物理学报 Acta Physica Sinica

Ca_{0.5}Sr_{0.5}TiO₃弹性和热学性质的第一性原理研究 邵栋元 惠群 李孝 陈晶晶 李春梅 程南璞

First-principles study on the elastic and thermal properties of $Ca_{0.5}Sr_{0.5}TiO_3$

Shao Dong-Yuan Hui Qun Li Xiao Chen Jing-Jing Li Chun-Mei Cheng Nan-Pu

引用信息 Citation: Acta Physica Sinica, 64, 207102 (2015) DOI: 10.7498/aps.64.207102 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.207102 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I20

您可能感兴趣的其他文章 Articles you may be interested in

金衬底调控单层二硫化钼电子性能的第一性原理研究

Tuning the electronic property of monolayer MoS2 adsorbed on metal Au substrate: a first-principles study 物理学报.2015, 64(18): 187101 http://dx.doi.org/10.7498/aps.64.187101

GGA+U的方法研究 Ag 掺杂浓度对 ZnO 带隙和吸收光谱的影响

GGA+U study on the effects of Ag doping on the electronic structures and absorption spectra of ZnO 物理学报.2015, 64(15): 157101 http://dx.doi.org/10.7498/aps.64.157101

N-F 共掺杂锐钛矿二氧化钛(101) 面纳米管的第一性原理研究

N-F co-doped in titaninum dioxide nanotube of the anatase (101) surface: a first-principles study 物理学报.2015, 64(14): 147103 http://dx.doi.org/10.7498/aps.64.147103

金和银的晶格反演势的构建及应用

Application and foundation on inversion lattice potential of gold and silver 物理学报.2015, 64(14): 147101 http://dx.doi.org/10.7498/aps.64.147101

BiTiO₃ 电子结构及光学性质的第一性原理研究 First-principles study of electronic and optical properties of BiTiO₃

物理学报.2015, 64(14): 147102 http://dx.doi.org/10.7498/aps.64.147102

Ca_{0.5}Sr_{0.5}TiO₃弹性和热学性质的 第一性原理研究^{*}

邵栋元 惠群 李孝 陈晶晶 李春梅 程南璞†

(西南大学材料与能源学部,重庆 400715)

(2015年3月27日收到;2015年6月16日收到修改稿)

利用能量最小原理,确定了Ca_{0.5}Sr_{0.5}TiO₃晶体中4c位置的Ca/Sr原子对称分布,建立了Ca_{0.5}Sr_{0.5}TiO₃稳定的晶体结构,在此基础上利用基于密度泛函理论第一性原理的平面波超软赝势方法,采用局域密度近似和广义梯度近似函数,计算了Ca_{0.5}Sr_{0.5}TiO₃的晶格参数、弹性常数、体弹模量、剪切模量、杨氏模量、泊松比,并基于Christoffel方程的本征值研究了平面声波的特征,基于Cahill和Cahill-Pohl模型研究了最小热导率的特征.计算结果表明:Ca_{0.5}Sr_{0.5}TiO₃ 晶格参数和实验值很接近,体弹模量大于剪切模量,[100],[010],[001] 晶向的杨氏模量、泊松比、普适弹性常数(A^U)以及杨氏模量三维图均显示了弹性各向 异性;平面声波在(010),(001)平面呈现各向异性,在(100)平面呈现各向同性,平面声波大小与平均横波和平均纵波的数值很接近.Cahill模型最小热导率在各平面呈现各向同性,Cahill-Pohl模型最小热导率在高温时 趋于恒定.准谐德拜模型下Ca_{0.5}Sr_{0.5}TiO₃ 晶体的摩尔热容和热膨胀系数与CaTiO₃ 晶体的接近,并且高温 下具有稳定的热膨胀性能.计算所得禁带宽度为2.19 eV,导带底主要是Ti-3d与O-2p态电子贡献;由电荷布 居和电荷密度图理论证实Ca_{0.5}Sr_{0.5}TiO₃ 具有稳定的Ti-O 八面体结构.

关键词: Ca_{0.5}Sr_{0.5}TiO₃, 第一性原理, 弹性常数, 热导率 PACS: 71.15.Mb, 73.20.At, 74.25.fc, 74.25.Jb

DOI: 10.7498/aps.64.207102

1引言

 $Ca_x Sr_{1-x} TiO_3$ 晶体由于介电和铁电属性,在 微波技术与电子设备中得到了广泛的应用,尤 其对 CaTiO_3 和 SrTiO_3 晶体的研究备受关注^[1-4]. Bednorz 和 Müller^[5] 首先证明了温度低于 40 K时, $Ca_x Sr_{1-x} TiO_3$ 晶体在 0.0018 < x < 0.016 具有铁 电属性,在 0.12 < x < 0.43 时存在反铁电相变,当 x > 0.43 时存在铁电属性^[6].对于 Ca_x Sr_{1-x} TiO_3 晶体系列,有立方相、四方相和正交相,其中随 着 Ca²⁺ 增加转变成正交晶系,随着 Sr²⁺ 离子的增 加转变成立方晶系. CaTiO_3 晶体属于 *Pbnm* 正交 晶系,因此 SrTiO_3 晶体在室温下属于 *Pm*-3m 立 方晶系^[7,8]. 文献 [9] 证明在室温下 Ca_x Sr_{1-x} TiO_3 (0.40 < x < 0.55)与CaTiO₃晶体有相同的空间 结构. Ranjan等^[10]通过X射线衍射和中子衍射 证明空间群为*Pbnm*,文献[11, 12]用相图法研究 高温下Ca_{1-x}Sr_xTiO₃样品的相变,认为x > 0.4时Ca_{1-x}Sr_xTiO₃属于*Pbnm*空间群. Hui等^[13]在 *Pbnm*空间群的基础上,利用中子衍射和反蒙特卡 罗方法进一步确定了Ca_{0.5}Sr_{0.5}TiO₃ (CST50)4c 位置的Ca和Sr原子应对称分布,因此本文利用 *Pbnm*空间群,建立CST50晶体模型.

文献 [14, 15] 利用弹性常数, 计算了 CaTiO₃ 和 SrTiO₃ 晶体的声学波速度和德拜温度. Walsh 等 ^[16] 研究了 Ca_xSr_{1-x}TiO₃ 系列的晶格常数和密度的变化, 随着 Sr 原子的增加, 密度呈现增加趋势, 并且体弹模量普遍高于剪切模量, 而 CST50 晶体的体弹模量为148.2—152.1 GPa, 剪切模量

* 国家自然科学基金 (批准号: 51171156) 和中央高校基本业务费 (批准号: XDJK2014C008) 资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: <u>cheng_np@swu.edu.cn</u>

为88.0—88.3 GPa. Ashman 等^[17]用第一性原理 研究了CST50的铁电属性,铁电极化范围从0.08 C/m²增加到0.26 C/m². Yang和Zhang^[18]用虚 晶近似方法 (virtual-crystal approximation)计算 了CST50的弹性性质,体弹模量为153 GPa,剪 切模量为81 GPa,杨氏模量为282 GPa,泊松比为 0.275,理论证明CST50材料整体显示脆性,并且利 用复介电函数计算了光学性质,其静态介电常数为 3.79,静态折射率为1.94. Perks等^[19]通过实验测 定了Ca_xSr_{1-x}TiO₃系列晶体的体弹模量和剪切模 量,温度低于500 K时,CST50 晶体的体弹模量和 剪切模量随温度的增加呈现下降趋. Aso等^[20]通 过研究 ABO₃界面材料发现 A 位离子的半径越小, 对Ti-O 八面体畸变程度越大,由于 Sr²⁺_{0.5}Ca²⁺_{0.5} 半径 最小,因此对界面处Ti-O 八面畸变的影响最大.

对于 $Ca_x Sr_{1-x} TiO_3$ 晶体的热学和电学性质, Kovalevsky 等^[21] 研究了 SrTiO₃ 晶体通过掺杂金 属离子 (W⁺),其热导率随着金属离子浓度的增加 呈现下降趋势; Lima 等^[22] 研究了 $Ca_x Sr_{1-x} TiO_3$ 晶体低温下的介电常数,铁电性质以及超导温度 转变相图,结果显示超导转变温度低于铁电相变 温度.

目前CST50晶体掺杂稀土元素(Sm³⁺)作为 发光材料已有报道,鉴于对 $Ca_rSr_{1-r}TiO_3$ 晶体的 研究和应用范围越来越广,而对CST50的晶体结 构、弹性性质和热学性质鲜有报道,因此本文首先 采用基于密度泛函理论第一性原理的平面波超软 赝势方法,确定了4c位置Ca/Sr原子的分布,建立 了CST50的晶体结构, 计算了晶格常数和弹性常 数; 然后利用弹性常数计算了体弹模量、剪切模量、 三维杨氏模量以及泊松比,并借助Christoffel方程 绘制了平面声波和Cahill模型最小热导率三维图 和平面投影图,利用Cahill-Pohl模型研究了最小热 导率随着温度的变化趋势,对比了CST50, CaTiO₃ 和SrTiO3晶体的定容摩尔热容和热膨胀系数;最 后分析了能带结构、态密度、电荷重叠布居,以及 (200), (110), (002) 晶面的电荷密度图. 本文的研 究将为CST50的潜在应用提供理论依据.

2 计算模型与理论方法

2.1 计算模型

实验研究结果表明: CST50为正交晶系,本文利用 Pbnm 空间群建立 CST50 的晶体结构,国际代码为 No. 61,其晶体结构如图 1 所示.实验工作

已证实CST50晶体有稳定的Ti-O八面体结构^[5,6]. 首先本工作中分别以Ca/Sr原子占据不同4c位置, 根据能量最低原理确定出稳定的晶体结构,计算显 示以Ti原子为中心,4c位置的Ca/Sr原子对称分 布时,晶胞能量最低,有利于形成稳定的结构,理论 与实验结果相一致^[13,23,24].在此晶体结构基础上 进行其他性质的计算.

Fig. 1. Crystal structure of CST50.

2.2 计算方法

本文计算是基于密度泛函理论的第一性原 理方法,由CASTEP模块完成.计算过程采用周 期性边界条件, 电子间的交换关联能采用广义 梯度近似(GGA)^[25]下的Perdew-Burke-Ernzerhof (PBE) 方法^[26]和局域密度近似(LDA)下的CA-PZ方法^[27],晶体中电子的波函数由平面波基 组展开,并由超软赝势(USPP)^[28]实现离子实 与价电子之间的相互作用势, 原子赝势计算 考虑的外层价电子组态: $Ca > 3s^2 3p^6 4s^2$, Sr 为 4s²4p⁶5s², O为2s²2p⁴, Ti为3s²3p⁶3d²4s². 波矢 K空间中,平面波截断能为380 eV,布里渊区 积分采用 $3 \times 3 \times 2$ 的Monkors-Park^[29]特殊K 点对全布里渊区求和. 运用Broyden-Fletcher-Goldfarb-Shanno (BFGS)^[30,31] 算法, 对晶体模型 结构及晶格参数进行优化.优化条件为:总能 量变化小于0.5×10⁻⁶ eV,每个原子的应力小于 5.56×10⁻³ eV/Å, 残余应力低于1.63×10⁻² GPa, 位移偏差小于4.6×10⁻⁴ Å,并在此基础上进一步 研究分析其弹性性质和热学性质.

3 结果与讨论

3.1 弹性性质

CST50属于正交系,有9个独立的弹性常数 (C₁₁, C₁₂, C₁₃, C₂₂, C₂₃, C₃₃, C₄₄, C₅₅, C₆₆),在 晶体结构优化基础上,利用线性拟合应力应变的方 法计算晶体基态的弹性常数.

······································													
Method	$a/{ m \AA}$	$b/{ m \AA}$	$c/{\rm \AA}$	$V/{ m \AA}^3$	C_{11} /GPa	C_{12} /GPa	C_{13} /GPa	C_{22} /GPa	C_{23} /GPa	C_{33} /GPa	C_{44} /GPa	C_{55} /GPa	C_{66} /GPa
LDA	5.417	5.400	7.666	224.28	338	124	126	362	128	355	114	125	118
GGA	5.512	5.508	7.801	236.85	299	105	98	285	108	302	105	100	107
Other work	5.467	5.4713	7.739	231.52	286	76	124	256	82	279	114	97	41 ^a
	5.498	5.491	$7.753^{\rm b}$		317	123	108	324	99	333	119	110	$116^{\rm c}$
	5.4737	5.4714	7.763	231.59^{d}	293	141	104	327	124	322	120	73	$103^{\rm f}$
	5.479	5.480	7.742	232.51^{e}	299	119	106	302	102	319	114	103	$104^{\rm f}$
	5.4722	5.4736	7.733 ^g		311	99					$107^{\rm h}$		
					332	104					$124^{\rm i}$		
					334	96					108^{j}		
					342	97					91^{j}		

表1 CST50 晶格参数 a, b, c, 晶胞体积 V, 弹性常数 C_{ij} Table 1. Lattice constants a, b, c, cell volume V, elastic coefficients C_{ii} of CST50.

注: a, Ref. [18]; b, Ref. [6]; c, Ref. [46]; d, Ref. [12]; e, Ref. [2]; f, Ref. [48]; g, Ref. [13]; h, Ref. [43]; i, Ref. [3]; j, Ref. [15].

表1是分别用LDA和GGA两种方法计算所 得的晶格参数、晶胞体积和弹性常数. 可以看出, LDA 方法比GGA 方法低估晶格常数、高估弹性常 数,但两者均满足力学稳定性的判据^[32],且体积和 弹性常数与其他文献的计算结果接近.

$$C_{ii} > 0 \quad (i = 1, 2, 3, 4, 5, 6),$$

$$(C_{11} + C_{22} - 2C_{12}) > 0,$$

$$(C_{11} + C_{33} - 2C_{13}) > 0,$$

$$(C_{22} + C_{33} - 2C_{23}) > 0,$$

$$[C_{11} + C_{22} + C_{33} + 2(C_{12} + C_{13} + C_{23})] > 0. \quad (1)$$

Voigt 和 Reuss 模型下的体弹模量 B_V , B_B 和 剪切模量 G_V, G_B 计算公式为^[32]:

$$9B_{\rm V} = (C_{11} + C_{22} + C_{33}) + 2(C_{12} + C_{13} + C_{23}), \qquad (2)$$

$$15G_{\rm V} = (C_{11} + C_{12} + C_{33}) + 3(C_{44} + C_{55} + C_{66})$$

$$-(C_{12}+C_{13}+C_{23}), (3)$$

$$1/B_{\rm R} = (S_{11} + S_{22} + S_{33}) + 2(S_{12} + S_{13} + S_{23}), \qquad (4)$$

$$15/G_{\rm R} = 4(S_{11} + S_{22} + S_{33}) + 4(S_{12} + S_{13} + S_{23}) + 3(S_{44} + S_{55} + S_{66}),$$
(5)

$$-3(S_{44}+S_{55}+S_{66}), (5)$$

其中 S_{ij} 为柔顺系数, $S_{ij} = C_{ij}^{-1}$, 然而 Hill^[33] 通过 极值原理证明了 Voigt 和 Reuss 模型分别对应弹性 常数的上下极限, 二者的算术平均值 VRH (VoigtReuss-Hill) 与实验结果更为接近, 即

$$B = (B_{\rm R} + B_{\rm V})/2,$$
 (6)

$$G = (G_{\rm R} + G_{\rm V})/2.$$
 (7)

基于体弹模量和剪切模量的Hill值,可以计算 多晶体系下杨氏模量 E 和泊松比v, 公式如下:

$$E = 9BG/(G+3G),\tag{8}$$

$$\nu = (3B + 2G)/[2(3B + G)]. \tag{9}$$

根据(2)—(9)式计算所得的体弹模量、剪切 模量、杨氏模量和泊松比列于表2,可知Voigt 和Reuss模型下的体弹模量B_V, B_R和剪切模量 G_V,G_R均比较接近,并且CST50有较大的杨氏 模量. Pugh^[34]基于弹性常数提出一种预测材 料脆性和韧性的经验判据, G/B > 0.5时材料 整体显脆性, 而G/B < 0.5时材料整体显韧性. 表 $2 \oplus G/B_{LDA} = 0.5789 \oplus G/B_{GGA} = 0.5999$, 说 明CST50晶体为脆性材料.

为了定量研究单晶各向异性, Ranganathan 和 Ostoja-Starzewski^[35]引入了适用于所有晶相的普 适弹性各向异性指数 A^U:

$$A^{\rm U} = 5 \frac{G_{\rm V}}{G_{\rm R}} + \frac{B_{\rm V}}{B_{\rm R}} - 6 \ge 0,$$
 (10)

当 $A^{\rm U} = 0$ 说明单晶各向同性, $A^{\rm U}$ 值越大则材料 的各向异性程度越大. 结果表明: CST50 晶体的普 适弹性常数 $A_{LDA}^{U} = 0.0235, A_{GGA}^{U} = 0.0341,$ 说明 CST50 弹性呈现弱各向异性.

表 2 CST50 体弹模量 *B*, 剪切模量 *G*, 多晶杨氏模量 *E*, 泊松比 ν 和普适弹性常数 A^{U} Table 2. Bulk modulus *B*, shear modulus *G*, Young's modulus of polycrystalline *E*, Poisson's ratio ν and universal anisotropic index A^{U} of CST50.

Method	$B_{\rm R}/{\rm GPa}$	$B_{\rm V}/{\rm GPa}$	$B/{ m GPa}$	$G_{\rm R}/{\rm GPa}$	$G_{\rm V}/{\rm GPa}$	G/GPa	G/B	$E/{ m GPa}$	ν	A^{U}
LDA	200.5	201.9	201.2	116.3	116.7	116.5	0.5789	292.86	0.257	0.0235
GGA	168.3	168.2	168.25	100.3	100.9	100.6	0.5999	251.59	0.25	0.0341
			152/148			88/88			0.275^{a}	
Other			177 - 212			$105.6^{\rm b}$				
work			172			$104^{\rm c}$				
			$177.36/148.88^{\rm d}$							

注: a, Ref. [4]; b, Ref. [47]; c, Ref. [42]; d, Ref. [46].

表3 主轴方向的杨氏模量 E 与泊松比 v

Table 3. Young's modulus E, Poisson's ratio ν along the principal axis.

LDA 273.5 0.2493 0.2652 293.9 0.2697 0.2632 287.1 0.2784 0.2572 GGA 247.2 0.2824 0.2250 227.1 0.2595 0.2727 247.8 0.2255 0.2973 ^a CaTiO ₃ 253.6 0.3099 0.2309 265.2 0.3241 0.1928 285.1 0.2607 0.20731 ^a	Method	$E_{[100]}/{\rm GPa}$	$ u_{xy}$	ν_{xz}	$E_{[010]}/{\rm GPa}$	$ u_{yx}$	ν_{yz}	$E_{[001]}/{\rm GPa}$	ν_{zx}	$ u_{zy}$
GGA 247.2 0.2824 0.2250 227.1 0.2595 0.2727 247.8 0.2255 0.2975 CaTiO ₃ 253.6 0.3099 0.2309 265.2 0.3241 0.1928 285.1 0.2607 0.20731 ^a	LDA	273.5	0.2493	0.2652	293.9	0.2697	0.2632	287.1	0.2784	0.2572
CaTiO ₃ 253.6 0.3099 0.2309 265.2 0.3241 0.1928 285.1 0.2607 0.20731 ^a	GGA	247.2	0.2824	0.2250	227.1	0.2595	0.2727	247.8	0.2255	0.2975
	${\rm CaTiO_3}$	253.6	0.3099	0.2309	265.2	0.3241	0.1928	285.1	0.2607	$0.20731^{\rm a}$

注: a, Ref. [46].

200

N

·200

-400

为了进一步研究弹性性质,将主轴方向的杨氏 模量和泊松比列于表3.沿主轴方向杨氏模量有较 大的值,且呈现各向异性,泊松比显示了CST50晶 体的不可压缩性.

为了清楚地研究CST50单晶体杨氏模量随各 个方向的变化情况,绘制了CST50晶体的杨氏模 量三维图,计算公式如下^[36]:

$$\frac{1}{E} = l_1^4 S_{11} + 2l_1^2 l_2^2 S_{12} + 2l_1^2 l_3^2 S_{13} + l_2^4 S_{22} + 2l_2^2 l_3^2 S_{23} + l_3^4 S_{33} + l_2^2 l_3^2 S_{44}$$

$$+ l_1^2 l_3^2 S_{55} + l_1^2 l_2^2 S_{66}, (11)$$

式中*S_{ij}*为柔顺系数; *l*₁,*l*₂,*l*₃是方向余弦,杨氏模 量的大小依赖于*l*₁,*l*₂,*l*₃. 图2可以直观地体现杨 氏模量沿各个方向的变化. 图2(a)显示了杨氏模 量呈现各向异性,平面投影图2(b)表明杨氏模量 在(001),(010)平面各向异性程度强于(100)平面, 并且平面投影图具有二次旋转对称性的特征,这与 CST50属于正交晶系的特征相一致.

图 2 CST50 的杨氏模量 (a) 三维投影; (b) 各平面投影 (红线, 绿线和蓝线分别 XY, XZ 和 YZ 平面投影)(GGA) Fig. 2. Young's modulus of CST50: (a) 3D projected image; (b) planar projected images (red, green and blue lines represent XY, XZ and YZ planes, respectively) (GGA).

晶向上都存在3支平面声学波速度:

 v_1 v_2

(12)

平面声波性质 3.2

平面声波特征与晶体对称性和各向异性密切 相关, 通过求解 Christoffel 方程, 可以得到在每个

图 3 平面声波 v1, v2, v3 三维图 (a)—(c) 与对应平面投影图 (d)—(f)(红色, 绿线和蓝线分别为 XY, XZ 和 YZ 平面投影) (GGA)

Fig. 3. 3D projected images of plane acoustic velocities v_1, v_2, v_3 (a)–(c) and the corresponding planar projected images (d)-(f)(the red, green and blue lines respectively represent the XY, XZ and YZ plane projects) (GGA).

其中k为弹性波波矢, ω 为振动频率, ρ 为密度. 令 ω/k 为平面声波速度, v_1, v_2, v_3 为振幅,对于正交 晶系 $\alpha, \beta, \gamma, \delta, \varepsilon, \zeta$ 满足如下关系:

$$\begin{cases} \alpha = C_{11}l_1^2 + C_{66}l_2^2 + C_{55}l_3^2, \\ \delta = (C_{12} + C_{66})l_1l_2, \\ \beta = C_{66}l_1^2 + C_{22}l_2^2 + C_{44}l_3^2, \\ \varepsilon = (C_{31} + C_{55})l_3l_1, \\ \gamma = C_{55}l_1^2 + C_{44}l_2^2 + C_{33}l_3^2, \\ \zeta = (C_{23} + C_{44})l_2l_3, \end{cases}$$
(13)

其中 $l_1 = \sin(\theta) \cos(\varphi), l_2 = \sin(\theta) \sin(\varphi), l_3 = \cos(\theta),$ 可以求得其特征值,即晶体平面声波速度表达式 v_1, v_2, v_3 .曲面图形如图3所示,可以看出,CST50有两支横波和一支纵波,也称为两支切变波和一支纵向波,图3(a)和图3(b)是平面声波横波振动模型,在(100)平面呈现各向同性,(001),(010)平面呈现各向异性;图3(c)是纵波振动模型,在(100)平面呈现各向同性,在(001),(010)平面呈现各向异性,在(001),(010)平面呈现各向异性,并且纵波振动速度明显高于横波振动速度,然而平面声波平面投影图形均呈现二次旋转对称性的特征.

3.3 最小热导率

Ca_xSr_{1-x}TiO₃具有很好的热电性能,文献[37,38]研究了SrTiO₃纳米材料的热导率,因此CST50晶体热导率的研究有重要的意义.基于Cahill^[39]模型可以计算材料高温下的最小热导率,计算公式为

$$\kappa_{\rm min} = (k_{\rm B}/2.48)n^{2/3}(v_{\rm l} + 2v_{\rm t}),$$
(14)

式中 k_B为玻尔兹曼常量; n 为原子密度; v_t, v_l分别 为晶体平均声学横波与平均声学纵波速度.为了确 切计算晶体不同晶向上的最小热导率, (14)式变形 为^[40]

$$\kappa_{\rm min} = (k_{\rm B}/2.48)n^{2/3}(v_1 + v_2 + v_3),$$
(15)

式中*v*₁,*v*₂,*v*₃为平面声波速度. CST50晶体的热导率如图4所示,可见在各个平面最小热导率呈现各向同性,这说明高温下CST50具有稳定的导热性能.

Cahill模型局限于计算高温时的最小热导率, 当考虑热导率随温度的变化时需采用Cahill-Pohl 模型^[41]:

$$\kappa_{\min} = \left(\frac{\pi}{6}\right)^{1/3} k_{\mathrm{B}} n^{2/3} \sum_{i} v_{i} \left(\frac{T}{\Theta_{i}}\right)^{2}$$

$$\times \int_{0}^{\Theta_i/T} \frac{x^3 \,\mathrm{e}^x}{(\,\mathrm{e}^x - 1)^2} \,\mathrm{d}x,\tag{16}$$

式中 $k_{\rm B}$ 为玻尔兹曼常量; n为原子密度; 德拜温 度 $\Theta_i = v_i(\hbar/k_{\rm B})(6\pi^2 n)^{1/3}, (i = 1,t,m); v_i$ 为平均 声波速度,其中横波平均速度 $v_t = \sqrt{G/\rho}$,纵波 平均速度 $v_1 = \sqrt{(B + 4G/3)/\rho}$,声学波平均速 度 $v_m = \left[\frac{1}{3}\left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right)\right]^{-1/3}$, ρ 为质量密度,结 果均列于表4.结果表明:平均声学波波速 v_t 大 小与平面声波 v_1, v_2 的数值接近,平均声学波波 速 v_1 大小与平面声波 v_3 的数值接近,并且LDA和 GGA两种方法计算所得CST50晶体德拜温度为 ($\Theta_{\rm D(LDA)} = 738.2$ K, $\Theta_{\rm D(GGA)} = 658.7$ K),介于 SrTiO₃和CaTiO₃晶体德拜温度^[15,42-44].为了与 方程(16)一致,采用 $\kappa = \kappa_1 + 2\kappa_t$ 描述晶体的最小 热导率.CST50的热导率随温度变化如图5 所示,

图 4 最小热导率 (a) 三维图; (b) 平面投影 (红色, 绿线 和蓝线分别为 XY, XZ 和 YZ 平面投影)(GGA)

Fig. 4. The lowst thermal conductivity: (a) 3D projected image; (b) planar projected images(red, green and blue lines represent XY, XZ and YZ planes, respectively)(GGA).

207102-6

Method	$\rho/{\rm g}{\cdot}{\rm cm}^{-3}$	$v_{\rm t}/{\rm km}{\cdot}{\rm s}^{-1}$	$v_{\rm l}/{\rm km}{\cdot}{\rm s}^{-1}$	$v_{\rm m}/{\rm km}{\cdot}{\rm s}^{-1}$	$\Theta_{\rm D}/{\rm K}$
LDA	4.5054	5.0842	8.8947	5.247	738.2
GGA	4.5055	4.7262	8.1860	5.112	685.7
$CaTiO_3$	4.092	5.035	8.752 ^a		760^{b}
	4.3	5.1514	9.045	5.7258	750.5^{d}
SrTiO_3	5.121	4.764	7.992^{a}		639 ^c
	4.4	4.736	8.057	5.2495	679.44^{d}

表4 密度 ρ , 平均声学波速度 v_t , v_l , v_m , 德拜温度 Θ_D Table 4. Density ρ , averaged acoustic wave velocities v_t , v_l , v_m , Debye temperature Θ_D .

注:a, Ref. [44]; b, Ref. [42]; c, Ref. [43]; d, Ref. [15].

温度较低时最小热导率与 T^2 成正比,当外界温度 高于室温时,横波模型热导率 κ_t 趋于恒定,纵波模 型热导率 κ_l 增加放缓,高温时趋于定值.在高温下 Chaill与Cahill-Pohl模型最小热导率数值很接近, 预示着CST50晶体在高温时具有稳定的导热性能, 可以作为良好的热学材料.

图 5 刷最小热导率随温度的变化

Fig. 5. Temperature-dependence of the minimum thermal conductivity.

3.4 摩尔热容与热膨胀系数

文献[45—47]利用准谐德拜模型计算了 CaTiO₃和SrTiO₃晶体的热学性质,因此本文计 算了压强为0GPa时CST50晶体的定容摩尔热容 C_V 和热膨胀系数 α .图6为Ca_xSr_{1-x}TiO₃定容摩 尔热容,由于温度增加,非简谐效应的影响, C_V 升高的趋势放缓,高温时逐渐趋于Dulong-petit极 限(124.5 J·mol⁻¹·K⁻¹).CST50摩尔热容低于Sr-TiO₃,与CaTiO₃晶体接近.图7为Ca_xSr_{1-x}TiO₃ 热膨胀系数,CST50热膨胀系数远小于SrTiO₃,与 CaTiO₃ 晶体的热膨胀系数接近^[44,48],原因可能是 CST50与CaTiO₃有相似的空间点阵;随着温度的 增加,CST50热膨胀系数逐渐趋于定值,表明高温 下CST50晶体具有稳定的热膨胀性能.

图6 CST50 定容摩尔热容

Fig. 6. Specific heat capacity of CST50.

Fig. 7. Thermal expension coefficient of CST50.

3.5 电子结构

图8为CST50能带结构图,价带电子范围 -4.8-0 eV, 导带电子能量大于2.19 eV, 直接带 隙为2.19 eV, 与文献 [18] 的2.08 eV 接近. 图 9 为 CST50晶体各原子的分波态密度和总态密度图. 最低能量范围的-20.7—-18.4 eV,由Ca-p态电 子决定; 在-18—-15.2 eV, 由Sr-p与O-2s态电 子共同决定;能量为-14.8-12.8 eV,由Sr-s与 O-s态电子的微小贡献共同决定;费米能级附近 (-4.8-0.79 eV), 主要由O-p, Ti-d以及Ti-p态电 子贡献共同决定;导带底主要由Ti-3d与O-2p态电 子杂化组成. 表5中CST50的电荷布居表明Ti-O 键有较强的共价性,而Sr-O,Ca-O键有较弱的 共价性. 图 10 为 CST50 晶体 (200), (110), (002) 晶 面的电荷密度图, Ti原子处于高电荷密度, Ca和 Sr原子处于低电荷密度.由(200)晶面电荷密度分 布图可知, O原子偏向邻近的Ca原子, 导致Sr-O 键比Ca—O键长,其原因可能是Sr原子半径比Ca 大;由(110),(002)晶面电荷密度可知,Ti原子与邻 近的O原子作用较强,结果与表5的布居分析结果 相一致. 由此证实CST50晶体具有稳定的Ti-O 八面体.

表5 CST50晶体各原子轨道电子占据数、静电荷、电子 云重叠布居、键长 L

Table 5. Atomic orbital populations, atomic charges, band populations P, and bond lengths L of CST50 crystal.

Atom	\mathbf{S}	р	d	Total	Charge	Band	P	$L/{\rm \AA}$
0	1.84	4.90	0	6.74	-0.74	0—0	-0.039	2.78496
Ca	2.06	6.00	0.53	8.59	1.41	Ca—O	0.037	2.61599
\mathbf{Sr}	2.02	5.99	0.66	8.67	1.33	$\mathrm{Sr}\mathrm{-\!O}$	0.044	2.64385
Ti	2.30	6.63	2.20	11.13	0.87	Ti—O	0.468	1.97418

Fig. 9. Density of states of CST50.

图 10 (200), (110), (002) 晶面电荷密度 Fig. 10. Charge densities of (200), (110), (002) plane contour.

207102-8

4 结 论

本文运用基于密度泛函理论第一性原理的平 面波超软赝势方法计算了CST50晶体弹性常数、热 学性质和电子结构,得到如下结论:

1) CST50 沿着主轴方向 (C_{11} , C_{22} , C_{33}) 有较 大的弹性常数, 在主轴方向显示了很强的不可压 缩性; G/B > 0.5, 预示了材料整体显脆性, 普适弹 性常数 A^{U} 和杨氏模量表明 CST50 弹性呈现各向 异性;

2) CST50平面声波在(100)平面呈现各向同性,在(010),(001)平面呈现各向异性;最小热导率在低温时与*T*²成比例,高温下达到定值,并且各个平面最小热导率呈现各向同性,因此高温时具有稳定的导热性能,LDA和GGA两种方法计算的德拜温度介于CaTiO₃和SrTiO₃晶体之间;

3) CST50 定容摩尔热容随温度的变化趋势与 CaTiO₃ 的更加接近;而热膨胀系数远小于SrTiO₃ 晶体,接近CaTiO₃,并且在高温下具有恒定的热膨 胀系数,因此CST50的热学性质与CaTiO₃的比较 接近;

4) CST50 禁带宽度为2.19 eV,呈现半导体特性,电荷布居显示了Ti—O键共价性较强,Sr—O和Ca—O键的共价性较弱,Ti—O键长小于Sr—O和Ca—O键长,以及(200),(110),(002)晶面的电荷密度图揭示了CST50晶体具有稳定的Ti—O八面体.

感谢西南大学陈志谦教授的讨论和关于 Mathematica 程序的指导.

参考文献

- Yang X, Fu J, Jin C, Chen J, Liang C, Wu M, Zhou W 2010 J. Am. Chem. Soc. 132 14279
- [2] van Benthem K, Elsässer C, French R H 2001 J. Appl. Phys. 12 6156
- [3] Souza A E, Almeida Santos G T, Silva R A, Moreira M L, Volanti E C, Teixeira S R, Longo E 2012 Int. J. Appl. Ceram. Technol. 9 186
- [4] Ouillon R, Pinan-Lucarre J P, Ranson P, Pruzan P, Mishra S K, Ranjan R, Pandey D 2002 J. Phys: Condens. Matter 14 2079
- [5] Bednorz J G, Müller K A 1984 Phys. Rev. Lett. 52 2289
- [6] Mishra S K, Ranjan R, Pandey D, Stokes H T 2005 J. Solid State Chem. 178 2846

- [7] Yamanaka T, Hirai N, Komatsu Y 2002 Am. Mineral.
 87 1183
- [8] Qin S, Becerro A I, Seifert F, Gottsmann J, Jiang J 2000 J. Mate. Chem. 10 1609
- [9] Harrison R J, Redfern S A T, Street J 2003 Am. Mineral. 88 574
- [10] Ranjan R, Pandey D, Schuddinck W, Richard O, de Meulenaere P, van Landuyt J, van Tendeloo G 2001 J. Solid State Chem. 162 20
- [11] Carpenter M A, Howard C J, Knight K S, Zhang Z 2006 J. Phys: Condens. Matter 18 10725
- Mishra S K, Ranjan R, Pandey D, Ranson P, Ouillon R,
 Pinan-Lucarre J P, Pruzan P 2006 J. Phys: Condens. Matter 18 1899
- [13] Hui Q, Dove M T, Tucker M G, Redfern S A, Keen D A 2007 J. Phys: Condens. Matter 19 335214
- [14] Pandech N, Sarasamak K, Limpijumnong S 2015 J. Appl. Phys. 117 174108
- [15] Sakhya A P, Maibam J, Saha S, Chanda S, Dutta A, Sharma B I, Thapa R K, Sinha T P 2015 Indian J. Pure Appl. Phys. 53 102
- [16] Walsh J N, Taylor P A, Buckley A, Darling T W, Schreuer J, Carpenter M A 2008 Phys. Earth Planet. In. 167 110
- [17] Ashman C R, Hellberg C S, Halilov S 2010 Phys. Rev. B 82 024112
- [18] Yang C Y, Zhang R 2014 Chin. Phys. B 23 026301
- [19] Perks N J, Zhang Z, Harrison R J, Carpenter M A 2014 J. Phys: Condens. Matter 26 505402
- [20] Aso R, Kan D, Shimakawa Y 2014 Cryst. Growth Des. 14 2128
- [21] Kovalevsky A V, Populoh S, Patricio S G, Thiel P, Ferro M C, Fagg D P, Weidenkaff A 2015 J. Phys. Chem. C 119 4466
- [22] Lima B S, da Luz M S, Oliveira F S, Alves L M S, Santos C A M, Jomard F, Sidis Y, Bourges P, Harms S, Grams C P, Hemberger J, Lin X, Fauque B, Behnia K 2015 Phys. Rev. B 91 045108
- [23] Wang J D, Dai J Q, Song Y M, Zhang H, Niu Z H 2014 Acta Phys. Sin. 63 126301 (in Chinese) [王江舵, 代建清, 宋玉敏, 张虎, 牛之慧 2014 物理学报 63 126301]
- [24] Kong X L, Hou Q Y, Su X Y, Qi Y H, Zhi X F 2009 Acta Phys. Sin. 58 4128 (in Chinese) [孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬 2009 物理学报 58 4128]
- [25] Hammer B, Hansen L B, Nørskov J K 1999 Phys. Rev. B 59 7413
- [26] Perdew J P, Burke K, Ernzerhof M 1996 *Phys. Rev. Lett.* 77 3865
- [27] Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566
- [28] Vanderbilt D 1990 Phys. Rev. B **41** 7892
- [29] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [30] Goldfarb D 1970 Math. Comput. 24 23
- [31] Shanno D F 1970 Math. Comput. 24 647
 [32] Wu Z, Zhao E, Xiang H P, Hao X F, Liu, X J, Meng J 2007 Phys. Rev. B 76 054115
- [33] Hill R 1952 Proc. Phys. Soc. A 65 349
- [34] Pugh S F 1954 Philos. Mag. 45 823
- [35] Ranganathan S I, Ostoja-Starzewski M 2008 Phys. Rev. Lett. 101 055504

- [36] Nye J F 1964 Physical Properties of Crystals (Oxford: Clarendon Press) pp130–145
- [37] Foley B M, Brown-Shaklee H J, Duda J C, Cheaito R, Gibbons B J, Medlin D, Medlin D, Ihlefeld J F, Hopkins P E 2012 Appl. Phys. Lett. 101 231908
- [38] Wang Y, Fujinami K, Zhang R, Wan C, Wang N, Ba Y, Koumoto K 2010 Appl. Phys. Express 3 031101
- [39] Cahill D G, Watson S K, Pohl R O 1988 Ann. Rev. Phys. Chem. 39 93
- [40] Wong J, Krisch M, Farber D L, Occelli F, Xu R, Chiang T C, Clatterbuck D, Schwartz A J, Wall M, Boro C 2005 *Phys. Rev. B* 72 064115
- [41] Costescu R M, Bullen A J, Matamis G, O' Hara K E, Cahill D G 2002 Phys. Rev. B 65 094205

- [42] Yang H Y, Ohishi Y J, Kurosaki K, Muta H, Yamanaka 2010 J. Alloys Compd. 504 201
- [43] Yamanaka S, Kurosaki K, Maekawa T, Kobayashi S I, Uno M 2005 J. Nucl. Mater. 344 61
- [44] Webb S, Jackson I, Gerald J F 1999 Phys. Earth Planet. In. 115 259
- [45] Blanco M A, Francisco E, Luana V 2004 Comput. Phys. Commun. 158 57
- [46] Boudali A, Khodja M D, Amrani B, Amrani B, Bourbie D, Amara K, Abada A 2009 Phys. Lett. A 373 879
- [47] Boudali A, Abada A, Driss Khodja M D, Amrani B, Amara K, Khodja F D, Elias A 2010 Phys. B: Condens. Matter 405 3879
- [48] Souza J A, Rino J P 2011 Acta Mater. 59 1409

First-principles study on the elastic and thermal properties of $Ca_{0.5}Sr_{0.5}TiO_3^*$

Shao Dong-Yuan Hui Qun Li Xiao Chen Jing-Jing Li Chun-Mei Cheng Nan-Pu[†]

 $(Faculty\ of\ Materials\ and\ Energy,\ Southwest\ University,\ Chongqing\ 400715,\ China)$

(Received 27 March 2015; revised manuscript received 16 June 2015)

Abstract

In this paper, Ca/Sr atoms are confirmed to have symmetric distributions on 4c sites by using the minimum energy principle, and the stable crystal structure of $Ca_{0.5}Sr_{0.5}TiO_3$ is built. The lattice parameters, elastic constants, bulk modulus, shear modulus, Young's modulus and Poisson's ratio of $Ca_{0.5}Sr_{0.5}TiO_3$ (CST50) are investigated by the plane wave pseudopotential method based on the first-principles density functional theory within the local density approximate (LDA) and generalized gradient approximation. The properties of planar acoustic velocity are studied by Christoffel equation, and the minimum thermal conductivity is investigated with Cahill and Cahill-Pohl models. The results show that the calculated lattice parameters are consistent with the corresponding experimental values. The larger calculated elastic constasts C_{11} , C_{22} , and C_{33} suggest the incompressibility along the principle axes. The bulk modulus B is larger than the shear modulus G; $G/B_{LDA} = 0.5789$ and $G/B_{GGA} = 0.5999$, indicating that CST50 is a brittle material. The three-dimensional image of Young's modulus along [100], [010], and [001] crystal orientations shows the anisotropic elasticity of CST50. The planar projections of Young's modulus in (001) and (010) planes show the stronger anisotropy than in (100) plane and all the planar projections have two-fold symmetry. The Poisson's ratio exhibits the incompressibility of CST50. The universal elastic anisotropy indexes $A_{\text{LDA}}^{\text{U}} = 0.0235$ and $A_{\text{GGA}}^{\text{U}} = 0.0341$ indicate the weak anisotropy of CST50. The planar acoustic wave which has a branch of longitudinal wave and two branches of transverse wave is anisotropic along (010) and (001) planes and isotropic along (100) plane, and all the corresponding planar projections have two-fold symmetry. The minimum thermal conductivity calculated in Cahill model is isotropic in each plane, while the minimum thermal conductivity calculated in Cahill-Pohl model is proportional to the second power of T under low temperatures and reaches a constant at high temperatures. In the quasi harmonic Debye model, the molar heat capacity and thermal expansion coefficient of CST50 are close to those of calcium titanate, indicating that CST50 has the stable thermal expansion property at high temperatures. The direct band gap of CST50 is 2.19 eV and the bottom of the valence band is mainly determined by the electron orbitals of Ti-3d and O-2p. The analysis of the charge populations shows that the covalence of Ti—O is stronger than those of Sr—O and Ca—O, and the band length of Ti—O is shorter than those of Sr—O and Ca—O; (200), (110) and (002) planar contour charge densities indicate that Ti atoms interact strongly with O atoms. The charge population and contour charge density prove that CST50 has a stable Ti-O octahedral structure.

Keywords: $Ca_{0.5}Sr_{0.5}TiO_3$, first-principles, elastic constants, thermal conductivityPACS: 71.15.Mb, 73.20.At, 74.25.fc, 74.25.JbDOI: 10.7498/aps.64.207102

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51171156) and the Fundamental Research Funds for the Central Universities, China (Grant No. XDJK2014C008).

[†] Corresponding author. E-mail: cheng_np@swu.edu.cn