物理学报 Acta Physica Sinica

光激发作用下分子与多金属纳米粒子间的电荷转移研究 高静 常凯梅 王虎霞

Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system

Gao Jing Chang Kai-Nan Wang Lu-Xia

引用信息 Citation: Acta Physica Sinica, 64, 147303 (2015) DOI: 10.7498/aps.64.147303 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.147303 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I14

您可能感兴趣的其他文章 Articles you may be interested in

Au 纳米颗粒和 CdTe 量子点复合体系发光增强和猝灭效应

Enhancement and quenching of photoluminescence from Au nanoparticles and CdTe quantum dot composite system

物理学报.2015, 64(16): 167301 http://dx.doi.org/10.7498/aps.64.167301

复合金属光栅模式分离与高性能气体传感器应用

Split modes of composite metal grating and its application for high performance gas sensor 物理学报.2015, 64(14): 147302 http://dx.doi.org/10.7498/aps.64.147302

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light 物理学报.2015, 64(9): 097301 http://dx.doi.org/10.7498/aps.64.097301

十字结构银纳米线的表面等离极化激元分束特性

Surface plasmon polaritons splitting properties of silver cross nanowires 物理学报.2015, 64(9): 097303 http://dx.doi.org/10.7498/aps.64.097303

分子激发中的表面等离激元增强效应

Surface plasmon enhancement effect in molecular excitation 物理学报.2014, 63(9): 097301 http://dx.doi.org/10.7498/aps.63.097301

光激发作用下分子与多金属纳米粒子间的 电荷转移研究*

高静 常凯楠 王鹿霞

(北京科技大学数理学院物理系,北京 100083)

(2015年2月5日收到;2015年3月18日收到修改稿)

金属纳米粒子在光激发作用下的增强作用是纳米科学领域的一个研究热点.针对分子和多个不同位形下 的金属纳米粒子在光激发下的相互作用展开了理论研究.应用密度矩阵理论描述分子和金属纳米粒子同时激 发产生表面等离激元后的电荷输运过程.研究发现,表面等离激元增强效应与分子和各个金属纳米粒子的相 对位置有密切关系.详细分析了金属纳米粒子间的耦合强度、分子和金属纳米粒子间的耦合强度、表面等离激 元能级杂化、分子激发能和外场频率对表面等离激元增强效应的影响.

关键词:金属纳米粒子,等离激元增强,共振激发,电荷转移 PACS: 73.63.-b, 73.20.Mf

DOI: 10.7498/aps.64.147303

1引言

金属纳米粒子 (metal-nanoparticle, MNP) 一 般是指直径在5—100 nm内的金属粒子^[1], 它表面 的原子数与总原子数之比随着粒径的减小而明显 增大, 表现出体积效应、表面效应、量子尺寸效应和 宏观量子隧道效应^[2-4].在电磁场的驱动下, 费米 能级附近导带上的自由电子在金属表面发生集体 振荡, 产生局域表面等离激元^[5]; 共振状态下, 电磁 场的能量被有效地转为金属表面自由电子的集体 振动能.

早在20世纪八九十年代Ruppin^[6]和Chew 等^[7]对分子-MNP系统做了理论研究,运用经典 电磁波理论和格林函数方法进行计算,发现此系 统的能量转移率以及耗散率与染料分子-金属薄膜 系统相比有明显不同.之后包括分子荧光谱的计 算^[8]、表面增强拉曼散射^[9]和MNP影响下分子内 的激子转移^[10,11]在内的理论研究不断出现. Kyas 和 May^[12]利用密度矩阵理论计算了分子-MNP 系统的线性吸收谱和分子间激子转移的等离激元 增强效应,发现MNP的存在明显影响了分子间的 激发能量转移;实验上也有关于验证等离激元增 强分子内激子能量转移的报道^[13-15].之前我们 进行了分子激发中等离激元效应的研究^[16],发现 外场作用下MNP与分子的不同方向的耦合提供了 MNP和分子激发态间电荷转移的不同通道,绝对 电荷转移量依赖于各通道MNP的电荷瞬时量及转 移方向的共同贡献,并且找到了分子激发态电荷转 移增益最大时分子和单个MNP的相对位置.

实验中控制固定位形的单个金属纳米粒子与 分子相互作用有诸多不可预见的困难,因此研究不 同位形的多纳米粒子系统与分子的相互作用具有 实际的科学意义.已有一些针对双金属纳米粒子 耦合系统的工作^[17-20],比如实验上,Olk等^[19]证 明了两个金纳米粒子系统的光谱散射截面对粒子 间距离的依赖,Lin等^[20]同样以两个金纳米粒子为 例,发现等离激元之间的耦合各向异性受入射光的 极化方向与两金属纳米粒子中心连线方向的夹角 的影响;理论上,文献[21—23]详细分析了双纳米

* 国家自然科学基金(批准号: 11174029)和中央高校基本科研业务费(批准号: FRF-SD-12-018A)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: luxiawang@sas.ustb.edu.cn

粒子的半径、分开距离和所处环境的电解质常数对 等离激元的共振影响,也有一些针对于金属纳米粒 子链中等离激元极化及传播的工作.但迄今为止, 对多个不同位形的金属纳米粒子与分子的耦合系 统的研究报道并不多^[24],此系统中电荷转移机理 以及影响其增强效益的主要因素也未进行深入探 讨.因此多金属纳米粒子与分子耦合系统的电荷输 运和能量转移过程的特殊性是值得进一步研究的 课题.

2 理论模型及相关公式

一般而言,我们将研究对象按照与电荷输运的相关度分为主系统部分(哈密顿量为*H*_S)、库部分(哈密顿量为*H*_R)以及主系统-库的相互作用部分(哈密顿量为*H*_{S-R}).那么整体的哈密顿量表示为^[12]

$$H = H_{\rm S} + H_{\rm R} + H_{\rm S-R},\tag{1}$$

主系统和库之间的耦合主要考虑主系统部分的能量转移到库的过程,其中主系统即分子和MNP的哈密顿量具有严格的表达式.

设主系统中分子基态能为 ε_{g} ,相对应的基态本 征波函数为 $|\varphi_{g}\rangle$.用m,n标记各个不同的MNP, 设单个MNP基态能为 $\hbar\Omega_{m0}$,相对应的基态本征波 函数为 $|m0\rangle$,这里为了简单起见,认为多个MNP 的半径和形态相同.这样分子基态和所有MNP基 态一起组成了系统的基态,基态本征波函数及相应 的基态本征能分别记为 $|\psi_{g}\rangle$, E_{g} .

$$|\psi_{\rm g}\rangle = |\varphi_{\rm g}\rangle \times \prod_{m} |m0\rangle ,$$
 (2)

我们设 $\varepsilon_{\rm g} = 0$, $\hbar\Omega_{m0} = 0$, 则 $E_{\rm g} = 0$.

设分子第一激发态的能量为 ε_{e} ,单个MNP等 离激元激发能为 $\hbar\Omega_{mI}$.由于MNP激发各向同性, 等离激元的能级具有三维简并性,设I = x, y, z表 示笛卡尔坐标系下MNP激发的三个方向.本文只 考虑系统处于弱场激发,因此,在计算分子与MNP 的相互作用时,只需考虑系统的基态和单激发态 而忽略高激发态.分子处于激发态时系统波函数 表示为

$$|\psi_{e}\rangle = |\varphi_{e}\rangle \times \prod_{m} |m0\rangle,$$
 (3)

|φ_e〉表示分子第一激发态的本征波函数. 单个 MNP处于激发态时系统波函数表示为

$$|\psi_{mI}\rangle = |\varphi_{g}\rangle \times |mI\rangle \prod_{n \neq m} |n0\rangle,$$
 (4)

 $|mI\rangle$ 表示 MNP 激发态的本征波函数.

根据以上的描述,系统的哈密顿量可以表示为

$$H_{\rm S} = \varepsilon_{\rm e} \left| \psi_{\rm e} \right\rangle \left\langle \psi_{\rm e} \right| + \sum_{m,I} \hbar \Omega_{mI} \left| \psi_{mI} \right\rangle \left\langle \psi_{mI} \right|$$
$$+ H_{\rm mol-MNP} + H_{\rm MNP-MNP}$$
$$+ H_{\rm field}(t). \tag{5}$$

(5) 式右边的第一、二项分别表示分子和多个金属 纳米粒子的单激发态的贡献, 第三、四项分别表示 分子-MNP激发态间和MNP-MNP激发态间的库 仑耦合作用部分, 最后的含时项表示外加脉冲场的 哈密顿量.其中分子与MNP的相互作用项的具体 形式为

$$H_{\text{mol-MNP}} = \sum_{m,I} J_{mI,e} |\psi_{mI}\rangle \left\langle \psi_{e} \right| + \text{H.c.}, \quad (6)$$

H.c. 表示第一项的厄米共轭, *J_{mI,e}* 是分子-MNP 间的耦合矩阵元, 采用偶极-偶极近似表示为^[25]

$$J_{mI,e} = \frac{\boldsymbol{d}_{mI0} \cdot \boldsymbol{d}_{eg}^* - 3(\boldsymbol{n} \cdot \boldsymbol{d}_{mI0})(\boldsymbol{n} \cdot \boldsymbol{d}_{eg}^*)}{|\boldsymbol{X}|^3}, \quad (7)$$

其中 $X = X_{mol} - X_{MNP}^{(m)}$,表示分子质心指向第 m个 MNP 质心的长度矢量; n = X/|X|为其单位矢 量; $d_{eg} = d_{eg}k$ 为分子的偶极矩,我们设其沿外场 z方向; $d_{mI0} = d_{I0}e_I$ 为MNP的跃迁偶极矩. 类似 地,我们可以得出

$$H_{\text{MNP-MNP}} = \sum_{m,I} \sum_{nJ} J_{mI,nJ} |\psi_{mI}\rangle \langle \psi_{nJ}| + \text{H.c.}$$
(8)

 $J_{mI,nJ}$ 表示各个MNP间的耦合矩阵元,同样采用 偶极-偶极近似表示为

$$= \frac{J_{mI,nJ}}{d_{mI0} \cdot d_{nJ0} - 3(n_{mn} \cdot d_{mI0})(n_{mn} \cdot d_{nJ0})}{|X_{mn}|^3}.$$
 (9)

外场光激发的哈密顿量要同时考虑分子和 MNP 的 电子激发,哈密顿量表示为

$$H_{\text{field}} = \left(-\boldsymbol{E}(t)\boldsymbol{d}_{\text{eg}} \left| \boldsymbol{\psi}_{\text{e}} \right\rangle \left\langle \boldsymbol{\psi}_{\text{g}} \right| - \boldsymbol{E}(t) \sum_{m,I} \boldsymbol{d}_{mI0} \left| \boldsymbol{\psi}_{mI} \right\rangle \left\langle \boldsymbol{\psi}_{\text{g}} \right| \right) + \text{H.c.}$$

$$(10)$$

147303-2

这里设外场为脉冲形式

$$\boldsymbol{E}(t) = \boldsymbol{n}_{\rm E} \boldsymbol{E}(t) \exp(-\mathrm{i}\omega_0 t) + \mathrm{c.c.}, \qquad (11)$$

 $n_{\rm E}$ 为场极化的单位矢量, $\omega_0 \, \pi E(t)$ 分别表示场频 率和包络线, 其中

$$E(t) = E_0 \exp[2(t - \tau_{\max})^2 / \tau^2], \qquad (12)$$

 E_0 表示振幅强度,脉冲的最大值在 τ_{max} 处,宽度 用 τ 表示.系统所加的外场涉及的参数见表1.系 统中分子采用二萘嵌苯 (perylene) 染料分子的偶 极矩 d_{eg} 和激发频率,金属纳米粒子的半径 r_{MNP} 及其偶极矩 d_{I0} 、等离激元和分子第一激发态能量 $\hbar\Omega_{mI}, \varepsilon_e$ 的取值见表1.

表1 文中所用到的参数 Table 1. Parameters used in the text.

参数	$d_{\rm eg}/{\rm D}$	$d_{I0}/{ m D}$	$\gamma_{\rm MNP}/{\rm meV}$	$r_{\mathrm{MNP}}/\mathrm{nm}$	$E_0/V \cdot m^{-1}$	$\tau_{\rm max}/{ m fs}$	$ au/\mathrm{fs}$	$\varepsilon_{\rm e}/{\rm eV}$	$\hbar \Omega_{mI}/\text{eV}$	$\hbar\omega_0/~{ m eV}$
数值	3	2925	28.6	10	5×10^5	30	20	2.6	2.6	2.6

3 密度矩阵理论的应用

ລ

在上一部分中我们给出了主系统部分哈密顿 量的具体形式,由于金属纳米粒子在光激发下会产 生等离激元,而等离激元的寿命极短,仅为十几个 飞秒,其能量快速地向周围环境耗散,在这种背景 下我们采用约化密度矩阵理论来描述系统的动力 学过程^[26],并引入耗散系数 γ_{MNP} (取值参见表1). 引入密度矩阵 $\rho_{\alpha\beta}(t) = \langle \psi_{\alpha} | \hat{\rho}(t) | \psi_{\beta} \rangle$,其中 $\hat{\rho}(t)$ 是 密度算符, α , β 取遍系统所有的态,得到量子主方 程^[12]

$$\frac{\partial}{\partial t}\rho_{\alpha\beta} = -i\tilde{\omega}_{\alpha\beta}\rho_{\alpha\beta}
- \frac{i}{\hbar}\sum_{\gamma} (v_{\alpha\gamma}(t)\rho_{\gamma\beta} - v_{\gamma\beta}(t)\rho_{\alpha\gamma})
- \delta_{\alpha\beta}\sum_{\gamma} (k_{\alpha\to\gamma}\rho_{\alpha\alpha} - k_{\gamma\to\alpha}\rho_{\gamma\gamma})$$

$$-(1-\delta_{\alpha\beta}) r_{\alpha\beta}\rho_{\alpha\beta}.$$
 (13)

 $\tilde{\omega}_{\alpha\beta}$ 为复合转移频率,定义为

$$\tilde{\omega}_{\alpha\beta} = \omega_{\alpha} - \omega_{\beta} - \mathrm{i}(1 - \delta_{\alpha,\beta})r_{\alpha\beta}, \qquad (14)$$

这里 $\omega_{\alpha} - \omega_{\beta}$ 为 α 态到 β 态的转移频率. $r_{\alpha\beta}$ 为相 移率,它由 α 态到 β 态的电荷转移率k决定

$$r_{\alpha\beta} = \frac{1}{2} \sum_{\gamma} \left(k_{\alpha \to \gamma} + k_{\beta \to \gamma} \right) + r_{\alpha\beta}^{(pd)}, \qquad (15)$$

这里 $r_{\alpha\beta}^{(pd)}$ 为纯态相移频率.

根据密度矩阵理论,通过(13)式我们可以得到 一组耦合的含时的微分方程组,计算出系统中存在 不同数目的纳米粒子时各个态的占据情况,包括基 态、分子激发态和 MNP 激发态的电荷占据(分别表 示为 $\rho_{gg}(t), \rho_{ee}(t), \sum_{mI,nJ} \rho_{mI,nJ}(t)), 表达式如下:$

$$\frac{\partial}{\partial t}\rho_{\rm gg}(t) = 2\gamma_{\rm MNP} \sum_{mI} \rho_{mImI}(t) + \frac{i}{\hbar} \Big[d_{\rm eg}^* \boldsymbol{E}^*(t)\rho_{\rm eg}(t) - d_{\rm eg} \boldsymbol{E}(t)\rho_{\rm ge}(t) \Big] \\
+ \frac{i}{\hbar} \Big[\sum_{mI} \Big(d_{mI}^* \boldsymbol{E}^*(t)\rho_{mI,g}(t) - d_{mI} \boldsymbol{E}(t)\rho_{\rm g,mI}(t) \Big) \Big],$$
(16)

$$\frac{\partial}{\partial t}\rho_{\rm ee}(t) = \frac{\mathrm{i}}{\hbar} \left[d_{\rm eg} \boldsymbol{E}(t)\rho_{\rm ge}(t) - d_{\rm eg}^*(t)\boldsymbol{E}^*(t)\rho_{\rm eg}(t) \right] + \frac{\mathrm{i}}{\hbar} \left[\sum_{mI} \left(J_{mI,\,\mathrm{e}}\rho_{\,\mathrm{e},mI}(t) - J_{\,\mathrm{e},mI}\rho_{mI,\,\mathrm{e}}(t) \right) \right], \quad (17)$$

$$\frac{\partial}{\partial t}\rho_{mI,nJ}(t) = -i\tilde{\omega}_{mI,nJ}\rho_{mI,nJ}(t) + \frac{i}{\hbar}d_{mI}\boldsymbol{E}(t)\rho_{g,nJ}(t) - \frac{i}{\hbar}d_{nI}^{*}\boldsymbol{E}(t)\rho_{mI,g}(t) - J_{mI,e}\rho_{e,nJ}(t) - \sum_{kI'}J_{mI,kI'}\rho_{kI',nJ}(t) + J_{nJ,e}^{*}\rho_{mI,e}(t) + \sum_{kI'}J_{kI',nJ}\rho_{mI,kI'}(t).$$
(18)

为了以后表征MNP的增益效应我们定义一个物理量:

 $P_{e}^{(m)}$ 表示有m个 MNP 作用时的分子激发态电荷 占据, $P_{e}^{(0)}$ 表示没有 MNP 作用时的分子激发态电 荷占据.

$$Enh^{(m)} = P_{\rm e}^{(m)} / P_{\rm e}^{(0)}$$
 (19)

4 结果与讨论

为了简单起见,我们首先取电场与分子偶极 矩方向相同的情况来分析,这样 MNP等离激元只 在一个方向激发.取染料分子的质心为原点,设 分子偶极矩沿z轴正方向.在*x-y*平面对角线上放 置一个 MNP(设其质心坐标为(10.5,10.5,0) nm), 沿z轴的俯视位形图如图1(a)所示.图2表示只 有分子激发(黑色实线)和分子与 MNP 同时激发 下分子激发态的电荷占据随时间的演变,并以电 荷占据的对数值(即lg(ρ_{ee}))为纵坐标.在光激发 作用下,若只有分子激发,仅有约1.4×10⁻⁶的电 荷被激发到分子的激发态(黑色实线).我们已经 知道,由于 MNP等离激元比分子偶极矩大得多, 激发效率也很大,在耦合作用下 MNP 的激发能量 转移给分子,使得分子基态中更多的电荷被激发,

导致电荷转移增益 $Enh^{(1)}$ ((19) 式, m = 1) 非常 明显^[16]. 一个MNP与分子同时被激发时, MNP 激发态的电荷占据率远远高于分子激发态,能达 到0.27,但由于等离激元的强耗散作用,100 fs内 等离激元几乎完全消失,在我们所设系统参数下, 分子激发态电荷占据达到最大值时(红色点线), $Enh^{(1)} = 2169$ ((19)式, m = 1). 与之相比较, 下 面讨论两个MNP对分子激发态的影响. 在x-y平 面对角线上关于原点对称放置两个MNP(质心坐 标分别为(10.5, 10.5, 0) nm, (-10.5, -10.5, 0) nm), 沿z轴的俯视位形图如图1(b)所示.这种情况下 MNP 激发态的电荷占据同样远远高于分子激发 态, 能达到 4.9×10^{-2} . 与一个MNP作用时类似, 等离激元会因为强耗散作用在很短时间内激发几 乎全部消失. 分子激发态的电荷占据达到一个相对 平稳值时(蓝色虚线), 电荷转移增益 Enh⁽²⁾ = 201

图 1 MNP 和分子沿 z 轴的俯视位形图, 染料分子质心为原点, 周围为 MNP (a) 一个 MNP 在 x-y 平面对角线 放置; (b) 两个 MNP 在 x-y 平面对角线关于原点对称放置; (c), (d) 固定 (b) 中的一个 MNP, 另一个 MNP 绕以分 子质心为圆点的 MNP 与分子质心间距离为半径的圆转动时选取的典型位形; (e) 三个 MNP 放置在以原点为中心 的正三角形顶点; (f) 四个 MNP 在 x-y 对角线关于原点对称放置

Fig. 1. Top view of the MNP(s) and the molecule along the z axis, the dye molecule is located on the origin of the x-y coordinate, and the MNP(s) are around the dye molecule. (a) One MNP is placed on the diagonal of x-y plane; (b) two MNPs placed on the diagonal of x-y plane are symmetric about the origin; (c), (d) two typical configurations are shown, where one of the MNPs is located on the diagonal of x-y coordinate and the other one move around the origin; (e) three MNPs are placed at the vertices of the equilateral triangle whose center is the origin; (f) four MNPs are located on the diagonal of x-y plane and they are symmetric about the origin.

图 2 (网刊彩色) 只有分子激发时 (黑色实线) 和 MNP 与 分子同时激发时 (红色点线表示 1 个 MNP 作用, 蓝色虚 线表示 2 个 MNP 作用) 分子激发态的电荷占据演变 Fig. 2. (color online) Evolutions of electron population in molecular excited state (black solid line, only the molecule is excited by external laser field; red dotted line, the molecule and one MNP are simultaneously excited by external laser field, blue dashed line, the molecule and two MNPs are simultaneously excited by external laser field).

((19)式, m = 2). 由此可见两个相同的 MNP 在 x-y平面对角线关于原点对称放置而保持系统其他 参数不变时,两个金属纳米粒子引起的电荷转移增 益也是很明显的,但相比于单个金属纳米粒子的作 用弱了很多. 这是因为多金属纳米粒子-单分子系 统的相互作用中除了 MNP和分子的耦合作用外还 包括各个 MNP间的库仑耦合作用,其耦合强度与 粒子间质心距离有反比关系(如(7),(9)式). 若两 个 MNP 关于分子质心呈中心对称放置,由于两个 MNP之间的能量转移和 MNP 的强耗散作用,分子 从 MNP 中获得的能量相对减小,因此与单金属纳 米粒子-单分子系统相比,双金属纳米粒子-单分子 系统中分子的电荷转移增益反而减小. 为了进一步 研究不同 MNP 位形对分子电荷转移增益的影响, 我们又设计了几种双 MNP 位形.

设各个MNP与分子间质心距离不变,并固定其中一个MNP,让另一个MNP的质心在以分子质心为圆心、MNP与分子间质心距离为半径的圆上连续转动. 这里我们选取其中三个典型的位形进行分析:如图1(b)两MNP质心位置坐标 (10.5,10.5,0) nm, (-14.5,0,0) nm, (-10.5,-10.5,0) nm, (-14.5,0,0) nm, (21(d)两MNP质心位置坐标 (10.5,10.5,0) nm, (-14.5,0,0) nm, (-10.5,10.5,0) nm, (-10.5,10,10,10) nm, (-10.5,10,10) nm, (-10.5,10) nm, (-10.5,1

MNP处于以上位形时,分子激发态最大占据分别 约为2.85×10⁻⁴(黑色点线),1.75×10⁻⁴(红色虚 线),0.3×10⁻⁴(蓝色实线).由此可见,虽然 MNP 和分子间质心距离不变,其间的耦合强度不变,但 随着各个 MNP 间距离的减小,各 MNP 间的耦合 强度增大,MNP 之间的能量转移增大使其大于 MNP 与分子之间的能量转移,这样分子从 MNP 获 得的能量减小,导致分子激发态的电荷占据降低.

图 3 (网刊彩色)两个 MNP 与分子同时激发时分子激发 态电荷占据随时间的演变 (图 1 (b),图 1 (c),图 1 (d)所示 位形分别对应黑色点线、红色虚线,蓝色实线)

Fig. 3. (color online) Evolutions of electron population in molecular excited state, where the molecule and the two MNPs are simultaneously excited by the external field (the black dotted line, the red dashed line and the blue solid line are corresponding to the configurations of Fig. 1(b), (c) and (d) respectively).

上面的计算中均取 $\varepsilon_e = \hbar\omega_0 = \hbar\omega_{mI} =$ 2.6 eV, 即分子激发能和 MNP 激发能以及外场频率 共振. 下面我们假设系统中MNP半径不变(MNP 激发能 $\hbar\omega_{mI}$ 和耗散系数 γ_{MNP} 不变), 且分子激发 能与外场频率值相等 ($\varepsilon_e = \hbar\omega_0$)并连续变化的 情况,对应于取不同激发能的分子. 图4给出了 图1(b),图1(c)和图1(d)位形下分子激发态的电 荷占据随分子激发能和电场频率改变而变化的 情况,分别对应黑色点划线、红色短虚线和蓝色 实线. 我们发现, 随着两 MNP 质心间距离的减 小,分子激发态的电荷占据达到最大值时所对应 的分子激发能和外场频率增大($\varepsilon_e = \hbar\omega_0$).例如 蓝色实线所示的图1(b) 位形,两MNP 间质心距 离为21 nm, 分子激发态的电荷占据达到最大值 时对应 $\varepsilon_e = \hbar\omega_0 = 3.18 \text{ eV}$, 远远偏离了2.6 eV. 这是因为两MNP间的耦合作用导致了等离激元 能级杂化^[27,28],杂化后能级劈裂为 $\hbar\Omega_{mI} + J_{pl}$ $\left(J_{pl} = \frac{d_{I0}^2}{D^3}, R$ 是两 MNP 质心间的距离), 使 MNP 等离激元共振能量偏离了 2.6 eV,两 MNP 间的距离越小 (*R*越小),偏离的程度越大.因此若不改变系统中原有的分子激发能和外场频率,MNP 激发态电荷占据率将随着 MNP 间距离的减小而减小,直接影响到分子激发态的电荷占据 (如图 3 所示). 值得注意的是,如图 4 所示,若给定各个 MNP 与分子的距离,改变外场及分子激发能,使系统在 MNP 能级杂化后达到共振状态,那么以上三种位形下 分子激发态的电荷占据能达到的最大值基本相同, 如图 4 中约为0.92 × 10⁻², *Enh*⁽²⁾ = 6479,不会受 两个 MNP 间距离大小的影响.另外若分子的极化 方向沿 *x* 轴偏转一定角度,将会出现红移劈裂能级 (下同),这部分工作仍在进行中.

图4 (网刊彩色)两个 MNP 和分子同时激发,保持各 MNP 和分子间距离不变,变化分子激发能和外场频率 时不同位形下分子激发态电荷占据的变化情况(图1(b), 图1(c),图1(d)所示位形分别对应黑色点划线、红色短虚 线、蓝色实线)

Fig. 4. (color online) The electron population of excited state of molecule versus its energy as well as the excited energy of external laser filed ($\varepsilon_{\rm e} = \hbar\omega_0$) for different configurations where molecule and two MNPs simultaneously excited (the black dotted line, the red short dashed line and the blue solid line are corresponding to configurations of Fig. 1(b), (c) and (d) respectively).

下面讨论 MNP 间的距离变化以及分子激发 能和外场频率的变化对 Enh^(m)的影响.设定两 个 MNP 质心同时在 x-y 平面对角线上关于原点 对称向内移动 (位形如图1(b)所示),这样 MNP 与 分子间的距离以及两个 MNP 间的距离均逐渐减 小.图5给出了三个位置下 Enh⁽²⁾的变化情况,随 MNP 质心间距离减小,我们看到 Enh⁽²⁾的峰值对 应的共振频率逐渐增大,这同样是 MNP 等离激元 杂化引起的.同时又因为 MNP 与分子间距离变小, 其间的耦合强度变大,分子从 MNP 获得的能量增 大, Enh⁽²⁾ 最大值也逐渐变大.

图5 (网刊彩色)两个MNP和分子同时激发时,图1(b) 所示位形下,变化分子激发能和外场频率时电荷转移增益 变化情况(蓝色点划线,红色短虚线和黑色实线分别表示 两MNP质心距离为25,23和21 nm)

Fig. 5. (color online) The enhancement factor $Enh^{(2)}$ versus the energy of $\varepsilon_{\rm e} = \hbar\omega_0$ for the configuration shown in Fig. 1(b) where the molecule and two MNPs are simultaneously excited (the blue dash-dotted line, the red short dashed line and the black solid line are corresponding to three different centroid distances of two MNPs, they are 25 nm, 23 nm and 21 nm respectively).

图 6 (网刊彩色) 三个 MNP 和分子同时激发时,图 1 (e) 所示位形不同位置下,变化分子激发能和外场频率时电荷 转移增益变化情况 (蓝色点划线表示两 MNP 质心距离为 25 nm,红色短虚线表示两 MNP 之心距离为 23 nm,黑 色实线表示两 MNP 置心距离为 21 nm)

Fig. 6. (color online) The enhancement factor $Enh^{(3)}$ versus the energy of $\varepsilon_{\rm e} = \hbar\omega_0$ for the configuration shown in Fig. 1(e) where the molecule and three MNPs are simultaneously excited (the blue dash-dotted line, the red short dashed line and the black solid line are corresponding to three different centroid distances of two MNPs, they are 25 nm, 23 nm and 21 nm respectively).

我们用同样的方法研究了三个和四个金属纳 米粒子分别在对称位形不同间距下的情况.图1(e) 表示的位形为三个金属纳米粒子质心放置在以原 点为中心的等边三角形的顶点上,图6给出了在这 个位形下 *Enh*⁽³⁾随 MNP 间距的变化情况.我们看 到 *Enh*⁽³⁾随着 MNP 间的距离减小而增大,其共振 频率也向高频方向移动, MNP间的距离越大, 共振 频率越接近单个 MNP的共振频率. 这是由于 MNP 之间的相互作用出现了等离激元杂化, 随 MNP质 心间距离减小, 杂化能级增大, 因此共振频率出现 蓝移. 对应于图1(f)的位形为四个金属纳米粒子质 心在 *x-y* 平面对角线上关于原点对称放置, 图7(a) 给出了三个位置下 *Enh*⁽⁴⁾ 的变化情况, 变化规律 与图5和图6十分类似. 我们看到在4个 MNP 相互 作用的情况下, MNP 的杂化能级同样出现. 以上的 计算都是基于 MNP 与分子质心在同一平面上, 为

图7 (网刊彩色) 4个 MNP 和分子同时激发时,图1(f) 所示位形不同位置下,变化分子激发能和外场频率时电荷 转移增益变化情况(蓝色点划线表示两 MNP 质心距离为 25 nm,红色短虚线表示两 MNP 质心距离为23 nm,黑 色实线表示两 MNP 置心距离为21 nm) (a)表示分子 质心和 MNP 质心在同一平面内;(b)表示 MNP 放置在 分子质心所在的平面上(4个 MNP 的质心在距离 *x-y* 平 面 10 nm 处且与 *x-y* 平面平行)

Fig. 7. (color online) The enhancement factor $Enh^{(4)}$ versus the energy of $\varepsilon_{\rm e} = \hbar\omega_0$ for the configuration shown in Fig. 1(f) where the molecule and four MNPs are simultaneously excited (the blue dash-dotted line, the red short dashed line and the black solid line are corresponding to three different centroid distances of two MNPs, they are 25 nm, 23 nm and 21 nm respectively): (a) the centre of mass of the molecule and that of MNPs are on the same plane; (b) MNPs are located on the plane where the center of mass of the molecular stay(the centers of mass of 4 MNPs are on a plane which is parallel with x-y plan and above it 10 nm).

了探究MNP在z方向的位置变化(对应于分子和 MNP都放置在某个平面上的情况)对增益效应的 影响,我们在图5、图6 和图7(a)所对应的系统 下将 MNP 的质心平面沿 z 轴正方向移动 10 nm(即 把MNP的质心放置在x-y平面上10 nm处),得到 Enh^(m)的变化情况.我们发现两个和三个MNP 作用下,改变其质心平面沿z轴的位置, Enh⁽²⁾和 Enh⁽³⁾的变化规律分别与图5和图6类似. 值得注 意的是四个MNP的 $Enh^{(4)}$ 变化情况,如图7(b)所 示,随着各个MNP间距离的减小, Enh⁽⁴⁾最大值 对应的共振频率同样逐渐增大(蓝移),但是 Enh⁽⁴⁾ 在共振时的峰值却随距离的减小而减小. 这是因 为若分子和MNP质心不在一个平面上, 使分子和 MNP间的耦合大大减弱,同时4个MNP间存在最 近邻耦合同时也存在对角耦合,耦合强度的增加使 表面等离激元的整体能量转移和耗散增加,这样 MNP间的距离越小,这种作用就越明显,导致分子 从MNP获得的能量减小,分子激发态的电荷占据 也就相应减小.

5 结 论

在金属纳米粒子与染料分子的耦合系统施加 外场激发,应用密度矩阵理论,在偶极-偶极近似 下,研究不同数目和位形下的金属纳米粒子-单分 子耦合系统中各激发态电荷转移的动力学过程.此 系统中由于MNP之间的耦合作用,产生了MNP等 离激元杂化能级,使得MNP等离激元的共振频率 与单个MNP等离激元不同,我们发现共振频率随 MNP间距离的减小而发生蓝移.在两个MNP存 在的条件下,当分子与各个MNP保持质心相对距 离不变时, MNP间距离越小则等离激元的共振频 率增大;各个MNP间距离以及与分子间距离都同 时减小时,因为MNP与分子的耦合作用增大,分子 从MNP获得的能量增大,导致分子激发态的电荷 占据增大. 在多MNP-单分子耦合系统中, 可以通 过改变分子激发能和外场的频率,找到不同位形系 统所对应的共振频率,从而使分子激发态的电荷占 据达到最大.本文只讨论了外场与分子极化方向相 同的情况下1—4个的MNP关于分子对称放置时 的电荷输运情况,为以后研究更为复杂的MNP位 形下分子与MNP间的相互作用提供了理论基础.

参考文献

- Lance K K, Eduardo C, Zhao L L, George C 2003 Phys. Rev. B 107 668
- [2] Reed M A, Frensley W R, Matyi R J, Randall J N, Seabaugh A C 1989 Appl. Phys. Lett. 54 1034
- [3] Cavicchi R, Silsbee R 1984 Phys. Rev. Lett. 52 1453
- [4] Cao R X, Zhang X P, Miao B F, Sun L, Wu D, You B, Ding H F 2014 Chin. Phys. B 23 38102
- [5] Wang W S, Zhang L W, Zhang Y W, Fang K 2013 Acta Phys. Sin. 62 024203 (in Chinese) [王五松, 张利伟, 张冶 文, 方恺 2013 物理学报 62 024203]
- [6] Ruppin R 1982 J. Chem. Phys. 76 1681
- [7] Chew H 1987 J. Chem. Phys. 87 1355
- [8] Anger P, Bharadwaj P, Novotny L 2006 *Phys. Rev. Lett.* 96 113002
- [9] Kelley A M 2008 J. Chem. Phys. **128** 224702
- [10] Marocico C, Knoester J 2009 Phys. Rev. A 79 053816
- [11] Xie H, Chung H, Leung P, Tsai D 2009 Phys. Rev. B 80 155448
- [12] Kyas G, May V 2011 J. Chem. Phys. 134 034701
- [13] Reil F, Hohenester U, Krenn J R, Leitner A 2008 Nano Lett. 8 4128
- [14] Zhang J, Fu Y, Chowdhury M H, Lakowicz J R 2007 J. Phys. Chem. C 111 11784

- [15] Zhang J, Fu Y, Lakowicz J R 2006 J. Phys. Chem. C 111 50
- [16] Sun X F, Wang L X 2014 Acta Phys. Sin. 63 097301 (in Chinese) [孙雪菲, 王鹿霞 2014 物理学报 63 097301]
- [17] Encina E R, Coronado E A 2010 J. Phys. Chem. C 114 3918
- [18] Atay T, Song J H, Nurmikko A V 2004 Nano Lett. 4 1627
- [19] Olk P, Renger J, Wenzel M T, Eng L M 2008 Nano Lett.
 8 1174
- [20] Lin H Y, Huang C H, Chang C H, Lan Y C, Chui H C 2010 Opt. Express 18 165
- [21] Citrin D S 2005 Nano Lett. 5 985
- [22] Rüting F 2011 Phys. Rev. B 83 115447
- [23] Rasskazov I L, Karpov S V, Markel V A 2014 *Phys. Rev.* B 90 075405
- [24] Lindberg J, Lindfors K, Setalä T, Kaivola M 2007 J. Opt. Soc. Am. A 24 3427
- [25] Zelinskyy Y, May V 2011 Nano Lett. 12 446
- [26] May V, Schreiber M 1992 Phys. Rev. A 45 2868
- [27] Nordlander P, Prodan E 2004 Nano Lett. 4 2209
- [28] Zou W B, Zhou J, Jin L, Zhang H P 2012 Acta Phys.
 Sin. 61 097805 (in Chinese) [邹伟博, 周俊, 金理, 张昊鹏 2012 物理学报 61 097805]

Theoretical study of photoinduced charge transfer in molecule and multi-metalnanoparticles system^{*}

Gao Jing Chang Kai-Nan Wang Lu-Xia[†]

(Department of physics, University of Science and Technology Beijing, Beijing 100083, China)
 (Received 5 February 2015; revised manuscript received 18 March 2015)

Abstract

Photoinduced enhancement effect of the metal nanoparticle is one of the hot topics in the field of nanomaterial. Interaction between one molecule and a number of metal nanoparticles in different configurations in an applied external field is theoretically investigated in the scheme of density matrix theory, where the molecule and metal nanoparticles are excited simultaneously, and the subsequent charge transfer dynamics is simulated. Besides, the Coulomb interactions between the molecule and metal nanoparticles are calculated in the framework of dipole-dipole approximation. Parameters for metal nanoparticles with a 10 nm radius are used in the text and the polarization of the molecule has the same direction as that of external laser field. It is found that plasmon enhancement is closely related to the relative positions between the molecule and metal nanoparticles. Effects of enhancement due to the surface plasmon is discussed in detail for different configurations of the molecule and metal nanoparticles, and the surface plasmon hybridization, as well as the molecular excitation energy and the frequency of external field applied. Plasmon hybridization levels are formed when metal nanoparticles have strong enough interactions between themselves. The blue shift of the resonant frequency can be found for shorter distance of different metal nanoparticles. In the case that the centers of mass of metal nanoparticles and the molecule are on the same plane, it is found that the population in excited state of the molecule at a resonance frequency increases for a shorter distance between metal nanoparticles and the molecule. On the contrary, in the case that the centers of mass of four metal nanoparticles are located in a plane which is parallel to the x-y plane and above it by 10 nm, the population in the excited state of the molecule on resonant frequency will decrease at a shorter distance between the four metal nanoparticles.

Keywords: metal nanoparticle, plasmon enhancement, resonance frequency, charge transferPACS: 73.63.-b, 73.20.MfDOI: 10.7498/aps.64.147303

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11174029), and the Fundamental Research Fund for Central University of China (Grant No. FRF-SD-12-018A).

 $[\]dagger$ Corresponding author. E-mail: luxiawang@sas.ustb.edu.cn