物理学报 Acta Physica Sinica

Institute of Physics, CAS

单轴应变 Sin 型金属氧化物半导体场效应晶体管源漏电流特性模型

吕懿 张鹤鸣 胡辉勇 杨晋勇 殷树娟 周春宇

A Model of channel current for uniaxially strained Si n-channel metal-oxide-semiconductor field-effect transistor

Lü Yi Zhang He-Ming Hu Hui-Yong Yang Jin-Yong Yin Shu-Juan Zhou Chun-Yu

引用信息 Citation: Acta Physica Sinica, 64, 197301 (2015) DOI: 10.7498/aps.64.197301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.197301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I19

您可能感兴趣的其他文章 Articles you may be interested in

单轴应变硅N沟道金属氧化物半导体场效应晶体管电容特性模型

A model of capacitance characteristic for uniaxially strained Si N-metal-oxide-semiconductor field-effect transistor

物理学报.2015, 64(6): 067305 http://dx.doi.org/10.7498/aps.64.067305

高k 栅介质 GeOI 金属氧化物半导体场效应管阈值电压和亚阈斜率模型及其器件结构设计 Models on threshold voltage/subthreshold swing and structural design of high-k gate dielectric GeOI MOS-FET

物理学报.2014, 63(8): 087301 http://dx.doi.org/10.7498/aps.63.087301

柔性有机非易失性场效应晶体管存储器的研究进展

Progress of flexible organic non-volatile memory field-effect transistors 物理学报.2014, 63(2): 027302 http://dx.doi.org/10.7498/aps.63.027302

功率MOSFET的负偏置温度不稳定性效应中的平衡现象

Flat-roof of dynamic equilibrium phenomenon in static negative biase temperature instability effect on power metal-oxide-semiconductor field-effect transistor 物理学报.2013, 62(16): 167305 http://dx.doi.org/10.7498/aps.62.167305

氮氟复合注入对注氧隔离 SOI 材料埋氧层内固定正电荷密度的影响

Effect of co-implantation of nitrogen and fluorine on the fixed positive charge density of the buried oxide layer in SIMOX SOI materials

物理学报.2013, 62(11): 117303 http://dx.doi.org/10.7498/aps.62.117303

单轴应变Sin型金属氧化物半导体场效应晶体管 源漏电流特性模型*

吕懿¹) 张鹤鸣¹) 胡辉勇¹, 杨晋勇²) 殷树娟³) 周春宇¹)

1)(西安电子科技大学微电子学院,宽禁带半导体材料与器件重点实验室,西安 710071)

2) (北京精密机电控制设备研究所,北京 100076)

3) (北京信息科技大学理学院,北京 100192)

(2015年4月20日收到;2015年6月2日收到修改稿)

本文在建立单轴应变 Sin型金属氧化物半导体场效应晶体管迁移率模型和阈值电压模型的基础上,基于器件不同的工作区域,从基本的漂移扩散方程出发,分别建立了单轴应变 Si NMOSFET 源漏电流模型.其中将应力的影响显式地体现在迁移率和阈值电压模型中,使得所建立的模型能直观地反映出源漏电流特性与应力强度的关系.并且对于亚阈区电流模型,基于亚阈区反型电荷,而不是采用常用的有效沟道厚度近似的概念,从而提高了模型的精度.同时将所建模型的仿真结果与实验结果进行了比较,验证了模型的可行性.该模型已经被嵌入进电路仿真器中,实现了对单轴应变 Si MOSFET 器件和电路的模拟仿真.

关键词:单轴应变Si,n型金属氧化物半导体场效应晶体管,迁移率,阈值电压 PACS: 73.43.Cd, 73.40.Qv, 71.70.Fk DOI: 10.7498/aps.64.197301

1引言

应变Si由于载流子迁移率高、带隙可调,且应 变Si技术与传统的Si工艺兼容等优点,已成为高速 高性能器件与电路研究与应用的重要技术之一.在 应变Si技术中,相对于双轴应变,单轴应变更适用 于CMOS集成电路制造,因而更多地被采用^[1-5].

围绕单轴应变Sin型金属氧化物半导体场效应晶体管 (NMOSFET) 的性能提升、物理模型等进行了大量研究.其中源漏电流特性模型是单轴应变SiNMOSFET 器件和电路进行直流分析、瞬态分析、交流小信号分析、噪声分析等的重要基础,它的研究一直得到重视.但在文献报道的关于源漏电流模型中,主要集中在双轴应变SiNMOSFET上^[6-8].对于影响源漏电流大小的迁移率和阈值电压模型,文献[9—10]通过修改己有的体Si器件 电流特性的提高.如果仅通过修改己有的Si器件

模型参数值的方法难以描述出现的所有新特性,并 且描述出的电学特性之间总有一些不自洽存在, 相应的SPICE仿真精度也难以达到应用要求. 文 献[11]讨论的阈值电压模型只适用于双轴应变Si PMOSFET. 文献[12]迁移率和阈值电压模型中应 变的影响没有显式地体现出来. 而对于亚阈区电流 模型, 文献[13]仍然采用有效沟道厚度的概念,其 中把沟道厚度总是限制在表面势减少一个热电压 所需的距离的假设并不完全准确,所建模型精度难 以满足仿真要求.

本文在建立单轴应变 Si NMOSFET 迁移率模型和阈值电压模型的基础上,基于器件不同的工作 区域,从基本的漂移扩散方程出发,建立了单轴应 变 Si NMOSFET 源漏电流模型.其中将应力的作 用显式地体现在迁移率和阈值电压模型中,使得所 建立的模型能直观地反映出源漏电流特性与应力 强度的关系.并且对于亚阈区电流模型,基于亚阈 区反型电荷,而不是采用常用的有效沟道厚度近似

* 教育部博士点基金(批准号: JY0300122503)和中央高校基本业务费(批准号: K5051225014, K5051225004)资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: 35691513@qq.com

的概念,从而提高了模型的精度.同时将所建模型的仿真结果与实验结果进行了比较,验证了模型的可行性.该模型的建立为应变Si NMOSFET的分析和设计提供了参考,同时可以将其嵌入到电路仿 真器之中,为单轴应变Si NMOSFET电路设计提供模型支持.

2 源漏电流特性模型

图1是单轴应变SiNMOSFET结构示意图,其 中采用SiN应力膜引入沟道张应力. 源漏电流特性 模型是单轴应变SiNMOSFET器件和电路进行直 流分析、瞬态分析、交流小信号分析、噪声分析 等的重要基础,因此,有必要分析研究单轴应变Si NMOSFET器件的源漏电流特性以实现器件和电 路的模拟仿真.

图 1 单轴应变 Si NMOSFET 器件结构示意图 Fig. 1. Diagram of uniaxially strained Si NMOSFET device.

2.1 迁移率模型

 $\mu_{\rm n} = \mu_{\rm nssi}$

对于单轴应变Si NMOSFET, 其电子迁移率仍然具有如下的形式:

$$u = \frac{q\langle \tau \rangle}{m^*},\tag{1}$$

其中 $\langle \tau \rangle$ 是电子平均自由运动时间, m^* 是电子电导 有效质量.应力作用下应变Si导带能谷将发生分 裂,原有的六个简并能谷 Δ_6 分裂一组二度简并能 谷 Δ_2 ,以及一组四度简并能谷 Δ_4 .设分布在二度 简并能谷 Δ_2 中的电子浓度为 $n_{\Delta 2}$,分布在四度简 并能谷 Δ_4 中的电子浓度为 $n_{\Delta 4}$,于是电子电导有效质量为

$$\frac{1}{m^*} = \frac{n_{\Delta_2}/m_{\rm t} + n_{\Delta_4}/m_{\rm l}}{n_{\Delta_2} + n_{\Delta_4}}.$$
 (2)

进一步可得:

$$\frac{1}{m^*} = \frac{m_{\rm l}^{3/2}/m_{\rm t} + (m_{\rm t}^{3/2}/m_{\rm l})\exp(\Delta E_{\rm c}/k_{\rm B}T)}{m_{\rm l}^{3/2} + m_{\rm t}^{3/2}\exp(\Delta E_{\rm c}/k_{\rm B}T)},$$
(3)

其中 ΔE_{c} 为导带二度简并能谷能级能量 $E_{c\Delta 2}$ 与四 度简并能谷的谷底能级能量 $E_{c\Delta 4}$ 之差,与应力强 度相关,其为

$$\Delta E_{\rm c} = E_{\rm c\Delta 2} - E_{\rm c\Delta 4},\tag{4}$$

*m*_l为纵向有效质量, *m*_t为横向有效质量. *m*_l, *m*_t与应力强度的关系为

$$m_{\rm l} = (0.918 - 0.023\sigma^2)m_0, \tag{5}$$

$$m_{\rm t} = (0.196 - 0.016\sigma)m_0,\tag{6}$$

其中σ为沟道中应力强度, m₀为体硅导带电子有效质量.

另外, 能谷分裂有助于降低谷间散射, 将会引 起载流子散射概率的降低, 通常用电子平均自由 运动时间的倒数来表示散射概率的大小, 电子平 均自由运动时间与有效质量及有效电场的关系可 表示为

$$\frac{1}{\langle \tau \rangle} \propto \frac{q^2 E_{\rm eff}^2 \sqrt{m_{\rm t} m_{\rm l}}}{2\pi\hbar^3},\tag{7}$$

其中 *E*_{eff} 为横向有效电场强度, *ħ* 为普朗克常数, 从 而应变 Si NMOSFET 的迁移率可表示为

$$\mu_{\rm nssi}' = \frac{\mu_0}{m_0} (m_{\rm t} m_{\rm l})^{-\rm MUSTNM} \\ \times \frac{m_{\rm l}^{3/2} / m_{\rm t} + (m_{\rm t}^{3/2} / m_{\rm l}) \exp(\Delta E_{\rm c} / k_{\rm B} T)}{m_{\rm l}^{3/2} + m_{\rm t}^{3/2} \exp(\Delta E_{\rm c} / k_{\rm B} T)},$$
(8)

其中, μ₀为低场下单轴应变Si NMOSFET 电子迁 移率, MUSTNM为由于有效质量的变化而导致的 迁移率随应力强度变化的指数因子, 其默认值为 1/2. 考虑到沟道横向及纵向电场的影响, 通常采用 有效迁移率, 于是应变Si NMOSFET 的有效迁移 率可表示为

$$=\frac{\mu_{\rm nssi}'}{1+\left[U_{\rm A}\left(\frac{V_{\rm gs}+2V_{\rm th}}{t_{\rm OX}}\right)+U_{\rm B}\left(\frac{V_{\rm gs}+2V_{\rm th}}{t_{\rm OX}}\right)^2\right](1+U_{\rm C}V_{\rm bs})+U_{\rm D}\left(\frac{V_{\rm th}\cdot t_{\rm OX}}{V_{\rm gs}+2\sqrt{V_{\rm th}^2+0.0001}}\right)^2},$$
(9)

*U*_A, *U*_B, *U*_C, *U*_D 为与偏压相关的模型参数, 需要 通过参数提取获得, 默认值均为0, *t*_{OX} 为氧化层厚 度, *V*_{th} 为器件的阈值电压.

2.2 阈值电压模型

将应力的作用显式地体现在阈值电压表达式 中,从而使得所建立的模型能直观地反映出源漏电 流特性随应力强度变化的关系.阈值电压与应力强 度的关系可表示为

$$V_{\rm th} = \frac{t_{\rm ox}}{\varepsilon_{\rm ox}} \sqrt{2qN_{\rm SSi}\varepsilon_{\rm ssi}V_{\rm s}} + q\chi_{Si} - \left[q\chi_{\rm ssi} + \frac{E_{\rm g_{ssi}}}{2} + \frac{kT}{q}\ln\left(\frac{N_{\rm SSi}}{n_{\rm issi}}\right)\right], \quad (10)$$

式中 ε_{ox} 为氧化层介电常数, ε_{ssi} 为应变Si介电常数, V_S 为应变沟道区的表面势, t_{ox} 为氧化层厚度, χ_{si} , χ_{ssi} 分别为体硅和应变硅的亲和势, N_{SSi} 为应 变沟道掺杂浓度, n_{issi} 为应变硅的本征载流子浓度, $E_{g_{ssi}}$ 为应变硅的禁带宽度. 而 χ_{ssi} , $E_{g_{ssi}}$, n_{issi} 与沟 道中应力强度 σ 的关系为

$$\chi_{\rm ssi}(\sigma) = \chi_{\rm Si} + 0.57 \times \frac{\sigma}{7.55},\tag{11}$$

$$E_{g_{\rm ssi}}(\sigma) = 1.12 - 0.0336\sigma, \tag{12}$$

$$n_{\rm issi}(\sigma) = n_{\rm i0} \exp\left(\frac{0.0336\sigma}{2kT}\right). \tag{13}$$

通过对V_{th}的分析,可以看到单轴应变Si NMOSFET的阈值电压跟沟道应力强度、应变沟 道掺杂浓度等密切相关.

2.3 线性及饱和区电流模型

当栅压大于阈值电压时,器件处于强反型状态,相对于漂移电流,扩散电流可以忽略,此时沟道 电流可表示为

$$I_{\rm ds} = -\mu_{\rm n} \frac{W}{L} \int_0^{V_{\rm ds}} Q_{\rm i}\left(y\right) \mathrm{d}V,\qquad(14)$$

通过求解泊松方程,可知耗尽层电荷面浓度为

$$Q_{\rm b}(y) = -\gamma C_{\rm ox} \left(\sqrt{2\varphi_{\rm f} + V_{\rm sb} + V(y)} \right), \quad (15)$$

$$\gamma = \frac{\sqrt{2q\varepsilon_{\rm SSi}N_{\rm SSi}}}{C_{\rm ox}},\tag{16}$$

其中W 为沟道宽度, *L* 为沟道长度, μ_n 为沟道电子 迁移率, C_{ox} 为氧化层电容, ε_{SSi} 为应变 Si 介电常 数, φ_f 为费米势, V(y) 为沿着沟道方向电位, 以源 为参考点, 从而源端 V(0) = 0, 漏端 $V(L) = V_{ds}$. 从而可得反型层电荷面浓度为

$$Q_{i}(y) = -C_{ox} \left[V_{gb} - V_{fb} - \alpha \cdot V(y) \right], \qquad (17)$$

其中

$$\alpha = 1 + \frac{\gamma}{2\sqrt{2\varphi_{\rm f} + V_{\rm sb}}}.$$
 (18)

将(17)式代入(14)式中,积分可得强反型的漏电流 方程为

$$I_{\rm ds} = \frac{W}{L} \mu_{\rm n} C_{\rm ox} \left[(V_{\rm gs} - V_{\rm th}) V_{\rm ds} - \frac{\alpha}{2} V_{\rm ds}^2 \right].$$
(19)

将上式对V_{ds}求导,并令其等于零,可求得饱和漏 源电压为

$$V_{\rm dsat} = \frac{V_{\rm ds} - V_{\rm th}}{\alpha}.$$
 (20)

则相应的饱和区电流为

$$I_{\rm dsat} = \frac{W}{L} \mu_{\rm n} C_{\rm ox} \frac{(V_{\rm gs} - V_{\rm th})^2}{2\alpha}.$$
 (21)

2.4 亚阈区电流模型

当应变Si NMOSFET工作在亚阈区时,沟道 电流以扩散电流为主,基于亚阈区反型电荷可得亚 阈区电流为

$$I_{\rm ds} = \frac{W}{L} \cdot V_{\rm t} \cdot \mu_{\rm n} \cdot [Q_{\rm i}(L) - Q_{\rm i}(0)], \qquad (22)$$

其中 V_t 为热电压, μ_n 为沟道电子迁移率, $Q_i(0)$ 及 $Q_i(L)$ 分别为沟道源端和漏端处的电子面密度.

器件工作于亚阈值区时,从源到漏端的表面势 可以近似为常数^[14],通过求解泊松方程得到表面 势表达式为

$$\varphi_{\rm s} = \left(-\frac{\gamma}{2} + \sqrt{\frac{\gamma^2}{4} + V_{\rm gb} - V_{\rm th}}\right)^2. \tag{23}$$

进一步可求得沟道电子面密度为

$$Q_{i}(y) = \sqrt{\frac{q\varepsilon_{\rm SSi}N_{\rm SSi}}{2\varphi_{\rm s}}} \cdot V_{\rm t} \cdot \exp\left(\frac{V_{\rm gs} - V_{\rm th}}{nV_{\rm t}}\right) \times \exp\left(-\frac{V(y)}{V_{\rm t}}\right), \tag{24}$$

其中

$$n = 1 + \frac{\sqrt{\frac{q\varepsilon_{\rm SSi}N_{\rm SSi}}{2\varphi_{\rm s}}}}{C_{\rm ox}}.$$
 (25)

从而应变 Si NMOSFET 亚阈区电流为

$$I_{\rm ds} = \mu_{\rm n} \frac{W}{L} \sqrt{\frac{q\varepsilon_{\rm SSi} N_{\rm SSi}}{2\varphi_{\rm s}}} V_{\rm t}^2 \left[1 - \exp\left(-\frac{V_{\rm ds}}{V_{\rm t}}\right) \right] \\ \times \exp\left(\frac{V_{\rm gs} - V_{\rm th}}{nV_{\rm t}}\right).$$
(26)

3 结果与分析

为了验证本模型的可行性,将实验结果与仿真 结果进行了比较.实验制造的器件主要工艺参数 如下:应变硅沟道的掺杂浓度为5×10¹⁷ cm⁻³,氧 化层的厚度为1.5 nm,沟道长度为130 nm.通过 测量得到的该器件的阈值电压约为0.389 V.将本 文所建模型嵌入了课题组前期开发的单轴应变Si NMOSFET的verilogA代码中,并且运用课题组自 主开发的参数提取软件ParamPlus++提取了源漏 电流方程的模型参数,通过运行 SPECTRE 高精度 仿真器实现了单轴应变 Si NMOSFET 器件和电路 的 SPICE 仿真.

图 2 (网刊彩色) 不同应力强度下单轴应变 Si NMOS-FET 源漏电流模型与实验结果比较 (a) *I*_{ds}-*V*_{gs} 模型与 实验结果比较; (b) *I*_{ds}-*V*_{ds} 模型与实验结果比较 Fig. 2. (color online) Results contrast of Drain-

Source current from model and experiment of uniaxially strained Si NMOSFET device under different stress intensity: (a) results contrast of $I_{\rm ds}$ - $V_{\rm gs}$ from model and experiment; (b) results contrast of $I_{\rm ds}$ - $V_{\rm ds}$ from model and experiment.

图 2 中 (a) 图是漏极电压为0.5 V, 源级和衬底 电压为0 V, 栅极电压从0 V 扫描到1.0 V 时不同应 力强度下单轴应变 Si NMOSFET 源漏电流的仿真 结果与实验结果对比曲线.图2(b) 是栅极电压为 0.75 V, 源级和衬底电压为0 V, 漏极电压从0 V 扫 描到1.0 V时不同应力强度下单轴应变Si NMOS-FET源漏电流的仿真结果与实验结果对比曲线,从 图中数据可以看出,本文所建模型的仿真结果与 实验结果相比满足精度要求,证明了该模型的可 行性.

进一步地,采用TCAD软件对L = 50 nm的 器件进行了模拟仿真,同时通过参数提取获得相关 模型参数代入本文建立的模型中,通过比较二者的 结果来验证本文模型的有效性.图3为漏极电压从 0V扫描到1.2V,源级和衬底电压为0V,栅极电压 从0.2V扫描到1.1V,应力强度为2.5 GPa下的单 轴应变Si NMOSFET源漏电流模型与TCAD仿真 结果比较曲线图.从图中可以看出,在L = 50 nm 情形下,模型精度依然能满足实际仿真的要求,同 时也说明了本文电流模型"等比例缩小"的可行性.

图 3 (网刊彩色) 单轴应变 Si NMOSFET 源漏电流模型 与 TCAD 仿真结果比较

图4为不同应力强度下阈值电压随沟道长度 的变化曲线.可以看出沟道长度越小,阈值电压越 低,这主要是随着沟道长度的减小,使得源、漏结 的耗尽区在整个沟道中所占的比重增大,栅下面的 应变硅表面形成的电荷量减小.同时随着应力的增 大,阈值电压减小,这是因为应力导致了禁带宽度 和平带电压的减小,从而导致阈值电压减小.

图 5 是漏极电压为1.0 V、源级和衬底电压均 接地,栅极电压从0 V 扫描到0.35 V 时亚阈区电流 与应力强度的关系曲线.从图中以看出,亚阈区电 流随着应力强度的增加而增加,这是由于应变Si NMOSFET应力加强,禁带宽度减小,本征载流子 浓度提高,沟道电子密度也提高,同时沟道载流子 迁移率增大,从而导致亚阈区电流增加.

图 4 单轴应变 Si NMOSFET 阈值电压与应力强度的关系 Fig. 4. Relationships between threshold voltage of uniaxially strained Si NMOSFET and stress intensity.

图 5 单轴应变 Si NMOSFET 亚阈区电流与应力强度的 关系

Fig. 5. Relationships between sub-threshold current of uniaxially strained Si NMOSFET and stress intensity.

4 结 论

在建立迁移率模型和阈值电压模型的基础上, 基于器件不同的工作区域,从基本的漂移扩散方程 出发,建立了单轴应变Si NMOSFET源漏电流模 型.其中将应力的影响显式地体现在迁移率和阈值 电压模型中,使得所建立的模型能直观地反映出源 漏电流特性与应力强度的关系.并且对于亚阈区 电流模型,基于亚阈区反型电荷,而不是采用常用 的有效沟道厚度近似的概念,从而提高了模型的精 度.同时将所建模型的仿真结果与实验结果进行 了比较,验证了模型的可行性.只要将相关的模型 关系式和参数换成PMOSFET的相关模型关系式 和参数,该模型也同样适用于单轴应变Si PMOS-FET.所建模型已经编写成verilogA代码,能被电 路仿真器外挂调用,为单轴应变Si NMOSFET低 压低功耗电路设计提供了模型支持.

参考文献

- Song J J, Yang C, Wang G Y, Zhou C Y, Wang B, Hu H Y, Zhang H M 2012 Jpn. J. Appl. Phys. 51 104301
- [2] Lü Y, Zhang H M, Hu H Y, Yang J Y 2014 Acta Phys. Sin. 63 197103 (in Chinese) [吕懿, 张鹤鸣, 胡辉勇, 杨晋 勇 2014 物理学报 63 197103]
- [3] Nicoleta W, Harald R, Mahadi-ul H 2011 Solid-State Electronics 57 60
- [4] Toshifumi I, Toshinori N, Tsutomu T 2008 IEEE Transactions on Electron Devices 55 649
- [5] David C, Gilmer, Jamie K 2010 IEEE Transactions on Electron Devices 57 898
- [6] Wang X Y, Zhang H M, Song J J, Ma J L, Wang G Y, An J H 2011 Acta Phys. Sin. 60 077205 (in Chinese) [王 晓艳, 张鹤鸣, 宋建军, 马建立, 王冠宇, 安久华 2011 物理 学报 60 077205]
- [7] Valinajad H, Hosseini R, Akbari M E 2012 IJRRAS 13
 2
- [8] Hung M F, Wu Y C, Tang Z Y 2011 Applied Physics Letters 98 162108
- [9] Lim J S, Thompson S E, Fossum J G 2004 IEEE Electron Device Letters 250 731
- [10] Roldán J B, Gámiz F, P Cartujo C P 2003 IEEE Tran Electron Devices 50 1408
- [11] Wang B, Zhang H M, Hu H Y, Zhang Y M, Zhou C Y, Wang G Y, Li Y C 2013 *Chin. Phys. B* **22** 028503
- [12] Kang T K 2012 IEEE Electron Devices Letters 33 770
- [13] Kumar M, Dubey S, Tiwari P K, Jit S 2013 Superlattices and Microstructures 58 10
- [14] Chen D Y, Tang T G, Araujo C 1989 Chinese Journal of Semiconductors 10 547 (in Chinese) [陈登元, 汤庭鳌, C. A. Paz de Araujo 1989 半导体学报 10 547]

A Model of channel current for uniaxially strained Si n-channel metal-oxide-semiconductor field-effect transistor^{*}

Lü Yi¹⁾ Zhang He-Ming¹⁾ Hu Hui-Yong^{1)†} Yang Jin-Yong²⁾ Yin Shu-Juan³⁾ Zhou Chun-Yu¹⁾

1) (Key Laboratory for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China)

2) (Beijing Research Institute of Precise Mechatronic Controls, Beijing 100076, China)

3) (College of Science, Beijing Information Science and Technology University, Beijing 100192, China)

(Received 20 April 2015; revised manuscript received 2 June 2015)

Abstract

The channel current model is used to analyse the behavior of uniaxially strained Si n-channel metal-oxidesemiconductor field-effect transistor (NMOSFET) device and circuit. With the development of mobility and threshold voltage model, starting from the basic drift-diffusion equation, the channel current model for an uniaxially strained Si NMOSFET device is developed under different bias conditions. Especially, the stress intensity is explicitly included in the mobility and threshold voltage model, and this makes the model convenient to directly reflect the relationship between the device channel current and the stress intensity. Moreover, in terms of the subthreshold current model, the charge of weak inversion rather than the normal effective channel thickness approximation is involved. In this way, the model accuracy can be improved. Furthermore, this model is implemented by using verilogA language and is applied to the strained Si circuit's SPICE simulation, the model parameters extraction tool ParamPlus++ is developed at the same time. As a result, the simulation of uniaxial-strained Si NMOSFET device and circuit can be achieved; the simulation data fits the experimental results or TCAD simulation results very well, and this proves the accuracy of the model. Meanwhile the simulation results of the threshold voltage and subthreshold current with respect to stress intensity are obtained and analyzed. The results show that with increasing stress intensity the subthreshold current is increased while the threshold voltage is decreased.

Keywords: uniaxially strained Si, n-channel metal-oxide-semiconductor field-effect transistor, mobility model, threshold voltage

PACS: 73.43.Cd, 73.40.Qv, 71.70.Fk

DOI: 10.7498/aps.64.197301

^{*} Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. JY0300122503) and the Fundamental Research Funds for the Central Universities of China (Grant Nos. K5051225014, K5051225004).

[†] Corresponding author. E-mail: <u>35691513@qq.com</u>