缘区域模拟全局照度分布失败,会产生光晕伪影现象.可见在估计照射分量时,如果能具有保持阶跃信号的不变性,将会有效地避免光晕伪影现象的产生,为此本文采用引导滤波核函数进行照射分量的估计.

2.2 引导滤波算法

引导滤波是一种新型局部线性滤波,它是一个 线性移不变的滤波过程,将输入图像P,引导图像 I,输出图像为Q,那么存在以下关系:

$$Q_i = \sum_j W_{ij}(I)P_j.$$
 (2)

可知,由于引导与输出图像存在线性关系,那 么有 $\nabla Q = a_k \nabla I$,可见输出图像Q具有与引导图 像I相同的边缘梯度特性.经推导,引导滤波核函 数 W_{ij} 如(4)式所示,i和j为像素的位置:

$$W_{ij} = \frac{1}{|\omega|^2} \sum_{k:(i,j)\in\omega_k} \left[1 + \frac{(P_i - \mu_k)(P_j - \mu_k)}{\sigma_k^2 + \varepsilon} \right],$$
(3)

其中 $|\omega|$ 为窗口 ω_k 的像素个数, ε 为平滑因子, μ_k 和 σ_k 为窗口 ω_k 中的像素均值和均方差, $\sum W_{ij}(P) = 1$,不需要对滤波核函数权重进行 归一化处理. 与传统高斯滤波核函数相比, 引导 滤波核函数利用平滑窗口内的像素均值和方差进 行局部估计, 具有良好的边缘保持和细节增强的 特性.

选取一维信号进行引导滤波并分析,图1中实 线代表原始输入信号,虚线表示输入信号与滤波后 的差值信号.可见,差值信号波动较小,说明引导 滤波能很好跟随和保持原始信号的梯度.结果表 明,采用引导滤波核函数作为照射_反射模型中的 环绕函数进行低频照射分量的估计,将会有效地避 免光晕伪影现象的发生.以上选取参数 $\varepsilon = 0.01^2$, r = 3.

图1 一维信号的引导滤波

Fig. 1. Guide filter for one-dimensional signal.

2.3 广义有界运算模型

传统多尺度的 Retinex 算法对不同尺度的参数 采用线性加权平均,这种折中的融合策略不能很 好地反映多尺度的优势,为此本文将广义有界运 算(即广义对数比模型)引入到多尺度的 Retinex 理 论中.

有界运算GLR模型是一个定义域和值域都为 (0,1)的运算模型,对图像灰度值*I*(*i*,*j*)进行归一化 处理,定义如下:

$$I'(i,j) = (I(i,j) + 1 + \delta)/(M + \delta'), \qquad (4)$$

式中*M*为光强饱和值,对于8位灰度图像,*M* = 256; $\delta = \delta'$ 是微小的扰动量. 对归一化后像 素值*x* = *I'*(*i*, *j*) \in (0,1)进行非线性变换,记 $p(x) = \frac{1-x}{x}$,对其取对数变换可得非线性函数 $\phi(x)$ 如(5)式,其对相应的逆变换 $\phi^{-1}(x)$ 如(6)式 所示:

$$\phi(x) = \log[p(x)] = \log\left(\frac{1-x}{x}\right), \tag{5}$$

$$\phi^{-1}(x) = \frac{1}{e^x + 1}.$$
(6)

分别采用⊕, ⊙, ⊗表示GLR模型中的加、减、 乘的广义线性运算, 定义如下:

$$x_1 \oplus x_2 = \varphi^{-1}[\varphi(x_1) + \varphi(x_2)] = \frac{1}{p(x_1)p(x_2) + 1},$$
(7)

$$\gamma \otimes x = \varphi^{-1}[\gamma \varphi(x)] = \frac{1}{p(x)^{\gamma} + 1},$$
 (8)

$$x_1 \odot x_2 = \varphi^{-1}[\varphi(x_1) - \varphi(x_2)] = \frac{1}{p(x_1)p(x_2)^{-1} + 1}.$$
(9)

这里, x_1 , x_2 表示两路图像输入信号, γ 为任意实数. 若 $\xi \oplus x = x$, 可推导得GLR模型的零值为 $\xi = 1/2$. GLR模型为有界运算具有封闭性, 能保证图像的灰度值不会有越界的现象发生. 下文中我们将GLR模型中相应的线性运算性质应用到多尺度的照射_反射模型算法中, 取得了较好的图像增强效果.

3 基于照射_反射模型的算法实现

3.1 不同尺度照射分量估计

本文提出的基于照射_反射模型结合有界运 算的多谱段图像增强算法的结构框图如图2所示. 由引导滤波获取照射分量,引导滤波的局部平滑窗 口半径r取值较大时,引导图像会在更大的范围内 进行平均线性输出,使得图像的边缘和细节更加丰 富,过度更加平滑,避免了块效应和光晕伪影现象 的发生;但是r取值较小,会导致锐化作用减弱,使 图像模糊.可见,单尺度已经无法满足对细节丰富 的照射分量的估计需求,因此采用多尺度的引导滤 波获取不同尺度的照射图像,使图像的尺寸结构和 细节得以充分体现.

本文采用三个不同的尺度因子,为了对r的取值具有自适应性,通过大量的试验,考虑 到引导滤波利用盒式滤波,设图像的高度和 宽度分别为height和width,r的最大值 $r_{max} =$ [min(height,width)/2 - 1],r的最小值 $r_{min} =$ [min(height,width)/(2ⁿ)].其中n为选取尺度的 个数,令n = 3;取r的中间值 $r_{mid} =$ [($r_{max} + r_{min}$)/2],[]表示取整操作.经小、中、大不同尺 度的引导滤波进行处理后如图3所示,小尺度引导 滤波获取照射分量图像[图3(a)]反映的是图像的 大体结构,尺度越大获取的照射分量图像细节越清 晰[图3(b)和(c)].

图 2 算法结构框图

Fig. 2. Block diagram of the algorithm.

图 3 不同尺度的照射分量估计图像 (a) 小尺度; (b) 中尺度; (c) 大尺度 Fig. 3. Estimate radiation images with different dimensions: (a) small-scale; (b) meso-scale; (c) large-scale.

3.2 图像的类对数变换

Retinex 模型将运算转换到适合人类视觉感知 亮度能力的对数域,由对数函数的特性(如图4)可 知,该非线性调节有效地压缩了图像的动态范围, 提高图像的整体对比度.特别是对暗区域的动态范 围进行有效扩展,使得暗区域的细节得以重现;但 是由于高亮区对数变换的曲线斜率过小,使得高亮 区动态范围过度压缩,致细节丢失.为此,这里引 入GLR有界运算模型,首先对图像进行预处理,将 原灰度图像像素值的定义域由 $I(x,y) \in [0,255]$ 微 扰动对数变换后进行归一化处理[如(10)式],转换 到 $I'(x,y) \in (0,1)$ 的区间内.

$$I'(x,y) = \frac{\log[I(x,y) + 1 + \delta]}{\log(256 + \delta')}.$$
 (10)

GLR模型加法性质如图 4 所示, 当a > 0.5时, 该运算有效地调节了图像动态范围, 对亮区进行了 压缩, 对暗区灰度进行了拉伸. 可见, 该部分运算 与对数变换具有相似的图像处理能力, 因此称为对 图像的类对数变换. 本文选取 $y = x \oplus 0.8$ 对图像 进行类对数变换, 此时 GLR 模型加法亮区的曲线 斜率大于对数变换, 减少亮区细节信息的丢失; 而 在暗区曲线斜率接近对数变换,保留了暗区图像对 比度提高的特性.对原图像和多尺度引导滤波后 的图像进行类对数变换代替传统Retinex的对数变 换,分别得到*i*(*x*,*y*)和照射分量*l*'_i(*x*,*y*).

图4 对数变换及GLR模型加法

3.3 不同尺度反射分量的获取

由 GLR 模型减法去除照射分量 $l'_i(x, y)$,将不同尺度图像的反射分量 $r_i(x, y)$ 从原始图像中分割出来,如 (11) 式:

Fig. 4. Logarithmic transformation and GLR model additions.

$$r_i(x,y) = i(x,y) \odot l'_i(x,y).$$
 (11)

GLR模型的减法运算特性如图5.以大尺度 的反射分量图像为例进行说明,分别选取GLR模 型减法和传统减法获取的反射图像的第50行像素 作为一维信号,在图6中分别用实线和虚线表示. 两条曲线都围绕着各自的零点变化(GLR模型零 点为0.5,传统减法零点为0).经分析,当*x*与*a*越 接近时,GLR模型的减法对传统减法中的小差值, 即小细节进行了放大,从而避免了小细节的丢失; 而当*x*与*a*相差越大时,GLR模型的减法对大差 值,即大细节进行了压缩,避免了过大的差值造成 的光晕伪影现象和噪声干扰.

图 6 反射分量图像第 50 行像素信号的一维表示 Fig. 6. One-dimensional signal of the 50th rows of the reflection pixel.

3.4 最终增强图像的生成

采用GLR模型的乘法和加法与自适应增益函数共同作用[如(12)式所示],对不同尺度反射分量 图像的有效信息进行融合,得到最终的多尺度反射 分量图像,即最终增强图像.

$$\sum_{i}^{n} \lambda_{i}(x, y) r_{i}(x, y)$$
$$= [\lambda_{i}(x, y) \otimes r_{1}(x, y)] \oplus [r_{i}(x, y) \otimes r_{2}(x, y)] \cdots$$

$$\oplus [\lambda_i(x,y) \otimes r_n(x,y)] = \frac{G}{G + \bar{G}}, \qquad (12)$$

其中

$$G = \prod_{i=1}^{n} r_i(x, y)^{\lambda_i(x, y)}, \ \bar{G} = \prod_{i=1}^{n} [1 - r_i(x, y)]^{\lambda_i(x, y)},$$

n为尺度参数的总个数, $r_i(x, y)$ 为对应不同尺度下的反射分量, $\lambda_i(x, y)$ 为自适应增益函数.

传统多尺度 Retinex 使每个像素值乘以一个常数增益,导致图像在平滑区域无法控制噪声的放大,在高对比度和灰度陡然变换的边缘出现光晕伪影现象.为此,本文采用自适应增益函数代替传统常数增益,对图像不同区域采用不同的增益.利用人眼对边缘等高频信息比较敏感的特性,选择具有一定噪声鲁棒性的 Sobel 算子获取边缘梯度图像,并相对传统 Sobel 算子增加两个对角方向的滤波,增强了平滑噪声的能力.图像中每个点的梯度具体公式如下:

水平方向卷积和

$$D_{0} = I (i - 1, j + 1) + I (i + 1, j + 1)$$

- I (i - 1, j - 1) - I (i + 1, j - 1)
+ 2I (i, j) - 2I (i, j - 1); (13)

垂直方向卷积和

$$D_{90} = I (i + 1, j - 1) + I (i + 1, j + 1)$$

- I (i - 1, j - 1) - I (i - 1, j + 1)
+ 2I (i + 1, j) - 2I (i - 1, j); (14)

45°方向卷积和

$$D_{45} = I (i - 1, j) + I (i, j + 1)$$

- $I (i, j - 1) - I (i + 1, j + 1)$
+ $2I (i - 1, j + 1)$
- $2I (i + 1, j - 1);$ (15)

135°方向卷积和

$$D_{135} = I(i+1,j) + I(i,j+1)$$

- $I(i-1,j) - I(i,j-1)$
+ $2I(i+1,j+1)$
- $2I(i-1,j-1);$ (16)

最终的梯度图像定义为

$$S(i,j) = [D_0^2(i,j) + D_{45}^2(i,j) + D_{90}^2(i,j) + D_{135}^2(i,j)]^{1/2}.$$
(17)

100701-5

由以上得到了丰富的梯度信息图像.则在像素 $\land (x,y)$ 处自适应增益函数 $\lambda_i(x,y)$ 与 $I_s(x,y)$ 存在 如下关系:

$$\lambda_i(x,y) = 2^{[2*I_s(x,y)]} + 2. \tag{18}$$

由 (18) 式可知, 自适应增益函数 $\lambda_i(x, y)$ 的值显然 大于 1, 采用 GRL 模型的乘法 (如图 7), 当a > 1时, 在 GRL 模型的零值 (即x = 0.5) 附近的像素值 被拉伸, 但对远离 GRL 模型的零值进行了压缩, 传 统的乘法显然达不到这样的效果. GRL 模型有界 的封闭加法运算 (如图 3) 避免了传统加法简单叠 加而产生的越界现象, 使得图像的细节更加丰富清 晰, 整体图像的对比度得到提高.

Fig. 7. GLR multiplication.

4 实验结果与分析

4.1 对比实验

实验中选取可见光波段的低照度图像和雾霾 图像、红外图像、X光医学图像4组多谱段降质图像 (如图8)进行实验说明,并与多尺度Retinex算法 (MSR)以及传统有效的直方图均衡化(HE)算法、 同态滤波算法(homomorphic filtering, HF),进行 图像增强效果的对比和分析.

基于 MSR, HE, HF 以及本文算法的低对比度 的可见光低照度图像、红外图像、X 光医学图像强 效果对比,如图9-11所示. MSR处理的图像都 有一定的视觉增强效果,但是在红外图像处理过 程中MSR在高亮区附近出现了光晕伪影现象,如 图 10(a) 中白色椭圆标记的部分所示; 直方图均衡 化算法虽然提到了整体对比度,但在高亮区出现 过饱和现象, 致部分细节丢失, 且放大了噪声, 如 图 9 (b), 图 10 (b), 图 11 (b) 中黑色椭圆标记的部分 所示; 经HF算法增强后的图像, 避免了直方图均 衡化产生的过增强现象,但是整幅图像细节看起来 仍然模糊,视觉效果较差;本文算法处理的图像整 体对比度和清晰度得到了提高,不仅暗区的细节得 到了重现和增强,还尽量多地获取了高亮区的图像 细节信息,避免了光晕伪影现象的产生,并且抑制 图像整体噪声,取得了较好的视觉效果.

基于 MSR, HE, HF 和本文算法的雾霾图像增 强效果对比如图 12 所示. 经 MSR 算法、直方图均 衡以及同态滤波处理后的图像可以看出,这些算 法对近景图像细节信息进行增强,取得了较好的 除雾清晰化效果,而远景仍模糊不清,灰度变化缓 慢. 这是由于雾天图像的退化程度与景深存在非线 性关系,随着景深的增加其退化愈严重.本文算法 具有较强的去雾能力,不仅近景去雾效果好,远景 的楼群纹理细节也很清晰,提高了雾霾天的视觉能 见度.

图 8 原始图像 (a) 低照度图像; (b) 红外图像; (c) X 光医学图像; (d) 雾霾图像

Fig. 8. The original image: (a) low illumination image; (b) infrared image; (c) X-ray medical image; (d) haze image.

图 9 可见光低照度图像增强对比 (a) MSR; (b) HE; (c) HF; (d) 本文算法

Fig. 9. Comparison of visible low illumination image enhancement: (a) MSR; (b) HE; (c) HF; (d) proposed.

图 10 红外图像增强对比 (a) MSR; (b) HE; (c) HF; (d) 本文算法

Fig. 10. Comparison of infrared image enhancement: (a) MSR; (b) HE; (c) HF; (d) proposed.

图 11 X 光医学图像增强对比 (a) MSR; (b) HE; (c) HF; (d) 本文算法

Fig. 11. Comparison of X-ray medical image enhancement: (a) MSR; (b) HE; (c) HF; (d) proposed.

图 12 可见光雾霾图像增强对比 (a) MSR; (b) HE; (c) HF; (d) 本文算法 Fig. 12. Comparison of dehazing result: (a) MSR; (b) HE; (c) HF; (d) proposed.

4.2 定量对比分析

采用对比度和信息熵两种评价标准,对以上试验图像的增强效果做定量对比分析,对比度及信息熵定义分别如(19)和(20)式所示:

$$C = \left\{ \frac{1}{M \times N} \sum_{i=0}^{M} \sum_{j=0}^{N} \left[I(i,j) - \mu \right]^2 \right\}^{1/2}, \quad (19)$$

$$H = -\sum_{x \in L} q(x) \ln q(x).$$
⁽²⁰⁾

式中, *M*和*N*分别为图像的长和宽, *I*(*i*, *j*)为图像的灰度值, *µ*为图像的灰度均值, *q*(*x*)为增强后图像的灰度分布密度. 经实验得知, 当图像细节

很模糊但局部灰度值差别较大时, 经(19)式得到 的对比度也很高, 为此, 这里采用均值滤波图像 μ(*i*, *j*)(即局部均值)代替(19)式中的全局图像均值 μ, 取得了较好的对比效果. 取均值滤波半径为 [min(*M*, *N*)/20], 对于上小节中四组对比试验图像 的定量参数描述如表1所列, 四种算法增强后的图 像对比度和信息熵相对于原图像得到了提高. 本文 算法得到的对比度和信息熵这两种指标的大部分 值比MSR、直方图均衡以及同态滤波算法高, 说明 本文算法的图像增强效果普遍较好, 获取的图像细 节丰富、对比度高.

表 1 图像质量评价参数对比 Table 1. Comparison of image quality evaluation parameters.

Method	Low illumination			Infrared			X-ray			Haze	
	Η	С		Н	С		Н	С		Η	С
Orignal	5.647	0.048	4	.038	0.079		3.981	0.056		7.082	0.029
MSR	7.619	0.178	6	.475	0.176		3.582	0.112		6.906	0.051
HE	6.155	0.140	5	.515	0.168		3.671	0.091		5.849	0.033
$_{ m HF}$	6.043	0.126	5	.321	0.154		3.049	0.081		6.272	0.027
Proposed	8.017	0.174	7	.348	0.187		4.992	0.128		7.824	0.047

5 结 论

本文提出了一种基于多尺度照射_反射模型 和广义有界运算的图像增强算法,有效地解决了多 谱段降质图像的增强问题.算法采用自适应的引 导滤波核函数作为环绕函数估计不同尺度的照射 分量;根据有界GLR模型中的加法代替Retinex算 法中的对数运算;再由GLR模型的减法去除照射 分量将不同尺度的反射分量从原始图像中分割出 来;利用梯度图像获取自适应增益函数,采用有界 GLR模型乘法和加法对不同尺度反射分量的有效 信息进行融合,得到多尺度反射分量图像,即最终 的增强图像.

因为引导滤波具有良好的梯度保持特性,算法 采用引导滤波作为环绕函数进行照射分量的估计, 有效地避免了多尺度 Retinex 算法的光晕伪影现象 的发生;同时整个算法的运算过程采用 GLR 模型 的有界运算,避免了传统运算的越界现象的发生, 使得图像的大量细节得以保留,采用自适应增益函 数,避免了平滑区域的噪声放大.实验结果表明,本 算法改善了可见光低照度图像和雾霾图像、红外图 像、X 光医学图像等多谱段降质图像的整体视觉效 果,具有一定的噪声鲁棒性和边缘及纹理细节信息 的保持特性,提高了图像的对比度和清晰度.该研 究成果已经在红外热像仪中得到了应用,取得了较 好的效果.本文提出的算法目前只是对8位灰度图 像进行增强,今后将开展对彩色图像增强的研究.

参考文献

[1] Liu S G, Chen J H, Fan H Y 2011 Chin. Phys. B 20 120305

- [2] Zhao W D, Zhao J, Xu Z J 2013 Acta Phys. Sin. 62
 214204 (in Chinese) [赵文达, 赵建, 续志军 2013 物理学报
 62 214204]
- [3] Tan R T 2008 IEEE Conference on Computer Vision and Pattern Recognition 2008 p1
- [4] He K, Sun J, Tang X 2009 IEEE Conference on Computer Vision and Pattern Recognition 2009 p1956
- [5] Yu D, Bao X D 2010 J. Biomed. Engineer. Res. 29 5 (in Chinese) [余岱, 鲍旭东 2010 生物医学工程研究 29 5]
- [6] Jia D Y, Ding T H 2005 Acta Phys. Sin. 54 4058 (in Chinese) [郏东耀, 丁天怀 2005 物理学报 54 4058]
- [7] Land E H 1977 Sci. Am. 237 108
- [8] Jobson D J, Rahman Z, Woodell G A 1997 IEEE Trans. Image Process. 6 451
- [9] Xu X, Chen Q, Wang P A, Sun H J, Xia D S 2008 J. *Computer-Aided Design & Computer Graphics* 20 1325 (in Chinese) [许欣, 陈强, 王平安, 孙怀江, 夏德深 2008 计 算机辅助设计与图形学学报 20 1325]
- [10] Meylan L 2006 IEEE Trans. Image Process. 15 2820
- [11] Tang L, Zhao C X, Wang H N, Shao W Z 2008 J. Image and Graphics 13 264 (in Chinese) [唐磊, 赵春霞, 王鸿南, 邵文泽 2008 中国图象图形学报 13 264]
- [12] Fang S, Yang J R, Cao Y, Wu P F, Rao R Z 2012 J. *Image and Graphics* 17 748 (in Chinese) [方帅, 杨静荣, 曹洋, 武鹏飞, 饶瑞中 2012 中国图象图形学报 17 748]
- [13] Jourlin M, Phinoli J C 1989 J. Microscopy 156 33
- [14] Zhu R F, Jia H G, Wang C, Wei Q, Zhang T Y, Yu L Y 2014 Optics and Precision Engineering 22 1064 (in Chinese) [朱瑞飞, 贾宏光, 王超, 魏群, 张天翼, 虞林瑶 2014 光学精密工程 22 1064]
- [15] Wang R G, Zhu J, Yang W T, Fang S, Zhang X T 2010
 Acta Electron. Sin. 38 1181 (in Chinese) [汪荣贵, 朱静,
 杨万挺, 方帅, 张新彤 2010 电子学报 38 1181]
- [16] Deng G, Cahill L W, Tobin G R 1995 IEEE Trans. Image Process. 4 506
- [17] Deng G 2013 IEEE Trans. Image Process. 22 2903
- [18] Nielsen F, Nock R 2009 IEEE Trans. Inform. Theory 55 2882
- [19] Jia H G, Wu Z P, Zhu M C, Xuan M, Liu H 2013 Optics and Precision Engineering 21 3272 (in Chinese) [贾宏 光, 吴泽鹏, 朱明超, 宣明, 刘慧 2013 光学精密工程 21 3272]

Multispectral image enhancement based on irradiation-reflection model and bounded operation^{*}

Bi Guo-Ling^{12)†} Xu Zhi-Jun¹⁾ Zhao Jian¹⁾ Sun Qiang¹⁾

(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China)
 (University of Chinese Academy of Science, Beijing 100049, China)

(Received 17 November 2014; revised manuscript received 24 December 2014)

Abstract

According to irradiation-reflection model, by combining the generalized bounded operation model with guide filter, the problem of enhancement for multispectral degraded images with blurred details can be effectively solved and the contrast and low signal-to-noise ratio can be improved. The multi-scale reflection component image, i.e., final enhanced image is obtained through the following procedures: using the adaptive different scales of guide filter function as surround function estimate reaction; separating out the high-low-frequency information; obtaining the different scales Irradiation images which react the overall structure of the image; using the bounded generalized logarithmic ratio (GLR) model addition to replace the Retinex logarithmic transformation; taking a similar logarithmic transformation to the original image to improve the contrast of the image and make the dark area of image details enhanced; again using GLR model subtraction to remove illuminate components from the original image to segment the different scales of the reflection image, thereby avoiding the loss of small details and the big details caused halo effect and noise interference. With four direction Sobel gradient image which reflects the comprehensive edge details of image information the adaptive gain function can be obtained. To avoid the smooth area noise amplification, by using the GLR model multiplication and addition to fuse the effective information of different scales images, the multi-scale reflection image, namely the final enhanced image are obtained. The effective suppression of the emergence of halo effect and computing overflow, which can retain a large number of image details; the comparision of subjective visual effect and the quantitative parameter analysis of the visible low illumination image, haze image, infrared image and X-ray medical images (a total of four groups of multispectral degraded images), the use of the contrast and entropy as evaluation indices, qualitative and quantitative comparison with a variety of image enhancement algorithms, show that the proposed algorithm strengthens and keeps the details of the image texture and edge, realizes the image contrast enhancement and the effective dynamic range compression, has a strong anti-noise ability, and can meet a variety of practical engineering image enhancement needs. The results of the study has been used in the infrared thermal imager, and good results have been achieved. The proposed algorithm is only for 8-bit grayscale image enhancement, and the color image enhancement will be studied in the future.

Keywords: image enhancement, irradiation_reflection model, bounded operation, guide filter PACS: 07.05.Pj, 42.79.Ls, 87.63.lm, 95.75.Mn DOI: 10.7498/aps.64.100701

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 60977001).

[†] Corresponding author. E-mail: bigl_ciomp@163.com