物理学报 Acta Physica Sinica

 N_2H_4 在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究

贺艳斌 贾建峰 武海顺

First-principles study of stability and electronic structure of N₂H₄ adsorption on NiFe(111) alloy surface

He Yan-Bin Jia Jian-Feng Wu Hai-Shun

引用信息 Citation: Acta Physica Sinica, 64, 203101 (2015) DOI: 10.7498/aps.64.203101 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.203101 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I20

您可能感兴趣的其他文章 Articles you may be interested in

Heusler 合金 Co₂MnAl(100) 表面电子结构、磁性和自旋极化的第一性原理研究

First-principles study of the electronic structure magnetism and spin-polarization in Heusler alloy $Co_2MnAl(100)$ surface

物理学报.2015, 64(14): 147301 http://dx.doi.org/10.7498/aps.64.147301

不同N掺杂构型石墨烯的量子电容研究

Quantum capacitance performance of different nitrogen doping configurations of graphene 物理学报.2015, 64(12): 127301 http://dx.doi.org/10.7498/aps.64.127301

硅烯饱和吸附碱金属原子的第一性原理研究 First-principles study on saturated adsorption of alkali metal atoms on silicene 物理学报.2015, 64(1): 013101 http://dx.doi.org/10.7498/aps.64.013101

3d 过渡金属 Co 掺杂核壳结构硅纳米线的第一性原理研究 First-principles study of 3d transition metal Co doped core-shell silicon nanowires 物理学报.2014, 63(16): 163101 http://dx.doi.org/10.7498/aps.63.163101

InAs 双壁管状团簇及双壁纳米管结构、稳定性和电子特性的第一性原理研究 Structures stabilities and electronic properties of InAs double-walled tubelike clusters and nanotubes 物理学报.2012, 61(24): 243101 http://dx.doi.org/10.7498/aps.61.243101

N_2H_4 在NiFe(111)合金表面吸附稳定性和 电子结构的第一性原理研究^{*}

贺艳斌¹⁾²⁾ 贾建峰^{1)†} 武海顺^{1)‡}

(山西师范大学化学与材料科学学院,临汾 041004)
 (长治医学院药学系化学教研室,长治 046000)
 (2015年4月6日收到;2015年6月24日收到修改稿)

采用基于色散校正的密度泛函理论进行了第一性原理研究,详细分析了肼(N₂H₄)在Ni₈Fe₈/Ni(111)合 金表面稳定吸附构型的吸附稳定性和电子结构及成键性质.通过比较发现,肼分子以桥接方式吸附在表面的 两个Fe原子上是最稳定的吸附构型,其吸附能为-1.578 eV/N₂H₄.同时发现,肼分子在这一表面上吸附稳 定性的趋势为:桥位比顶位吸附更有利,且在Fe原子上比在Ni原子上的吸附作用更强.进一步分析了不同吸 附位点上稳定吸附构型的电子结构、电荷密度转移以及电子局域化情况.结果发现:相同吸附位点的电子态 密度图基本一致,并且N原子的p轨道和与之相互作用的表面原子的d轨道之间存在态密度上的重叠;吸附 后电荷密度则主要从肼分子转移到表面原子之上;在电子局域化函数切面图中也发现吸附后电子被局域到肼 分子的N原子和相邻的表面原子之间.这些电子结构的表征都充分说明肼分子与表面原子之间通过电荷转移 形成了强烈的配位共价作用.

关键词: 肼, 吸附, 电子结构, 密度泛函理论 PACS: 31.15.ae, 73.20.At, 75.47.Np

DOI: 10.7498/aps.64.203101

1引言

近年来, 肼(N₂H₄)的吸附和分解反应在各种 重要的技术中被应用, 如燃料电池、化学储氢、甚至 在纳米粒子的合成中都扮演着重要的角色^[1-3]. 在 这些应用过程中, 研究 N₂H₄ 与不同金属表面的相 互作用, 或者寻找促使氢快速从 N₂H₄ 中完全释放 的高效廉价催化剂一直以来都是研究的重点. 实验 研究表明, Rh纳米粒子是活性较高的 N₂H₄ 分解催 化剂^[4]. 另外, Ni和其他过渡金属形成的合金具有 更加显著的催化 N₂H₄ 分解的活性, 如 Xu 等制备 的 Ni-Rh^[5,6], Ni-Pd^[7]和 Ni-Ir^[8] 双金属纳米粒子. 由于这些贵金属材料价格昂贵且资源稀少, 因此开 发廉价、易得的金属催化剂已成为研究的重要方 向.最近的研究发现,非贵金属 NiFe 纳米粒子在水 合 N_2H_4 的完全分解中展现了极佳的催化性能^[9]. 同时, Manukyan 等^[10] 也通过还原 Ni 盐和 Fe 盐, 设计了一种在铜纳米粒子上的 NiFe 合金载体催化 剂, 这种催化剂在制氢中也表现出高的催化转化性 和良好的选择性. 然而, 尽管这些实验研究能够准 确掌握纳米粒子的形态控制并能取得良好的催化 特性, 但要准确了解这一催化过程, 首先必须从分 子水平上理解 N_2H_4 分子与这些合金表面的作用本 质, 这对进一步了解详细的催化机理非常重要. 另 一方面, N_2H_4 在金属表面的吸附可看作是含孤对 电子的分子吸附或构型转变吸附的研究模型. 这些 依赖于结构的吸附过程研究, 不仅可为探索更多的 反应路径提供可能性, 而且对掌握表面分子结构控 制非常有意义.

^{*} 国家自然科学基金(批准号: 21373131)和教育部新世纪优秀人才支持计划(批准号: NCET-12-1035)资助的课题.

[†]通信作者. E-mail: jiajf@dns.sxnu.edu.cn

[‡]通信作者. E-mail: wuhs@mail.sxnu.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

目前, 密度泛函理论(DFT)方法被用来计算 表面体系的电子结构,甚至对于一些复杂体系也 可以得到较准确的结果[11-13].相继报道了一些有 关N₂H₄与金属表面体系相互作用或催化分解的理 论研究, 如 $N_{2}H_{4}$ 在Cu表面的分子吸附^[14-17], 在 $Ir(111)^{[18]}$, $Ni(111)^{[19]}$, $Fe(211)^{[20]}$ $\Re Rh(111)^{[21]}$ 等表面的吸附和分解. 然而, N₂H₄在Ni基双金属 表面, 尤其是在NiFe 合金表面的研究相对较少. 近来的研究显示, NiFe表面是性能优良的合金材 料^[10,22],并且我们之前的研究也发现等摩尔比组 成的Ni, Fe原子表面对N₂H₄分子有较好的吸附性 能^[23],但是对这一表面上N₂H₄分子的不同吸附构 型参数、电子结构及其成键情况并未探讨. 然而, N₂H₄在金属表面吸附过程中,电子结构、电荷转移 情况以及成键情况等内容的分析对了解具体催化 过程的初始反应状态非常有帮助.同时研究N₂H₄ 与金属表面原子相互作用对了解含N类分子的表 面吸附也有非常重要的借鉴意义.

有研究发现,考虑范德瓦耳斯力的密度泛函理 论-广义梯度近似(DFT-GGA)计算常常能够校正 吸附能从而使其更符合实验结果^[24-26].然而,上 述有关N₂H₄在金属表面相互作用的理论研究大多 没有考虑色散校正的影响.因此,为了更好地理 解N₂H₄分子与催化剂表面的相互作用,本文运用 色散校正的DFT-D3方法计算了Ni(111)基Ni₈Fe₈ 合金表面与N₂H₄分子的相互作用;同时,对其几 何结构、电子结构和成键性质等进行了分析.研究 结果为NiFe合金催化N₂H₄分解的实验研究提供 了理论基础.

2 计算方法

由于近期研究^[9,10]发现,非贵金属NiFe纳米 粒子在水合N₂H₄的完全分解中展现出了极佳的 催化性能,并且通过高能X射线衍射、扫描透 射电子显微等技术证明该催化粒子表面主要为 (111)面,同时发现等摩尔比的Ni和Fe原子呈均匀 分布.因此,我们以Ni(111)为基底,构建了各种 可能的Ni,Fe等摩尔比组成的合金表层(表示为 Ni₈Fe₈/Ni(111)),其中如图1所示的Ni₈Fe₈表层原 子排列模型(4×4的表面超胞)是最稳定的构型.此 周期性平板模型含有4个原子层并被14 Å的真空 层隔开.被吸附物和上两层的金属原子可以充分弛 豫,而底下的两层金属层被固定到Ni的体相晶格 常数(理论模拟为3.524 Å,与实验值3.52 Å 吻合).

图 1 (网刊彩色) Ni(111) 基 Ni₈Fe₈ 表层合金模型 (图 中距离单位为Å; 绿色代表 Fe 原子, 蓝色代表 Ni 原子) Fig. 1. (color online) Surface structure of Fe₈Ni₈ surface alloy (distances are given in angstroms, green and light blue denote Fe and Ni atoms, respectively).

本文采用基于投影平面波的DFT方法^[27,28], 通过 VASP 软件包^[29-32] 进行计算. 交换关联函数 采用基于 Perdew-Burke-Ernzerhof (PBE)^[33,34] 的 GGA. 表面布里渊区采用 Monkhorst-Pack 方法^[35] k点设置为2×2×1,并且设置 $\sigma = 0.2$ eV^[36]. 计 算考虑了自旋极化,并且选择的平面波截断能为 400 eV. 对于所有的构型优化, N₂H₄的稳定构型通 过共轭梯度法迭代^[37]得到,当总能小于10⁻⁴ eV, 且每个原子的受力小于0.02 eV/Å时达到收敛条 件. 电荷密度差图和电子局域化函数图均使用 VESTA软件产生^[38].为了描述分子间长程相互作 用,使用DFT-D3(BJ)^[39,40]方法进行计算.这种色 散校正方法已被用于研究乙醇和水在3d,4d和5d 过渡金属表面的吸附,结果良好^[41].在这种校正方 法中,得到的吸附能 E_{ads}^{PBE+D3} 包括自洽的密度泛 函能量 E^{PBE}_{ads} 和范德瓦耳斯校正能量 E^{D3}_{ads}之和, 计 算公式如下:

$$E_{\rm ads}^{\rm PBE+D3} = E_{\rm ads}^{\rm PBE} + E_{\rm ads}^{\rm D3}.$$
 (1)

 N_2H_4 分子的计算是将它放在一个 20 × 20 × 20 的超晶胞内,以此尽量减少与相邻分子的作用. N_2H_4 分子存在三种分子构象:偏转式、反式和顺式. 其中,偏转式构象是最稳定的结构,反式和顺式 构象的能量比偏转式要高 0.12 和 0.36 eV^[23].在这 一研究中,我们将 N_2H_4 分子放置于模型表面可能 的吸附位点,然后对整个体系进行结构优化直至找 到稳定构型.吸附能 (E_{ads}^{PBE+D3})的计算采用整个 吸附体系的总能 (E_{sys}^{PBE+D3})减去洁净表面的能量 (E_{slab}^{PBE+D3})和 N_2H_4 分子的能量 (E_{mol}^{PBE+D3})之和. 计算方程为

$$E_{\rm ads}^{\rm PBE+D3} = E_{\rm sys}^{\rm PBE+D3} - (E_{\rm slab}^{\rm PBE+D3} + E_{\rm mol}^{\rm PBE+D3}).$$
(2)

3 计算结果与讨论

3.1 N₂H₄稳定吸附构型

我们将 N_2H_4 放置在Ni(111)基的 Fe_8Ni_8 合金 表层可能的吸附位点,随后对整个体系进行了 结构优化.如图2所示,共发现了桥位和顶位的 五个 N_2H_4 吸附结构.每一种结构对应的结构参 数和吸附能列于表1中.这些构型中,图2(a)— 图2(c)对应于 N_2H_4 分子通过两个N原子结合在 两个表面原子上形成的桥接模式.其中,图2(a) 构型为 N_2H_4 通过两个N原子与两个表面Fe 原子 桥接,以最稳定的方式吸附在此合金表面,吸附能 为-1.578 eV/N₂H₄; 当N₂H₄ 通过两个N原子与表面的一个Fe原子和一个Ni原子键合时(图2(b)), 吸附能有所减弱,变为-1.361 eV/N₂H₄; 而当N₂H₄通过两个N原子与两个表面Ni原子结合时(图2(c)), N—N键是五种吸附构型中最长的,为1.473 Å,吸附能则变小,为-1.137 eV/N₂H₄. 虽然这一构型有两个吸附位点,但甚至比在Fe原子的顶位吸附都要弱一些.这一结果说明了Fe原子比Ni原子能提供更强的吸附位.在这三个桥位吸附中,N₂H₄分子都是几乎水平地吸附于表面之上,尤其是吸附到相同类型的原子上时,倾斜角接近于0.但吸附于一个Ni原子和一个Fe原子上时,其倾斜角有轻微的增大.

表1 N₂H₄在 FeNi(111) 表面吸附的能量和结构参数

Table 1. Summary of energy and geometry for hydrazine adsorption configurations on FeNi(111) surface.

构型	$E_{\rm ads}^{\rm PBE+D3}/{\rm eV}$	N—N/Å	N—Ni/Å	N—Ni/Å	N—Fe/Å	N—Fe/Å	$\phi_{\mathrm{HNNH}}/(^{\circ})$	$ heta_{ m plane}/(^{\circ})$
(a)	-1.578	1.455			2.139	2.137	44.5	0.3
(b)	-1.361	1.461		2.052	2.145		21.5	1.7
(c)	-1.137	1.473	2.053	2.047	—		25.7	0.2
(d)	-1.346	1.465			2.081		175.8	31.2
(e)	-1.061	1.446	2.034				89.2	28.7

图 2 (网刊彩色) N_2H_4 在 NiFe(111) 合金表面的稳定吸附构型 (项视图和侧视图) Fig. 2. (color online) Adsorption geometries of hydrazine on FeNi(111) alloy surface (shown looking down onto the surface and sideways).

另外, N₂H₄分子在FeNi(111)表面的顶位吸 附构型如图2(d)和图2(e)所示. 其中N₂H₄分 子通过一个N原子结合在一个表面Fe 原子上形 成顶位吸附模式时((d)构型), 对应的吸附能为 -1.346 eV/N₂H₄. 此时的 N₂H₄ 分子接近于反式构 象,与表面形成 28.2° 的倾斜角,且优化后的 Fe—N 键长是 2.081 Å. 我们试图发现偏转式构象的 Fe 顶 位吸附构型,但由于表面 Fe 原子与偏转式构象的 N原子强烈吸引最终优化得到了图2(a)的桥位吸附. 然而,若增大表面N₂H₄分子的覆盖度,则由于被吸附分子之间的相互作用而使偏转式构象的N₂H₄分子能够以顶位吸附的方式吸附于Fe原子的顶位^[42].在图2(e)中,偏转式构象的N₂H₄分子 通过一个N原子吸附到Ni原子顶部,形成的N—Ni 键长为2.034 Å,并且N₂H₄分子与FeNi(111)表面 形成的倾斜角为28.7°,这一吸附释放的能量为 1.061 eV/N₂H₄,比吸附在Fe顶位时吸附能降低约 0.3 eV,进一步说明NiFe合金中Fe原子能提供强烈 的吸附位点.五个吸附构型对应的吸附能贡献中, 范德瓦耳斯力校正对吸附能的影响大约为0.4 eV 左右.但在Fe原子上吸附时色散作用的贡献大于 在Ni原子上吸附时的贡献值,且桥位吸附大于顶 位吸附的贡献.

从整体来看,桥接模式由于存在两个结合点 而使得吸附能更大一些. 然而,这种情况并不是 一成不变的. 在我们之前的研究中发现^[42],当 FeNi(111)合金表面超胞为2×2时,由于更多的 N₂H₄分子要吸附到这一表面,所以相互之间排斥 致使顶位吸附方式更稳定一些,桥位吸附由于需要 占用表面更多的空间反而变得不如顶位方式有利, 这说明表面覆盖度的大小对稳定吸附构型产生了 很大的影响. 相似的情况也见于 Ni(111)表面^[23]. 另外,吸附能也与吸附的位点有关系,如 Fe 原子上 的吸附要更强一些.

3.2 吸附构型的态密度

为了进一步理解表面的吸附机理,我们分析了 Fe顶位和Ni顶位吸附的电子态密度(DOS).由于 不论是桥位吸附还是顶位吸附,在相同原子上发生 吸附时,表面的态密度变化基本一致,所以图3只 列出了Fe-Ni表面上顶位吸附构型的电子态密度 图. 其中图3(a)为发生在Fe 顶位的吸附(吸附构 型对应于图2(d)构型),图3(b)为发生在Ni顶位 的吸附(吸附构型对应于图2(e)构型). 图中给出 了N原子的p轨道态密度和与之结合的Fe或者Ni 原子的d轨道态密度,从图2中可看出,由于两种顶 位吸附构型中, N₂H₄ 分子的构象一个为反式, 一个 为偏转式,所以图3(a)和图3(b)中N原子的态密 度稍有不同. 从图 3 (b) 中 -2-5 eV 能级处的态 密度可以看出N原子和表面Ni原子相互作用,即 偏转构象N₂H₄的最高已占分子轨道(HOMO)中 的电子与Ni原子空的d2 轨道形成了配位作用.因

此,两者轨道杂化形成了 -2—-5 eV 能级处的态密度.同样,从图3(a)中约 -2 eV 能级处的态密度可以看出 N 原子和表面 Fe 原子相互作用.轨道杂化的特征为两个相互作用轨道的混合,即吸附分子的HOMO轨道和 d² 轨道之间的混合说明了电子在吸附物与表面之间的转移^[43].同时,从图3中还可以看出,Fe 原子的d带中心要比 Ni 原子的d带中心更靠近费米能级,根据 d带中心理论^[44],Fe 原子将能提供更强的吸附作用,这与 Fe 原子和 Ni 原子上的顶位吸附能的变化也是一致的.

图 3 N₂H₄ 在 Fe(1) 和 Ni(2) 原子顶位吸附时的电子态 密度图

Fig. 3. The projected electronic DOS of adsorbed Fe(1) and Ni(2) atoms.

3.3 电荷转移

图 4 显示的是 N_2H_4 分子在 FeNi 合金表面的 各种稳定构型对应的电荷密度差分.图 4 (a)—(e) 分别对应图 2 (a)—(e) 的稳定吸附构型. 从图中可 以明显地看出, 电荷主要从 N₂H₄ 分子转移到了 N₂H₄ 分子与表面相互作用的区域上, 并且发现桥 位吸附比顶位吸附结构有更多的电荷转移. 这一 结构与 DOS 中得出的结果一致, 说明在吸附发生 后主要由 N₂H₄ 分子的电荷配位给表面金属原子 从而形成了配位作用. 但是具体到不同的吸附结 构和位点时, 电荷转移又有一些细微的区别. 如 在 Fe 原子上吸附时, 获得的电荷主要集中于 Fe 原 子上方, 在 Fe 原子四周分布的要少一些; 而在 Ni 原子上吸附时, 获得的电荷更多地分布于 Ni 原子 周围, 而 Ni 原子上方获得的电荷区域则要小一些. 从图 4 (b) 以及图 4 (d) 和图 4 (e) 中能够很明显地发现这一点.同时,比较图 4 (a) 和图 4 (c) 可以明显地发现 N 原子与表面原子之间获得电荷密度的多少与表面原子的种类明显相关,如在 N-Fe 原子之间获得的电荷密度 (黄色区域)要明显大于 N-Ni之间;而图 4 (b) 恰好更能说明这一点,因为这一吸附构型中两个 N 原子分别吸附于一个表面 Fe 原子和一个表面 Ni 原子.另外, N₂H₄分子的不同吸附构型也对电荷转移有一定的影响,如图 4 (e) 中除了吸附位点的 Ni 原子之外,邻近的 Ni 原子上也获得了一些电荷密度,而反式构象的 N₂H₄ 吸附在 Fe 原子上时(图 4 (d)),并没有发现这一现象.

图 4 (网刊彩色)稳定吸附构型的电荷密度差分图 等势面值为±0.002 e/Å³; 浅蓝色代表失去的电荷密度, 浅黄色代表得到的电荷密度 (图中金色和灰色分别代表 Fe 原子和 Ni 原子)

Fig. 4. (color online) Induced charge density presentation by an isosurface of $\pm 0.002 \text{ e/Å}^3$ where yellow and blue denote gain and lost of the electron density.

3.4 成键分析

电子局域化函数(ELF)可以用来表征电子的 局域化分布特征,从而用于确定成键类型和找出 孤对电子的分布情况.图5(a)—(e)分别给出了对 应于图2中稳定吸附构型的ELF切面图,这些图形 均是通过N₂H₄分子中的N原子和与之相互作用 的表面金属原子形成的平面切得,所以能够很好 地分析N原子和表面原子的成键情况以及通过这 一平面上化学键的电子局域分布特征.一般来说, ELF的值越大代表电子的局域化程度越高,以孤 对电子为最大接近于1,而电子离域化程度越高或 者无电子处ELF值几乎为零^[45,46].在图5中,金 属层的原子间ELF值为0.2到0.3左右,表现出了 这些区域电子的离域特性,这符合金属键的本质. 另外,图5(a)—(c)为桥接构型,所以在这些图中 可以明显地看出电子被局域到了N原子和表面金 属原子Fe或者Ni上(ELF值约为0.8—0.9).其中 图5(a)为两个表面Fe原子上的吸附,图5(c)为两 个表面Ni原子上的吸附.图5(b)中左边为Fe原 子而右边为Ni原子上的吸附,由于这一吸附构型 中N—Ni键比N—Fe键的距离要小一些,所以这一 个桥位吸附构型中,相对于N-Fe间的局域化电子 来说,N—Ni间的局域化电子要稍微靠近Ni原子 一些.而在图5(a)和图5(c)中,表示两个吸附键的 局域化电子与表面金属原子的距离基本一致.另 外,图5(d)和图5(e)是顶位吸附构型,所以从图中 可以看到N₂H₄分子和表面只有一个局域化电子区 域,说明只形成了一个吸附共价键,但其ELF值 与桥位吸附时区别不明显.值得注意的是图5(d) 中为N₂H₄分子的Fe原子的顶位吸附,而此时的 N₂H₄分子为反式构象,所以另外一个N原子的孤 对电子正好位于这一切面上,所以可以看到上部局 域化程度很高的电子区域,其ELF值接近于1,表 明此处为另一个N原子的孤对电子.

图 5 (网刊彩色) 稳定吸附构型的电子局域化函数切面图 Fig. 5. (color online) Slice through hydrazine molecule and nearest surface atoms showing ELF contours.

4 结 论

本文采用结合色散校正的密度泛函理论详细 地分析了 N_2H_4 分子在 $Ni_8Fe_8/Ni(111)$ 合金表面各 吸附构型的稳定性和几何结构参数,发现在低表面 覆盖度时 N_2H_4 分子在这一合金表面上以桥位方式 吸附是最稳定的,尤其是桥接到表面的两个Fe 原 子上时具有最大的吸附能-1.578 eV/ N_2H_4 .而相 对来说,顶位吸附由于只有一个吸附键形成,所以 吸附能要小一些.但是吸附位点Fe 和 Ni 也对吸附 能的大小具有一定的影响,同样吸附方式时,Fe 原 子能更强烈地吸附 N_2H_4 分子,但 N_2H_4 分子在Fe 顶位只能以反式构象被吸附.这些吸附情况与我们 之前在较高表面覆盖度的研究中得到的结果存在 明显的不同,说明覆盖度也对吸附构型存在很大的 影响.

另外,对稳定吸附构型的电子结构、电荷转移 以及电子局域化情况进行了详细分析,结果发现 N₂H₄分子在金属表面的吸附主要形成配位型结合 作用,电荷密度主要从N₂H₄分子转移到表面原子 之上,并且在N原子和金属原子之间存在强烈的局 域化电子.本文的研究结果对理解N₂H₄分子与催 化剂表面的相互作用提供了重要依据,为进一步探 索催化分解N₂H₄制氢的催化过程提供了更多的 研究基础和思路.

参考文献

- Cao N, Su J, Luo W, Cheng G 2014 Int. J. Hydrogen Energ. 39 9726
- [2] He L, Huang Y, Liu X Y, Li L, Wang A, Wang X, Mou
 C Y, Zhang T 2014 Appl. Catal. B: Environ. 147 779
- [3] Serov A, Padilla M, Roy A J, Atanassov P, Sakamoto T, Asazawa K, Tanaka H 2014 Angew. Chem. Int. Ed. 53 10336
- [4] Singh S K, Zhang X B, Xu Q 2009 J. Am. Chem. Soc. 131 9894
- [5] Singh S K, Xu Q 2009 J. Am. Chem. Soc. 131 18032
- [6] Singh A K, Yadav M, Aranishi K, Xu Q 2012 Int. J. Hydrogen Energ. 37 18915
- [7] Singh S K, Lizuka Y, Xu Q 2011 Int. J. Hydrogen Energ.
 36 11794
- $[8]~{\rm Singh}~{\rm S}~{\rm K},$ Xu Q 2010 Chem. Commun. 46 6545
- [9] Singh S K, Singh A K, Aranishi K, Xu Q 2011 J. Am. Chem. Soc. 133 19638
- [10] Manukyan K V, Cross A, Rouvimov S, Miller J, Mukasyan A S, Wolf E E 2014 Appl. Catal. A: Gen. 476 47
- [11] Chen J H, Liu E K, Li Y, Qi X, Liu G D, Luo H Z, Wang W H, Wu G H 2015 Acta Phys. Sin. 64 077104 (in Chinese) [陈家华, 刘恩克, 李勇, 祁欣, 刘国栋, 罗鸿志, 王文洪, 吴光恒 2015 物理学报 64 077104]
- [12] Liao J, Xie Z Q, Yuan J M, Huang Y P, Mao Y L 2014
 Acta Phys. Sin. 63 163101 (in Chinese) [廖建, 谢召起, 袁健美, 黄艳平, 毛字亮 2014 物理学报 63 163101]
- [13] Li L, Xu J, Xu L F, Lian C S, Li J J, Wang J T, Gu C Z 2015 Chin. Phys. B 24 056803
- [14] Daff T D, Costa D, Lisiecki I, de Leeuw N H 2009 J. Phys. Chem. C 113 15714
- [15] Daff T D, de Leeuw N H 2012 J. Mater. Chem. 22 23210
- [16] Tafreshi S S, Roldan A, Dzade N Y, de Leeuw N H 2014 Surf. Sci. 622 1
- [17] Tafreshi S S, Roldan A, de Leeuw N H 2014 J. Phys. Chem. C 118 26103
- [18] Zhang P X, Wang Y G, Huang Y Q, Zhang T, Wu G S, Li J 2011 Catal. Today 165 80
- [19] Agusta M K, Kasai H 2012 Surf. Sci. 606 766
- [20] McKay H L, Jenkins S J, Wales D J 2011 J. Phys. Chem. C 115 17812
- [21] Deng Z, Lu X, Wen Z, Wei S, Liu Y, Fu D, Zhao L, Guo
 W 2013 Phys. Chem. Chem. Phys. 15 16172
- [22] Zhu J P, Ma L, Zhou S M, Miao J, Jiang Y 2015 Chin. Phys. B 24 017101
- [23] He Y B, Jia J F, Wu H S 2015 Appl. Surf. Sci. 339 36
- [24] Pereira A O, Miranda C R 2014 Appl. Surf. Sci. 288 564

- [25] Carrasco J, Liu W, Michaelides A, Tkatchenko A 2014 J. Chem. Phys. 140 084704
- [26] Atodiresei N, Caciuc V, Franke J H, Blügel S 2008 Phys. Rev. B 78 045411
- [27] Blöchl P E 1994 Phys. Rev. B 50 17953
- [28] Kresse G, Joubert D 1999 Phys. Rev. B **59** 1758
- [29] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [30] Kresse G, Furthmüller J 1996 Comp. Mater. Sci 6 15
- [31] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
- [32] Kresse G, Hafner J 1994 Phys. Rev. B 49 14251
- [33] Perdew J P, Burke K, Ernzerhof M 1997 *Phys. Rev. Lett.* 78 1396
- [34] Perdew J P, Burke K, Ernzerhof M 1996 *Phys. Rev. Lett.* 77 3865
- [35] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [36] Methfessel M, Paxton A T 1989 Phys. Rev. B 40 3616
- [37] Štich I, Car R, Parrinello M, Baroni S 1989 Phys. Rev. B 39 4997

- [38] Momma K, Izumi F 2011 J. Appl. Crystallogr. 44 1272
- [39] Grimme S, Ehrlich S, Goerigk L 2011 J. Comput. Chem. 32 1456
- [40] Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104
- [41] Tereshchuk P, Da Silva J L F 2012 J. Phys. Chem. C 116 24695
- [42] He Y B, Jia J F, Wu H S 2015 J. Phys. Chem. C 119 8763
- [43] Albright T A, Burdett J K, Whangbo M H 2013 Orbital Interactions in Chemistry (2nd Ed.) (New York: John Wiley & Sons, Inc.)
- [44] Kitchin J R, Norskov J K, Barteau M A, Chen J G 2004 J. Chem. Phys. 120 10240
- [45] Burdett J K, McCormick T A 1998 J. Phys. Chem. A 102 6366
- [46] Becke A D, Edgecombe K E 1990 J. Chem. Phys. 92 5397

First-principles study of stability and electronic structure of N_2H_4 adsorption on NiFe(111) alloy surface^{*}

He Yan-Bin¹⁾²⁾ Jia Jian-Feng^{1)†} Wu Hai-Shun^{1)‡}

1) (School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China)

2) (Pharmaceutical Department, Changzhi Medical College, Changzhi 046000, China)

(Received 6 April 2015; revised manuscript received 24 June 2015)

Abstract

We use the density functional theory (DFT) with dispersion correction to investigate the stability and electronic structure of hydrazine (N_2H_4) adsorpted on Ni_8Fe_8/Ni (111) alloy surface. The geometries and adsorption characteristics of the structure on the Ni_8Fe_8 alloy surface are presented. Results show that N_2H_4 bridging between two iron atoms gives the strongest adsorption with an adsorption energy of $-1.578 \text{ eV}/N_2H_4$. Top modes turn out to be the local minima with adsorption energies of $-1.346 \text{ eV}/N_2H_4$ (for the top site on a Fe atom) and $-1.061 \text{ eV}/N_2H_4$ (for the top site on a Ni atom). It is demonstrated that the bridging mode is more favorable than the top mode on the NiFe alloy surface with a coverage of 1/16 ML, and Fe atom can provide stronger adsorption site than Ni atom. The van der Waals contribution is significant with a value of about $0.4 \text{ eV}/N_2H_4$. Meanwhile, the van der Waals contribution is larger for adsorption on Fe atom than on Ni atom, and for adsorption of the bridging mode than of the top mode. We also find that the structure of N_2H_4 in the anti molecule, rather than the gauche molecule, is bound on the top site of Fe atom on the NiFe alloy surface with a coverage of 1/16 ML, which demonstrates that the repulsive adsorbate-adsorbate interaction is weak on the surface with low coverage. The strong interaction between the surface atom and the adsorbate contributes to the result that the lone pair electrons of N_2H_4 in gauche conformer are attracted by the Fe atom. In addition, for the five adsorption structures of N_2H_4 on $Ni_8Fe_8/Ni(111)$ alloy surface, we analyze the projected electronic density of states (DOS), induced charge density and electron localisation function (ELF) slices through the Fe-N or Ni-N bonds of the adsorbed molecule on the alloy surface. It shows that the electronic DOS presents the mixture between HOMO of N_2H_4 and the d orbital of the surface atom, which corresponds to charge transfer between the substrate and the adsorbate. The charges are transferred mainly from N_2H_4 to the surface atoms, and the extents of charge transfer are different for the bridging mode and the top one which is present in the induced charge density. Furthermore, the region of localisation in the ELF slices can be found for the adsorptions between the N atom of N_2H_4 and the Fe or Ni atom of surface, which gives a clear view of the coordination bonds for the interactions of N—Fe or N—Ni.

Keywords: hydrazine, adsorption, electronic structure, density functional theoryPACS: 31.15.ae, 73.20.At, 75.47.NpDOI: 10.7498/aps.64.203101

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 21373131) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1035).

 $[\]dagger$ Corresponding author. E-mail: jiajf@dns.sxnu.edu.cn

 $[\]ddagger$ Corresponding author. E-mail: wuhs@mail.sxnu.edu.cn