物理学报 Acta Physica Sinica

 $Ba_5SiO_4Cl_6$: Yb³⁺, Er³⁺, Li⁺ 荧光粉的制备及上转换发光性质研究 杨健芝 邱建备 杨正文 宋志国 杨勇 周大成

Preparation and upconversion luminescence properties of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺ phosphors

Yang Jian-Zhi Qiu Jian-Bei Yang Zheng-Wen Song Zhi-Guo Yang Yong Zhou Da-Cheng

引用信息 Citation: Acta Physica Sinica, 64, 138101 (2015) DOI: 10.7498/aps.64.138101 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.138101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I13

您可能感兴趣的其他文章 Articles you may be interested in

Nd³⁺掺杂GdTaO₄的吸收光谱分析和晶场计算

Absorption spectrum analysis and crystal-field calculation of Nd³⁺ doped in GdTaO₄ crystal 物理学报.2015, 64(12): 124209 http://dx.doi.org/10.7498/aps.64.124209

Z型光催化材料的研究进展

Photocatalytic application of Z-type system 物理学报.2015, 64(9): 094209 http://dx.doi.org/10.7498/aps.64.094209

基于发卡式开口谐振环的柔性双频带超材料

A flexible dual-band metamaterial based on hairpin split-ring resonators 物理学报.2015, 64(3): 038101 http://dx.doi.org/10.7498/aps.64.038101

BaMgF₄: Er³⁺ Yb³⁺ 上转换纳米晶的合成及其发光性能研究 Synthesis and upconversion luminescent properties of BaMgF₄: Er³⁺ Yb³⁺ nanocrystals 物理学报.2014, 63(15): 154211 http://dx.doi.org/10.7498/aps.63.154211

碳硅二炔结构及性质分子动力学模拟研究

Molecular dynamics study on the structure and properties of silicon-graphdiyne 物理学报.2013, 62(23): 238101 http://dx.doi.org/10.7498/aps.62.238101

Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺荧光粉的制备及 上转换发光性质研究^{*}

杨健芝 邱建备 杨正文† 宋志国 杨勇 周大成

(昆明理工大学材料科学与工程学院,昆明 650093)

(2015年1月26日收到;2015年2月7日收到修改稿)

本文采用高温固相反应法制备了Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺荧光粉, 并对其上转换发光性质 及其发光机理进行了研究. 在980 nm激光的激发下, Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺荧光粉呈现较强的红 色(662 nm)和较弱的绿色(550 nm)的上转换发光, 红色和绿色的上转换发光分别对应于Er³⁺离子的 ${}^{4}S_{3/2}/{}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2} \pi {}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ 跃迁, 且随着掺杂的Er³⁺和Yb³⁺离子浓度增加, 样品的上转换发光 强度增加, 这是因为Yb³⁺离子和Er³⁺离子之间的能量传递效率增加引起的. 在0.5—0.8 W功率激发下, 样品属于双光子发射, 而在0.9—1.2 W功率激发下样品具有新的上转换发光机理——光子雪崩效应. 探讨 了Li⁺掺杂对Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺样品的上转换发光性质的影响, Li⁺离子的掺杂引起Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺上转换发光强度增加, 这是由于Li⁺离子的掺入降低了晶体场的对称性引起的.

关键词: 上转换发光, Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺, 发光粉, 光子雪崩 **PACS**: 81.05.Zx, 42.70.-a, 78.55.-m **DOI**: 10.7498/aps.64.138101

1引言

上转换发光是发射光波长小于抽运光波长的 发光现象,是典型的反Stokes发光过程^[1].上转换 发光在激光技术、光纤通信技术、光纤放大器、三 维立体显示、红外探测技术与防伪、白光LED 和温 度测控方面具有广泛的应用前景^[2-4].但是由于上 转换发光效率不是很高,限制了其实际应用.因此, 寻找高效稳定的上转换基质材料和研究如何提高 上转换发光效率成为了上转换材料研究的重点.

目前,上转换发光材料主要是掺杂稀土离子的 固体化合物,通常由稀土离子激活剂、敏化剂和基 质材料三部分组成.稀土 Er³⁺离子具有丰富的能 级,且部分能级寿命较长,因此有很高的上转换效 率,是目前研究较多的上转换材料的激活剂^[5].然 而由于 Er³⁺ 对常用的近红外激发光 (980 nm)的吸 收截面较小,所以常常共掺杂具有较大吸收截面的 Yb³⁺作为敏化剂提高其上转换发光效率^[6-8].另 外,基质材料的晶体结构和声子能量的大小是影响 上转换发光的一个主要因素, 当基质材料声子能 量和稀土离子的发射或者吸收波长相当时,基质 的晶格振动会吸收能量导致上转换发光效率的降 低. 目前稀土离子掺杂的上转换发光材料的基质 主要是氧化物或者是具有低声子能量卤化物和硫 化物等^[9-11],但是卤化物和硫化物上转换发光基 质材料存在化学稳定性差和激光损伤阈值低等缺 点,在一定程度上限制了其实际应用.与卤化物和 硫化物发光基质材料相比,氧化物上转换发光基质 材料具有制备简单、热稳定性和化学稳定性好等优 点^[12,13],在上转换发光材料中备受关注,但是大多 数氧化物上转换基质材料具有较高的声子能量从 而影响了其上转换发光效率. 氟氧化物由于结合了 氟化物和氧化物的优点,具有较好的化学稳定性和

^{*} 云南省中青年学术与技术带头人后备人才培养项目(批准号: 2013HB068)和云南省应用基础研究面上项目(批准号: 2014FB127) 资助的课题.

[†]通信作者. E-mail: yangzw@kmust.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

低的声子能量,作为稀土离子掺杂上转换发光基质 材料引起了研究者的广泛注意^[14].例如,陈晓波等 研究了氟氧化物微晶玻璃中稀土离子的上转换发 光性质,研究证实稀土离子优先富集到氟化物微晶 中形成多个稀土离子组成的耦合团,由于强烈的团 簇效应导致了上转换发光增强^[14].

碱土金属硅酸盐是稀土离子掺杂的普通发光 高效基质材料, 在碱土金属硅酸盐结构中 SiO4 不 仅可形成孤立的 SiO_4 单四面体及(Si_2O_7)₆双四面 体,还可以形成环状、链状和层状结构的硅氧多 种空间结构,由此,在稀土离子掺杂的碱土金属 硅酸盐发光基质中,可以实现多光色的可见发射 光[15,16]. 另一方面,碱土金属卤化物具有合成温 度及声子能量低等优点,在发光材料领域引起了人 们的广泛关注^[17,18].碱土卤硅酸盐是由碱土金属 硅酸盐和碱土金属卤化物复合而成的一种材料,它 具有碱土金属硅酸盐和碱土金属卤化物的声子能 量低、合成温度低和化学稳定性好等优点,目前作 为一种发光基质材料引起了人们的广泛关注[18,19]. 例如,很多人研究了Eu³⁺离子掺杂的卤硅酸盐发 光粉的发光性质,获得了基于白光LED用的新型 绿色荧光粉^[16,17]. 在我们前期的研究中制备了 Bi³⁺掺杂的Ba₅SiO₄Cl₆,在紫外光的激发下获得 了蓝白色的白光发光粉^[19].本文通过高温固相法 在800°C制备Ba₅SiO₄Cl₆:Yb³⁺, Er³⁺, Li⁺发光 粉,研究了其上转换发光性能及其发光机理,探讨 了Li⁺掺杂对Ba₅SiO₄Cl₆:Yb³⁺,Er³⁺样品的上 转换发光性质的影响.

2 实验部分

实验中所使用的原料为国药集团化学试 剂有限公司生产的BaCO₃, BaCl₂·2 H₂O, SiO₂, Er₂O₃和Li₂CO₃,稀土氧化物的纯度均为99.99%. 按Ba₅SiO₄Cl₆: 3%Yb³⁺, x%Er³⁺ (x = 0.1, 0.5, 1, 2.5, 5), Ba₅SiO₄Cl₆: 1%Er³⁺, x%Yb³⁺ (x = 0, 0.1, 0.25, 0.5, 1)和Ba₅SiO₄Cl₆: 1%Er³⁺, 1%Yb³⁺, x% Li⁺ (0, 0.1, 0.25, 0.5, 1, 2)的化学 计量比称量BaCO₃, BaCl₂·2H₂O, SiO₂, Er₂O₃, Yb₂O₃和Li₂CO₃原料,将称量的原料在玛瑙研钵 磨细混匀, 然后放置于刚玉坩埚中,在空气气氛中 于800°C下煅烧3h,自然冷却后获得荧光粉样品.

使用德国 D8ADVANCE X-Ray 粉末衍射仪 (Cu K_{α} radiation $\lambda = 1.542$ Å, 45 kV, 40 mA)分析 粉末样品的物相;采用日立F-7000荧光光谱仪测试上转换发射光谱,采用波长为980 nm的半导体激光器作为激发光源,所有测量均在室温进行.

3 结果与讨论

3.1 物相分析

图 1 是 Ba₅SiO₄Cl₆: 1%Er³⁺,1%Yb³⁺, x%Li⁺ (x = 0.1, 0.25, 0.5, 1) 和标准的 Ba₅SiO₄Cl₆ 的 X 射 线衍射图谱. 从图中可以看出, 样品的 XRD 衍射 峰与标准卡片的一致, 在掺杂 Er³⁺, Yb³⁺和Li⁺以 后粉末样品没有出现明显的杂峰, 说明没有杂相生 成, 掺杂的 Er³⁺, Yb³⁺和Li⁺进入到 Ba₅SiO₄Cl₆ 的晶格中.

图 1 (网刊彩色) $Ba_5SiO_4Cl_6$: 1% Er^{3+} , 1% Yb^{3+} , $x\%Li^+$ (x = 0.1, 0.25, 0.5, 1) 样品的 XRD 图 Fig. 1. (color online) XRD patterns of $Ba_5SiO_4Cl_6$: $1\%Er^{3+}$, 1% Yb^{3+} , $x\%Li^+$ (x = 0.1, 0.25, 0.5, 1) samples.

3.2 Er³⁺浓度变化对Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺粉末上转换发光性质的影响

图 2 是 在 980 nm 激 发 下 Ba₅SiO₄Cl₆: 3%Yb³⁺, x%Er³⁺ (x = 0.1, 0.5, 1, 2.5, 5) 荧光 粉上转换发射光谱图. 从图中可以看出, 在 980 nm 激发下样品出现了来自于 Er³⁺ 的红色和绿色特征 发射峰, 绿色发射峰的中心波长分别位于 525 和 548 nm, 红色发光波长位于 662 nm 处, 525 nm, 548 nm 和 662 nm 上转换发光分别对应于 Er³⁺ 离 子的²H_{11/2}/4S_{3/2}→4I_{15/2}和4F_{9/2}→4I_{15/2}能级跃 迁. 红色上转换发光的强度随着 Er³⁺ 的浓度增加 而增加, Er³⁺ 的掺杂浓度到达 5% 时, 没有出现浓 度猝灭现象. 在低的掺杂浓度下绿色的上转换发光 加到0.5%时,绿色的上转换发光强度基本不变,这 是由于 Er³⁺离子浓度增加 Er³⁺离子之间的交叉 弛豫能量传递引起的,具体解释见下面.

图 2 (网刊彩色) 980 nm(1.2 W) 激发下 Ba₅SiO₄Cl₆: 3%Yb³⁺, x%Er³⁺ (x = 0.1, 0.5, 1, 2.5, 5) 荧光粉的上 转换发射光谱

Fig. 2. (color online) Upconversion luminescence spectra of Ba₅SiO₄Cl₆: 3%Yb³⁺, x%Er³⁺ (x = 0.1, 0.5, 1, 2.5, 5) samples under the excitation of 980 nm.

上转换发光过程中上转换发光的强度与激发 光功率存在如下关系^[20]:

$I_{\rm UP} \propto P^n$,

其中, I_{UP}表示上转换发光强度, P表示激发光 功率. n表示上转换发射一个可见光子所需要的 980 nm 激发光的光子数. 图 3 (a) 是 Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ 发光粉的上转换发光强度和激发光功 率的对数关系图. 从图中看出在较低功率激发时 红色和绿色的上转换发光的 log I-log P 曲线的斜率 n值分别为1.08和1.05. 理论上实现绿色和红色的 上转换发光,需要的光子数是2.在目前的工作中 发现在较低功率激发时,红色和绿色的上转换发 光的n值小于2,这是由于上转换发光过程中存在 的饱和效应引起的. 图 3 (b) 是 Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺发光粉的上转换机理图. 其上转换发光过程 如下:Yb³⁺离子吸收一个980 nm 光子的能量,从 基态跃迁到 ${}^{2}F_{5/2}$,处于基态 ${}^{4}I_{15/2}$ 的 Er^{3+} 离子吸 收一个 980 nm 的光子或者是通过与 Yb3+ 离子之 间的能量传递从基态能级⁴I_{15/2}跃迁到激发态能级 ⁴I_{11/2};位于激发态能级⁴I_{11/2}上的离子再吸收一 份Yb³⁺离子传递而来的能量或者通过激发态吸收 (ESA)吸收一个 980 nm 的光子跃迁到⁴F_{7/2} 能级, 处于⁴F_{7/2}能级上的Er³⁺离子向下无辐射弛豫到 ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ 能级以及 ${}^{4}F_{9/2}$ 能级. ${}^{2}H_{11/2}$ 或 ${}^{4}S_{3/2}$

能级上的电子通过辐射跃迁至基态能级4I15/2发 射出绿光的上转换发光. 对于红色的上转换发 射过程,⁴I_{11/2}能级上的离子通过无辐射弛豫到 ⁴I_{13/2} 能级, ⁴I_{13/2} 能级上的电子通过激发态吸收或 者吸收Yb³⁺离子传递而来的能量跃迁至⁴F_{9/2}能 级,⁴F_{9/2}能级上的电子通过辐射跃迁回基态能级 ⁴I_{15/2}, 并发出662 nm 的红光. 如图3(a) 所示, 在 激光器功率大于0.9 W时,样品的上转换发光强 度的LOG值(LOG I_{UC})与激发光功率的LOG值 (LOG P)之间的斜率为大于3.5,与常见的双光子 机理不同,我们认为,在Ba5SiO4Cl6:Yb3+, Er3+ 样品中,当激发光功率大于0.9 W时,上转换绿光 和红光发射的机理为光子雪崩过程.光子雪崩过 程与稀土离子之间的交叉能量传递过程有关,如 图 3 (b) 所示, Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺样品的光 子雪崩机理为位于²H_{11/2} 能级的激发态 Er³⁺ 离子

Fig. 3. (color online) (a) the log-log plot of UC luminescence intensity verse the pump power of $Ba_5SiO_4Cl_6$: $3\%Yb^{3+}$, $5\%Er^{3+}$ sample under the excitation of 980 nm; (b) Upconversion luminescence mechanism of $Ba_5SiO_4Cl_6$: $3\%Yb^{3+}$, $5\%Er^{3+}$ sample. 与位于基态能级⁴I_{15/2}的Er³⁺离子,发生交叉 弛豫(²H_{11/2}+⁴I_{15/2}→⁴I_{9/2}+⁴I_{13/2},²H_{11/2}+⁴I_{15/2} →2⁴I_{11/2}),将后者激发至⁴I_{11/2}或者⁴I_{31/2}能级; 交叉弛豫的能量传递过程导致Er³⁺的产生红色和 绿色的上转换发光的中间激发态⁴I_{13/2}和⁴I_{11/2}能级的电子急剧增加,产生光子雪崩上转换发光.

由图2看出当 Er^{3+} 的浓度高于0.5%时,随 Er³⁺浓度的增加绿色的上转换发光强度基本不 变,而红色的上转换发光增强,这是由于Er³⁺离 子浓度增加Er³⁺离子之间的交叉弛豫能量传递 过程引起. 红色的上转换发射与交叉弛豫过程 ${}^{2}H_{11/2} + {}^{4}I_{15/2} \rightarrow {}^{4}I_{9/2} + {}^{4}I_{13/2}$ 有关,位于 ${}^{2}H_{11/2}$ 能 级的Er³⁺离子发生无辐射跃迁至⁴I_{9/2}能级,将 能量传递给另一个位于⁴I_{15/2}能级的Er³⁺离子,将 其激发到 ${}^4I_{13/2}$ 能级, 位于 ${}^4F_{7/2}$ 能级的 Er^{3+} 离子 跃迁至⁴F_{9/2}能级,导致红色能级的布居增加.从 上述分析看出²H_{11/2}+⁴I_{15/2}→⁴I_{9/2}+⁴I_{13/2}交叉弛 豫过程导致绿光发射能级的电子数减少,将导致绿 色上转换发光减弱,但另一方面稀土离子 Er³⁺离 子浓度的增加会引起发光增强;两方面的共同竞争 的结果导致如图2所示绿光发光强度随Er³⁺离子 浓度的增加变化不规律.

3.3 Yb³⁺浓度变化对Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺粉末上转换发光性质的影响

图 4 是 980 nm 激发下 Ba₅SiO₄Cl₆: 1%Er³⁺, xYb³⁺ (x = 0, 0.25, 0.5, 1)荧光粉的上转换发 射光谱图. 样品显示出Er³⁺的662 nm, 525 nm 和548 nm特征发射峰. 由图中看出,随着Yb³⁺ 浓度增加Er³⁺的上转换发光增加. Yb³⁺离子在 980 nm 激发下的吸收截面要比Er³⁺离子的吸收 截面大得多,含有Yb³⁺离子的Ba₅SiO₄Cl₆由于 Yb³⁺在980 nm附近对抽运光有较强的吸收,作 为敏化剂的Yb³⁺离子将能量传递给Er³⁺离子, 导致来自于Er³⁺的绿色和红色的上转换发射增 强.稀土离子之间的能量传递效率*E*可以用下式 表示:

$E \propto 1/R^6$,

式中R为两个稀土之间的距离,随着Yb³⁺离子浓度增加,Yb³⁺离子和Er³⁺离子之间距离减小,能量传递效率增加,导致Er³⁺的上转换发光增强.

图 4 (网刊彩色) 980 nm 激发下 Ba₅SiO₄Cl₆: 1%Er³⁺, x%Yb³⁺ (x = 0, 0.25, 0.5, 1) 粉末的上转换发射光谱图 Fig. 4. (color online) Upconversion luminescence spectra of Ba₅SiO₄Cl₆: 1%Er³⁺, x%Yb³⁺ (x = 0, 0.25, 0.5, 1) samples under the excitation of 980 nm.

3.4 Li⁺ 掺 杂 对 Ba₅SiO₄Cl₆: Yb³⁺,Er³⁺ 粉末上转换发光性质的影响研究

图 5 为 980 nm 激发下 Ba₅SiO₄Cl₆: 1%Er³⁺, 1%Yb³⁺, x%Li⁺ (x = 0, 0.1, 0.25, 0.5, 1, 2) 荧光 粉的上转换发射光谱图. 从图中看出随着 Li⁺ 离子 浓度增加, 红色的上转换发光强度先增加后减小, 其中 Li⁺ 离子浓度为 1% 时红光强度最大. 研究表 明, 发光材料中稀土离子所处的晶格场对称性越 低, 稀土离子 4f 能级间的电偶极跃迁的禁戒解除就 越彻底, f-f 轨道的电子跃迁概率就越大, 发光强度 就越大. 当 Li⁺ 进入基体晶格后, 晶格产生了畸变, 提高了 Er³⁺ 的跃迁概率, 发光粉的上转换发光强 度增强. 但是上转换发光强度没有随掺杂 Li⁺ 浓度

图 5 (网刊彩色) 980 nm 激发下 Ba₅SiO₄Cl₆: 1%Er³⁺, 1%Yb³⁺, x%Li⁺ (x = 0, 0.1, 0.25%, 0.5%, 1%, 2%) 荧光粉上转换发射光谱图

Fig. 5. (color online) Upconversion luminescence spectra of Ba₅SiO₄Cl₆: 1%Er³⁺, 1%Yb³⁺, x%Li⁺ (x = 0, 0.1, 0.25%, 0.5%, 1%, 2%) samples under the excitation of 980 nm.

的增大而一直增大,而是在浓度到达0.2%后开始 减小,这是可能是由于掺杂Li⁺的量过多时,Li⁺可 能占据Ba²⁺的位置,产生负电荷,造成晶格点阵的 更大畸变,从而使上转换发光降低^[21].

4 结 论

本文研究了Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺ 荧光粉的上转换发光性质及其发光机理, 在波 长为980 nm激光器激发下,获得由Er³⁺离子的 ²H_{11/2}/⁴S_{3/2}→⁴I_{15/2}和⁴F_{9/2}→⁴I_{15/2}跃迁产生的 绿光和红光上转换发射,并在较高的激发光率 下观察到了样品的光子雪崩现象.研究了Er³⁺离 子浓度对发光粉上转换发光性质的影响,发现随着 激活剂Er³⁺浓度的依次增加红光发射峰强度不断 增加,绿光发射强度变化不规律,这是由于Er³⁺离 子之间的交叉弛豫过程引起的. 掺入Li⁺离子,使 得晶体场对称性降低,红色的上转换发光强度明显 增大.

参考文献

- Yang Y M, Jiao F Y, Su H X, Li Z Q, Jiao J P, Liu Y F, Li Z Q 2012 Chin. J. Lumin. **33** 1319 (in Chinese) [杨艳民, 焦福运, 苏红新, 李自强, 焦金鹏, 刘云峰, 李志强 2012 发光学报 **33** 1319]
- [2] Wang M, Hou W, Mi C C, Wang W X, Xu Z R, Teng H
 H, Mao C B, Xu S K 2009 Anal. Chem. 81 8783
- [3] Pan C L, Liu H L, Guo Y, Jing S, Sun J, Zhou H F, Wang H 2014 Acta Phys. Sin. 63 154211 (in Chinese)
 [潘成龙, 刘红利, 郭芸, 景姝, 孙静, 周禾丰, 王华 2014 物理 学报 63 154211]
- [4] Wang T, Wang Y H, Fu M, Li B, Zhou J 2007 Rare Metal Mat. Eng. 36 149 (in Chinese) [王婷, 王悦辉, 富 鸣, 李勃, 周济 2007 稀有金属材料与工程 36 149]
- [5] Deng T L, Yan S R, Hu J G 2014 Acta Phys. Chim. Sin. **30** 773 (in Chinese) [邓陶丽, 闫世润, 胡建国 2014 物理化 学学报 **30** 773]

- [6] Yang J H, Dai S X, Jiang Z H 2003 Prog. Phys. 23
 284 (in Chinese) [杨建虎, 戴世勋, 姜中宏 2003 物理学进展 23 284]
- [7] Amitava P, Christopher S F, Rakesh K, Paras N P 2003 Appl. Phys. Lett. 83 284
- [8] Passuello T, Piccinelli F, Pedroni M, Bettinelli M, Mangiarini F, Naccache R, Vetrone F, Capobianco J A, Speghini A 2011 Opt. Mater. 33 1500
- [9] Yang Z, Guo C F, Chen Y Q, Li L, Li T, Jeong J H 2014 *Chin. Phys. B* 23 064212
- [10] Yang Z P, Liu Y F, Wang L W, Yu Q M, Xiong Z J, Xu X L 2007 Acta Phys. Sin. 56 546 (in Chinese) [杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭 2007 物理学报 56 546]
- [11] Etchart I, Huignard A, Bérard M, Nordin M N, Hernández I, Curry R J, Gillin W P, Cheetham A K 2010 J. Mater. Chem. 20 3989
- [12] Zhao H L, Liu S X, Wang M W, Li W J 2007 J. Chin. Chem. Soc. 35 611 (in Chinese) [赵惠玲, 刘世香, 王明 文, 李文军 2007 硅酸盐学报 35 611]
- [13] Dai L, Xu C, Zhang Y, Li D Y, Xu Y H 2013 Chin. Phys. B 22 094201
- [14] Chen X B, Li M X, Sawanobori N, Zeng Z, Nie Y X 2000
 Acta Phys. Sin. 49 2482 (in Chinese) [陈晓波, 李美仙, Sawandobori N, 曾哲, 聂玉昕 2000 物理学报 49 2482]
- [15] Wang B Q, Ning Q J, Wang X F 2011 New Chem. Mat. **39** 9 (in Chinese) [王邦卿, 宁青菊, 王秀峰 2011 化工新型 材料 **39** 9]
- [16] Ding W J, Zhang M, Wang J, Su Q 2011 Chin. J. Lumin
 . 32 256 (in Chinese) [丁唯嘉, 张梅, 王静, 苏锵 2011 发 光学报 32 256]
- [17] Wang Z J, Wu J N, Li P L, Yang Z P, Guo Q L, Yang Y M 2010 J. Chin. Chem. Soc. 38 431 (in Chinese)
 [王志军, 吴君楠, 李盼来, 杨志平, 郭庆林, 杨艳民 2010 硅 酸盐学报 38 431]
- $[18]\,$ Xia Z G, Li Q, Sun J Y 2007 Mater. Lett. $\mathbf{61}$ 1885
- [19] Lai S F, Yang Z W, Wang R F, Wu H J, Liao J Y, Qiu J B, Song Z G, Yang Y, Zhou D C 2013 *J. Mater. Sci.* 48 8566
- [20] Pandozzi F, Vetrone F, Boyer J C, Naccache R, Capobianco J A, Speghini A, Bettinelli M 2005 J. Phys. Chem. B 109 17400
- [21] Qi Z J, Huang W G 2013 Acta Phys. Sin. 62 197801 (in Chinese) [齐智坚, 黄维刚 2013 物理学报 62 197801]

Preparation and upconversion luminescence properties of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺ phosphors^{*}

Yang Jian-Zhi Qiu Jian-Bei Yang Zheng-Wen[†] Song Zhi-Guo Yang Yong Zhou Da-Cheng

(College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China) (Received 26 January 2015; revised manuscript received 7 February 2015)

Abstract

The Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Li⁺ phosphor has been prepared by high temperature solid state reaction, and their upconversion (UC) luminescence properties and mechanisms are investigated. The UC emission bands located at 525 nm $({}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2})$, 548 nm $({}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2})$, and 662 nm $({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2})$ due to Er^{3+} are observed under the excitation of 980 nm. UC luminescence of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ phosphors is increased with increasing Er^{3+} and Yb³⁺ concentration due to the energy transfer enhancement of Er^{3+} and Yb³⁺. Based on the relations of UC luminescence intensity and excitation light power, the UC luminescence mechanisms are discussed. At a low excited power (below 0.8 W), the two-photon processes are involved in both green and red UC emission mechanisms. When the power exceeds 0.9 W, the green and red UC emission is a four-photon process. One new and interesting UC emission mechanism may occur in the Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ phosphors. Both green and red UC emissions at a higher pumping power are generated by photon avalanche UC process. Influence of Li⁺ doping on the UC luminescence of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ phosphors is investigated. Result demonstrates that Li⁺ ion doping could enhance the UC luminescence of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ phosphors is investigated. Result demonstrates that Li⁺ ion doping could enhance the UC luminescence of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺ phosphors is investigated. Result demonstrates that Li⁺ ion doping could enhance the UC luminescence of Ba₅SiO₄Cl₆: Yb³⁺, Er³⁺, Kr³⁺, Kr³⁺, which is attributed to the distortion of the local symmetry around Er³⁺.

Keywords: upconversion luminescence, $Ba_5SiO_4Cl_6$: Yb³⁺, Er³⁺, Li⁺, phosphors, photon avalanchePACS: 81.05.Zx, 42.70.-a, 78.55.-mDOI: 10.7498/aps.64.138101

^{*} Project supported by the Yunnan Provincial Development Program of Talent Reserve for Leaders of Middle-aged and Young Scientists and Engineers, China (Grant No. 2013HB068) and the Basic Research Program for Application, Yunnan Province, China (Grant No. 2014FB127).

[†] Corresponding author. E-mail: yangzw@kmust.edu.cn