物理学报 Acta Physica Sinica

激发态 Li 原子和基态 Ar 原子的相互作用势及低能弹性碰撞

韩亚楠 蒋刚 范全平 高玉峰 杜际广

Elastic collisions between excited-state Li and ground-state Ar atoms at low temperature and analytic potentic energy function and molecular constants of the LiAr ($A^2\Pi$) radical Han Ya-Nan Jiang Gang Fan Quan-Ping Gao Yu-Feng Du Ji-Guang

引用信息 Citation: Acta Physica Sinica, 64, 043401 (2015) DOI: 10.7498/aps.64.043401 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.043401 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I4

您可能感兴趣的其他文章 Articles you may be interested in

SiC/C 界面辐照性能的分子动力学研究

Molecular dynamics study of cascade damage at SiC/C interface 物理学报.2014, 63(15): 153402 http://dx.doi.org/10.7498/aps.63.153402

SO⁺ 离子 b⁴ Σ^- 态光谱常数和分子常数研究 Investigations on spectroscopic parameters and molecular constants of SO⁺ (b⁴ Σ^-) cation 物理学报.2012, 61(24): 243102 http://dx.doi.org/10.7498/aps.61.243102

BF自由基 $X^{1}\Sigma^{+}$ 和 a^{3} ∏态光谱常数和分子常数研究

Spectroscopic parameters and molecular constants of $X^{1}\Sigma^{+}$ and $a^{3}\Pi$ electronic states of BF radical 物理学报.2012, 61(9): 093105 http://dx.doi.org/10.7498/aps.61.093105

运用球高斯分布极化势研究低能电子与H₂分子碰撞的振动激发动量迁移散射截面 Momentum transfer cross sections of low-energy electron scattering from H₂ molecule with the polarization potential using the distributed spherical Gaussian model 物理学报.2011, 60(2): 023401 http://dx.doi.org/10.7498/aps.60.023401

激发态Li原子和基态Ar原子的相互作用势及 低能弹性碰撞

韩亚楠 蒋刚† 范全平 高玉峰 杜际广

(四川大学原子与分子物理研究所,成都 610065)
(四川大学高能量密度物理及技术教育部重点实验室,成都 610065)
(2014年7月31日收到;2014年9月21日收到修改稿)

在MRCI+Q/ang-cc-PCVQZ+DK理论基础上对LiAr第一激发态 (A²Π)的势能曲线进行了理论计算, 采用HFD(Hartree-Fock dispersion)解析势能函数对得到的势能曲线进行拟合,并得到了相应的光谱常 数,计算结果与实验值和大部分理论计算值符合得很好.通过求解核运动的薛定谔方程完整地获得了每 个电子态下J = 0时的振动能级 E_v 、转动惯量 B_v 和6个离心畸变常数(D_v , H_v , L_v , M_v , N_v , O_v). 然 后采用分波法研究了低温及极低温度下激发态Li原子和基态Ar原子沿LiAr相互作用势的弹性碰撞,在 1.0×10^{-12} —3.45 × 10^{-6} eV碰撞能区内通过数值计算得到了这一弹性碰撞的总截面和各分波截面,讨论了 各分波截面对总截面的影响.结果表明:在入射能量低于 10^{-9} eV时弹性散射的总截面值很大且几乎为一常 数,总弹性截面的形状主要由s分波决定,但是随着碰撞能量的增加,s分波对总截面的贡献不断减少,高阶分 波对散射截面的贡献逐渐增大.

关键词:相互作用势,光谱常数,总截面,分波截面 PACS: 34.20.-b, 34.80.Bm, 31.15.vn

DOI: 10.7498/aps.64.043401

1引言

自19世纪60年代以来,碱金属原子与稀有气体原子的相互作用在实验和理论的研究方面取得了显著的成果^[1-5].由于碱金属-惰性气体形成的准分子模型比较简单,便于量子力学计算,因此通常被作为典型模型来分析碰撞过程中的谱线增宽、淬火和电子能量转移等,并且为当前的分子束技术和原子的激光冷却与陷俘的发展提供了许多数据^[6].激发态分子特性及其势能函数是研究原子分子碰撞和分子反应动力学的基础,也是研究分子稳定性的依据,在辐射化学、光谱学以及激光等方面有着广泛的应用^[7].因此,人们对LiAr分子第一激发态开展了大量的理论和实验研究^[8-17],但这些研究仅局限于离解能、平衡核间距和谐振频率,对低温及极低温度下的弹性碰撞截面^[18,19]的研究暂

未见报道.

本文首先采用 Molpro2009 从头计算程序计算 了 LiAr 分子第一激发态 A²Π 的势能曲线,得到了 A²Π态的理论光谱数据,并与已有的理论值和实验 值进行了比较.在此基础上我们研究了激发态 Li 原子和基态 Ar 原子沿 LiAr(A²Π)分子相互作用势 发生的低能弹性碰撞,并获得了低温及极低温下 Li 原子与 Ar 原子的弹性碰撞的总截面和各分波截面.

2 Li原子与Ar原子之间的碰撞核 函数

本文首先采用 Hartree-Fock (HF) 自洽场方法 获得了 LiAr 分子基态的分子轨道.为了确保在随 后的计算中分子轨道的准确性,以HF 波函数作为 初始波函数,采用完全活性空间自洽场 (CASSCF)

[†]通信作者. E-mail: gjiang@scu.edu.cn

^{© 2015} 中国物理学会 Chinese Physical Society

方法对波函数进行了优化. 然后利用优化好的 CASSCF波函数进行 MRCI^[1] 的计算,得到分子 体系的动力学相关效应,计算中还考虑了 Davidson(+Q)^[2] 修正. 在MRCI计算中,结合 aug-cc-PCVDZ, aug-cc-PCVQZ和 aug-cc-PCVTZ 三个不 同的芯价相关基组^[3,4],对核间距在1.5—100 Å 范围内的 LiAr 第一激发态 (A²Π)进行单点能的计 算,并拟合出离解能 D_e 和平衡核间距 R_e ,结果见 表1. 从表1可以看出,在 ang-cc-PCVQZ基组下, 第一激发态的光谱常数更接近实验值,最终选择 ang-cc-PCVQZ基组对第一激发态进行描述.

表 1 不同的相关一致基组下 LiAr 激发态 A²Π 的光谱常 数的比较

	$D_{\mathrm{e}}/\mathrm{cm}^{-1}$	$R_{\mathrm{e}}/\mathrm{\AA}$
aug-cc-PCVDZ 基组	555.46	2.7155
ang-cc-PCVTZ 基组	783.10	2.5950
ang-cc-PCVQZ 基组	802.90	2.5842
实验结果 ^[8]	810	3.18
实验结果 ^[9]	925(40)	2.48(6)
实验结果 ^[10]	957(30)	2.50(8)

高精度的势能曲线计算必须考虑相对论效应, 为评价相对论效应对LiAr分子A²II态光谱常数 的影响.在计算使用的条件(闭壳层轨道数、活 化轨道数以及计算位置等)与aug-cc-PCVQZ基组 完全相同的情况下,本文借助Douglas-Kroll-Hess 单电子积分获得了标量相对论效应.在核间距为 1.5—100 Å范围内,首先利用aug-cc-PCVTZ-DK 基组得到的能量值减去在aug-cc-PCVTZ基组下 的能量值,即获得能量的相对论修正值;再将此修 正值加到aug-cc-PCVQZ基组的能量计算结果中, 进而获得经标量相对论修正的能量值;然后利用 LEVEL程序对所得单点能进行拟合,得到了光谱 常数,列于表2.最后使用能描述弱结合分子特征 的HFD (Hartree-Fock dispersion)函数^[11,12]进行 解析拟合 (函数形式如下式所示),拟合所得的图形 如图1所示.

$$U(r) = A \exp(-br + cr^2) - F(r) \left(\frac{C_6}{r^6} + \frac{C_8}{r^8} + \frac{C_{10}}{r^{10}}\right) + T_{\rm D}, \quad (1)$$

$$F(r) = \begin{cases} \exp(-(R_{\rm C}/r - 1)^2) & (r \le R_{\rm C}), \\ 1 & (r > R_{\rm C}), \end{cases}$$
(2)

其中, U(r)为Li原子和Ar原子的相互作用势; r为 Li原子和Ar原子的核间距; C_6 , C_8 , C_{10} 为长程色 散系数; A, b, c, p, R_C 和 T_D 为拟合参数(各参数 数值见表 3). 该函数不仅在吸引支和排斥支优于 其他势能函数, 而且在长程 van der Waals区域具 有正确的渐近性质, 并且该函数可适用于 van der Waals分子和具有束缚态的双原子分子势能曲线的 表达.

图1 LiAr的第一激发态的A²Π势能曲线

$D_{\rm e}/{\rm cm}^{-1}$	$R_{\rm e}/{\rm \AA}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	$T_{\rm e}/{\rm cm}^{-1}$	数据来源
802.90	2.5824	152.02	7.325	0.42	-0.0788	PW(MRCI+Q)
856.08	2.5780	153.62	7.1313	0.4255	-0.3680	PW(MRCI+Q+DK)
810	3.18	—		—	—	实验结果 ^[7]
925(40)	2.48(6)	—	_	—	—	实验结果 ^[8]
957(30)	2.50(8)	196.9	_	_	—	实验结果 ^[9]
811	2.5813	169	-11.5	—	—	理论结果 ^[13]
640	2.59	148	9.9	_		理论结果 ^[14]
418	2.73	161.6	15.0	—	—	理论结果 ^[15]
697	2.59	212	_	_		理论结果 ^[2]
966	2.64	161.7	—	—	_	理论结果 ^[16]

⁰⁴³⁴⁰¹⁻²

表3 LiAr 第一激发态 $A^2\Pi$ 的 HFD 势能函数参数

$T_{\rm D}/{\rm cm}^{-1}$	$A/{ m cm}^{-1}$	$b/{\rm \AA}^{-1}$	$C_6/\mathrm{cm}^{-1}\mathrm{\AA}^6$	$C_8/\mathrm{cm}^{-1}\mathrm{\AA}^8$	$C_{10}/{\rm cm}^{-1}{\rm \AA}^{10}$	$R_{\rm C}/{ m \AA}$
851.524	5297600	3.1431	982950	-1.9501×10^{6}	1.6202×10^6	2.7813

从表2可以看出,对于LiAr第一激发态的D。 和 R_{e} 有三组实验值. 1975年, Scheps 等^[8]的实验 中 D_e 和 R_e 的值为811 cm⁻¹和3.18 Å; Brühl和 Zimmermann^[9]在1995年的实验中得出 D_e 和 R_e 的值为925 cm⁻¹ ± 40 cm⁻¹和2.48 Å ± 0.06 Å; 他们在2001年的实验中得出D。和R。的值为 $957 \text{ cm}^{-1} \pm 30 \text{ cm}^{-1}$ 和 2.50 Å ± 0.08 Å. 通过比较 实验值发现, De和Re的值在实验中相差比较 大,因此实验中精确得出它们的值是比较困难 的. 在理论上, Sohlberg和Yarkony^[14]计算得出 D_{e} 和 R_{e} 的值为 640 cm⁻¹ 和 2.59 Å; Sadlej 和 Edwards ^[13] 利用 CASSCF 方法计算得出 D_e 和 R_e 的 值为811 cm⁻¹和2.59 Å. 从表4可以看出, 用不 同的理论方法计算D。和R。的值同样相差比较 大,本文在MRCI + Q/ang-cc-PCVTZ + DK理 论水平下得到的D。和R。分别为856.08 cm⁻¹和 2.5780 Å, 通过对比发现, 本文考虑标量相对论效 应所得的结果更接近2001年的实验值.因此可以 说明标量相对论效应对LiAr这样的小分子影响比 较大,特别是对离解能D。的影响.

关于LiAr第一激发态的光谱常数的理论计算 已有很多,但是他们只计算了离解能De,平衡核 间距 R_{e} ,谐振频率 ω_{e} 和非谐振频率 $\omega_{e}\chi_{e}$,而本文 还计算了刚性转动因子B。和绝热跃迁能Te.此 外,本文拟合出J = 0时前13个振动能级,并且 得到了振动能级 E_v 随振动量子数v的变化(图2). 从图2所示曲线的变化趋势可以明显看出,振动 能量的变化并不是线性增长的,这正是非谐振子 所描述的振动能级不是等间距的具体表现,而且 它们的间距随着v的增大而缓慢减小. Brühl和 Zimmermann^[10]在实验中观察到v = 5到v = 10的振动能级间隔分别为65.6,51.4,39.0,28.4, 19.3 cm⁻¹. 在理论方面, Kerkines 和 Mavridis^[17] 在RCCSD(T)/aug-cc-p(C) V6Z下获得的相应振 动能级间隔 $(6 \leftarrow 5, 7 \leftarrow 6, 8 \leftarrow 7, 9 \leftarrow 8, 10 \leftarrow 9)$ 分别为64.0, 49.8, 37.6, 27.0, 18.0 cm⁻¹. 本文 在MRCI+Q/ang-cc-PCVTZ+DK理论基础上计 算得到的相应振动能级间隔分别为60.56, 47.69, 37.01, 28.19, 20.71 cm⁻¹, 可以看出本文计算得到 的振动能级与已有的实验结果和理论结果基本一

v	B_v	$D_{v}/10^{-5}$	$H_v / 10^{-10}$	$L_v / 10^{-14}$	$M_v / 10^{-17}$	$N_v / 10^{-21}$	$O_v / 10^{-25}$	E_v/cm^{-1}
0	0.413	1.1513	-6.114	-8.047	-1.372	-2.718	-5.9344	81.518
1	0.387	1.3215	-9.214	-15.16	-3.214	-7.876	-21.092	230.59
2	0.360	1.5401	-14.005	-28.33	-7.166	-20.15	-61.37	360.29
3	0.331	1.8161	-20.68	-47.76	-14.04	-48.97	-184.111	470.99
4	0.301	2.1317	-29.48	-80.83	-27.19	-103.59	-452.562	563.45
5	0.270	2.4804	-40.07	-125.2	-49.48	-211.3	-955.09	639.04
6	0.239	2.8335	-51.52	-174.7	-81.12	-472.1	-2793	699.60
7	0.209	3.1596	-65.47	-271.21	-153.39	-1133.3	-9443.41	747.29
8	0.180	3.5040	-89.12	-507.1	-378.48	-3337.1	-35304.9	784.30
9	0.153	3.9851	-137.6	-1090.6	-1080.4	-11408.6	-142483	812.49
10	0.126	4.7412	-230.8	-2515.1	-3830.16	-63264.1	-983602	833.20
11	0.099	5.9639	-420.2	-3462.8	10311.1	883693	35556593	847.42
12	0.073	4.4860	1247.6	40384.2	-47934.7	-3388266	73668991	856.08

表 4 MRCI+Q/ang-cc-PCVTZ+DK 理论水平下 $LiAr(A^2\Pi)$ 的转动常数、离心畸变常数和振动能级

致,与文献 [17] 理论结果的差值分别为3.44, 2.11, 0.59, 1.19, 2.71 cm⁻¹. 同时得到了J = 0时前13 个振动量子数所对应的转动常数和离心畸变常数, 见表 4.

图 2 LiAr 的第一激发态的 A² Π 振动能级随振动量子数 的变化

3 分波法求散射截面理论

在质心坐标系下, Li原子与Ar原子之间的弹 性碰撞满足薛定谔方程^[20]:

$$\frac{\mathrm{d}u_l(r)}{\mathrm{d}r^2} + \left[k^2 - V(r) - \frac{l(l+1)}{r^2}\right]u_l(r) = 0, \quad (3)$$

式中波数 k 满足 $k^2 = \frac{2\mu E}{\hbar^2}$,其中, E 为入射能量, μ 是约化质量; $V(r) = \frac{2\mu}{\hbar^2}U(r)$. 当 $r \to \infty$ 时,方程(3)的近似解为

$$u_l(r) \sim A_l \big(j_l(kr) - \tan \delta_l \mathbf{n}_l(kr) \big), \qquad (4)$$

式中, A_l 为归一化常数; $j_l(kr)$ 和 $n_l(kr)$ 分别为球 Bessel 函数和球 Neumann 函数; δ_l 是入射波经散射 后第l个分波的相移. (4) 式可改写为

$$u_l(r) \to A_l \sin\left(kr - \frac{1}{2}l\pi + \delta_l\right).$$
 (5)

由分波法散射理论可知, 微分散射截面为

$$q(\theta) = |f(\theta)|^{2}$$
$$= \left| \frac{1}{k} \sum_{l=1}^{\infty} (2l+1) P_{l}(\cos \theta) e^{i\delta_{l}} \sin \delta_{l} \right|^{2}, \quad (6)$$

总散射截面为

$$Q = \int q(\theta) d\Omega = 2\pi \int q(\theta) \sin \theta d\theta$$
$$= \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l = \sum_{l=0}^{\infty} Q_l, \qquad (7)$$

第1分波的散射截面为[21,22]

$$Q_l = \frac{4\pi}{k^2} (2l+1) \sin^2 \delta_l.$$
 (8)

从 (7) 式可以看出, 求散射截面的问题归结于求 相移 δ_l , 而相移 δ_l 的获得需解出径向方程 (5). 在 $r \to \infty$ 时, U(r) 趋近于零, 所以可以忽略势场的影 响, 则由 (5) 式可以得到波函数为

$$u_l(r) = A_l \big(\cos \delta_l \hat{\mathbf{j}}_l(kr) - \sin \delta_l \hat{\mathbf{n}}_l(kr) \big), \quad (9)$$

其中, $\hat{j}_l(kr)$ 和 $\hat{n}_l(kr)$ 为Ricatti-Bessel 函数, 两者 与函数 $j_l(kr)$, $n_l(kr)$ 的关系为 $\hat{j}_l(kr) = kr j_l(kr)$, $\hat{n}_l(kr) = kr n_l(kr)$. 本文利用可变相移法得到相移 函数所满足的方程为

$$\frac{\mathrm{d}\delta_l(r)}{\mathrm{d}r} = -\frac{V(r)}{k} \big(\cos\delta_l(r)\hat{\mathbf{j}}_l(kr) - \sin\delta_l(r)\hat{\mathbf{n}}_l(kr)\big)^2,\tag{10}$$

这是一个非线性一阶微分方程,采用数值的方法 求解该方程,目的是求其在无穷远处的解,即得到 该分波的相移.初值条件是 $\delta_l(r)|_{r=0} = 0$,同时当 r超过100 Å时两个原子的长程相互作用可忽略不 计,即r = 100 Å时相移的取值可作为无穷远处 δ_l 的值,从而确定相移 δ_l 值.将 δ_l 代入(7)式可求出 总的散射截面 Q,将 δ_l 代入(8)式可求出各个分波 的截面,进而计算出各个入射能量对应的总的散射 截面和各个分波的散射截面.

4 弹性散射截面

基于精确的激发态 Li 原子与基态 Ar 原子之间 的相互作用势, 系统地研究了低温和极低温下 Li 原 子与 Ar 原子的弹性碰撞特性. 先利用龙格-库塔算 法求解方程 (10), 获得激发态 Li 原子与基态 Ar 原 子弹性碰撞时各分波的相移, 再利用 (7) 和 (8) 式算 出总弹性截面和各分波的弹性截面. 在碰撞能量 1.0×10⁻¹²—3.45×10⁻⁶ eV 范围内得到总弹性截 面和各分波的弹性截面.

在极低温度下,激发态Li原子与基态Ar原子 沿LiAr(A²Π)分子相互作用势弹性碰撞时的总弹 性截面和s分波的弹性截面随入射能量的变化见 图3. 在碰撞能量低于10⁻⁹ eV时,总截面基本为 一常数,并且只有s分波散射. 这主要是因为对于 低能散射,入射粒子的平动能极低,离心势垒(阻止 原子间碰撞,尤其阻止原子间各向异性的散射)的 高度远大于碰撞粒子的能量, 各向异性的高阶分波 散射全部消失, 只剩下s 分波. 随着入射粒子能量 的增加, 散射总截面变得越来越小, 这是因为入射 粒子 Li 原子与作为靶的 Ar 原子弹性碰撞时, 受到 Li Ar 分子势场的影响. 入射能量比较低时, 入射粒 子 Li 原子受分子势场的作用比较强, 对应的散射概 率相对较大; 当入射能量增大时, 散射概率变小, 散 射截面也随之变小. 对于s分波, 随着入射能量的 增加, 散射截面逐渐变小, 并且在 7.16 × 10⁻⁷ eV 处存在一明显的势形共振, 原因是在入射粒子某些 能量 E_K 处, 激发态 Li 原子与基态 Ar 原子系统构 成准束缚态 (准分子的激发态是束缚态), 入射粒子 Li 被俘获而处于亚稳定态, 这种准束缚态的存在是 导致散射截面突然增大的直接原因.

图 3 (网刊彩色)激发态 Li 原子和基态 Ar 原子沿 LiAr(A²II)分子相互作用势弹性碰撞时的总弹性截面 Q和s分波的弹性截面 Q_s 随入射能量 E 的变化

图4 (网刊彩色)激发态 Li 原子和 Ar 原子沿 LiAr(A² Π) 分子相互作用势弹性碰撞时 p, d, f, g分波的弹性截面 ($Q_{p}, Q_{d}, Q_{f}, Q_{g}$)随入射能量的变化

随碰撞能量的增加, s分波对总截面的贡献不 断减少,高阶分波散射截面逐渐增大,分波收敛 所需要的总角动量量子数随入射能量的增加而增 多.此时,散射截面有许多峰出现.从图4、图5和 图6可以很清楚地看出,随碰撞能量的增加,高阶 分波弹性截面峰值位置依次向右移动,弹性碰撞分 波截面的尾部效应非常明显,且随着波数的增加, 尾部效应更加明显(尾部效应是指入射粒子的角动 量大到粒子在经典散射情形下已不可能与散射势 场发生作用时,由于量子效应,粒子仍受到势场的 散射,在图中表现为分波截面出现一个最大值后又 出现了一个较小的极大值).

图5 (网刊彩色)激发态 Li 原子和 Ar 原子沿 LiAr(A² Π) 分子相互作用势弹性碰撞时 5, 6, 7 分波的弹性截面 (Q_5 , Q_6 , Q_7) 随入射能量的变化

图 6 (网刊彩色) 激发态 Li 原子和 Ar 原子沿 LiAr($A^2\Pi$) 分子相互作用势弹性碰撞时 8, 9, 10 分波的弹性截面 (Q_8 , Q_9 , Q_{10}) 随入射能量的变化

5 结 论

针对碱金属原子Li与惰性气体Ar的碰撞过 程,本文开展了激发态Li原子与基态Ar原子的相 互作用势和弹性碰撞截面的理论计算.为了获得激 发态Li原子与基态Ar原子碰撞时的相互作用势, 本文利用MRCI方法和相关一致极化芯价相关基 组 aug-cc-PCVQZ,在1.5—100 Å的核间距范围内 计算了LiAr分子第一激发态的势能曲线.为提高 势能曲线的计算精度,计算中还考虑了Davidson 修正、标量相对论修正.利用得到的势能曲线,拟

合出了各种情况下的光谱常数,并进行了详细的讨 论. 结果表明: 在MRCI +Q/ang-cc-PCVQZ +DK 理论基础上获得的LiAr分子的大部分光谱常数与 实验值符合得很好.利用上述相互作用势,通过求 解一维核运动薛定谔方程, 计算得到LiAr分子第 一激发态的所有搜索到的振动能级、转动常数和前 六个离心畸变常数,并且分析了振动能级 E_v 随振 动量子数v的变化规律.最后利用HFD函数拟合 出LiAr分子的解析表达式,利用拟合势,通过可变 相移法计算出LiAr体系的散射总截面和各分波截 面,并讨论了各分波截面对总截面的贡献.本文利 用分波法(考虑前11个分波)得到了LiAr第一激发 态A²Ⅱ的弹性散射截面. 计算表明: 当入射能量低 于10⁻⁹ eV,总的散射截面主要由s分波截面决定, 当入射能量大于10⁻⁹ eV时,总的散射截面是由其 他分波截面叠加确定的.同时也表明,随着入射能 量的增加,对总截面贡献的分波数逐渐增多,并且 在1.0×10⁻¹²—3.45×10⁻⁶ eV碰撞能区内只有前 11 个分波对总截面有贡献.

参考文献

- Park S J, Lee Y S, Jeung G H 1997 Chem. Phys. Lett. 277 208
- [2] Park S J, Lee Y S, Jeung G H 2000 Chem. Phys. Lett. 325 678
- [3] Kerkines I S K, Mavridis A 2000 J. Phys. Chem. A 104 408

- [4] Kerkines I S K, Mavridis A 2001 J. Phys. Chem. A 105 1983
- [5] Galbis E, Douady J, Jacquet E, Giglio E, Gervais B 2013
 J. Chem. Phys. 138 014314
- [6] Thorsheim H R, Weiner J, Julienne P S 1987 *Phys. Rev.* Lett. 58 2420
- [7] Liu Y J, Huang M B, Zhou X G, Li Q X, Yu S 2002 J. Chem. Phys. 117 6573
- [8] Scheps R, Ottinger C, York G, Gallagher A 1975 J. Chem. Phys. 63 2581
- [9] Brühl R, Zimmermann D 1995 Chem. Phys. Lett. 233 455
- [10] Brühl R, Zimmermann D 2001 J. Chem. Phys. 114 3035
- [11] Douketis C, Scoles G, Marchetti S, Zen M, Thakkar A J 1982 J. Chem. Phys. 76 3057
- [12] Ahlrichs R, Penco R, Scoles G 1977 Chem. Phys. 19 119
- [13] Sadlej J, Edwards W D 1995 Int. J. Quantum Chem.
 53 607
- [14] Sohlberg K, Yarkony D R 1997 J. Chem. Phys. 107 7690
- $\left[15\right]$ Gu J, Hirsch G, Buenker R J, Petsalakis I D, Theodor-
- akopoulos G, Huang M 1994 Chem. Phys. Lett. 230 473
 [16] El Hadj Rhouma M B, Berriche H, Lakhdar Z B, Spiegelman F 2002 J. Chem. Phys. 116 1839
- [17] Kerkines S K, Mavridis A 2002 J. Chem. Phys. 116 9305
- [18] Shi D H, Zhang J P, Sun J F, Liu Y F, Zhu Z L 2009 Acta Phys. Sin. 58 7646 (in Chinese) [施德恒, 张金平, 孙金峰, 刘玉芳, 朱遵略 2009 物理学报 58 7646]
- [19] Zhang J C, Zhu Z L, Sun J F 2013 Acta Phys. Sin. 62 013401 (in Chinese) [张计才,朱遵略, 孙金峰 2013 物理学 报 62 013401]
- [20] Shi D H, Zhang J P, Sun J F, Liu Y F, Zhu Z L, Ma H, Yang X D 2008 Chin. Phys. B 17 3678
- [21] Côté R, Dalgarno A, Jamieson M J 1994 Phys. Rev. A 50 399
- [22] Côté R, Dalgarno A 1994 Phys. Rev. A 50 4827

Elastic collisions between excited-state Li and ground-state Ar atoms at low temperature and analytic potentic energy function and molecular constants of the LiAr ($A^2\Pi$) radical

Han Ya-Nan Jiang Gang[†] Fan Quan-Ping Gao Yu-Feng Du Ji-Guang

(Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China) (Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China)

(Received 31 July 2014; revised manuscript received 21 September 2014)

Abstract

The potential energy curve (PEC) for the first excited state ($A^2\Pi$) of LiAr is calculated using the multireference configuration interaction method in combination with the basis set, ang-cc-PCVQZ. The Davidson correlation (+Q) and the scalar relativistic effect (+DK) are taken into account in the calculations. And PEC is fitted to analytical Hartree-Fock-dispersion potential function, thereby determining the spectroscopic parameters. These obtained parameters are in excellent agreement with the available experimental and theoretical values. By solving the radial Schrödinger equation of nuclear motion, the vibration levels, rotary inertia and six centrifugal distortion constants (D_v , H_v , L_v , M_v , N_v , O_v) are obtained for the first time. The elastic collisions between the excited-state Li and the ground-state Ar atoms are investigated at low and ultralow temperatures when the two atoms approach to each other along the LiAr ($A^2\Pi$) interaction potential. The total and various partial-wave cross sections are calculated at energies from 1.0×10^{-12} to 1.0×10^{-3} eV by numerical calculation. The effect of each partial-wave cross section on the total elastic cross section is discussed carefully. The results show that the total elastic cross section is very large and almost constant at ultralow temperatures, and its shape is mainly dominated by the s-partial wave. But with the increase of collision energy, contribution of s-partial wave to the total cross section decreases and the contribution of higher-order partial wave to scattering cross section increases gradually.

Keywords: interaction potential, spectroscopic parameters, total cross section, partial-wave cross sectionsPACS: 34.20.-b, 34.80.Bm, 31.15.vnDOI: 10.7498/aps.64.043401

[†] Corresponding author. E-mail: gjiang@scu.edu.cn