# 物理学报 Acta Physica Sinica





LaTiO<sub>3</sub>(110)薄膜分子束外延生长的精确控制和表面截止层的研究

李文涛 梁艳 王炜华 杨芳 郭建东

Precise control of  $LaTiO_3(110)$  film growth by molecular beam epitaxy and surface termination of the polar film

Li Wen-Tao Liang Yan Wang Wei-Hua Yang Fang Guo Jian-Dong

引用信息 Citation: Acta Physica Sinica, 64, 078103 (2015) DOI: 10.7498/aps.64.078103 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.078103 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I7

您可能感兴趣的其他文章 Articles you may be interested in

分子束外延制备的垂直易磁化MnAI薄膜结构和磁性

Structural characterization and magnetic properties of perpendicularly magnetized MnAI films grown by molecular-beam epitaxy

物理学报.2013, 62(17): 178103 http://dx.doi.org/10.7498/aps.62.178103

脉冲磁控溅射法制备单斜相氧化铒涂层

Monoclinic phase of erbium oxide coatings fabricated by pulsed magnetron sputtering 物理学报.2011, 60(3): 036805 http://dx.doi.org/10.7498/aps.60.036805

# 专题: 表面低维结构的电子态调控

# LaTiO<sub>3</sub>(110)薄膜分子束外延生长的精确控制和 表面截止层的研究\*

李文涛1) 梁艳1)2) 王炜华1) 杨芳1) 郭建东1)3)†

(中国科学院物理研究所,表面物理国家重点实验室,北京 100190)
 2)(苏州大学,物理科学与技术学院,苏州 215006)
 3)(量子物质科学协同创新中心,北京 100871)
 (2015年3月3日收到;2015年3月25日收到修改稿)

LaTiO<sub>3</sub> 是一种典型的强关联电子材料,其(110)薄膜为通过晶格对称性、应变等的设计调控外延结构的物理性质提供了新的机会.本文研究了SrTiO<sub>3</sub>(110)衬底表面金属La和Ti沉积所引起的微观结构变化,进而利用电子衍射信号对分子束外延薄膜生长表面阳离子浓度的灵敏响应,发展了原位、实时、精确控制金属蒸发源沉积速率的方法,实现了高质量LaTiO<sub>3</sub>(110)薄膜的生长和对阳离子化学配比的精确控制.由于LaTiO<sub>3</sub>中Ti<sup>3+</sup> 3d 电子的库仑排斥作用,氧原子层截止的(110)表面更容易实现极性补偿,因此生长得到的薄膜表面暴露出单一类型的氧截止面.

关键词: LaTiO<sub>3</sub>(110)薄膜,分子束外延生长,极性表面 **PACS:** 81.15.Hi, 68.55.Nq, 68.47.Gh

#### **DOI:** 10.7498/aps.64.078103

# 1引言

过渡金属氧化物由于电子间的电荷,轨道和 自旋的相互作用,"演生"出丰富的物理性质<sup>[1]</sup>,一 直吸引着人们的研究兴趣.作为一种典型的强关 联材料,LaTiO<sub>3</sub>中Ti<sup>3+</sup>的t<sub>2g</sub>轨道上有1个电子占 据,而3d电子间强烈的库仑相互作用导致材料随 着温度降低出现Mott型金属绝缘体相变<sup>[2]</sup>,并表 现出G型反铁磁序(尼尔温度146 K)<sup>[3]</sup>.而且,通 过掺入二价碱土金属获得如(La,Sr)TiO<sub>3</sub>等<sup>[4]</sup>,或 者通过增加氧离子含量形成LaTiO<sub>3+x</sub><sup>[5]</sup>,材料中 t<sub>2g</sub>轨道上的电子浓度可以实现从0到1的连续调 节,进而实现对电子间关联程度的控制,产生更为 丰富的相图结构<sup>[6]</sup>.

随着钙钛矿结构氧化物薄膜和复杂超晶格结

构制备技术的发展[7],利用界面上的应变、极性不 连续和电荷转移等手段不仅可以调节钙钛矿材料 的性质<sup>[8]</sup>,而且可能在界面上"演生"出与体相材 料相关却又截然不同的全新的物理性质[9].为多 功能氧化物器件的设计和构造奠定了基础<sup>[10]</sup>.目 前已有大量关于LaTiO3等材料(001)薄膜生长和 物性测量工作的报道[11]. 但是和(001)表面相比, 钙钛矿结构材料的(110)表面具有不同的晶格对称 性,有可能对外延薄膜的结构和性质产生不同的调 制作用<sup>[12,13]</sup>,因此实现[110]方向LaTiO<sub>3</sub>等氧化 物薄膜的高质量生长成为相关研究发展的迫切需 要. 但是钙钛矿结构材料的(110)表面是极性的因 而不稳定,为表面处理和高质量的外延生长带来很 大的困难. 另一方面, 已有研究表明, 氧化物极性 表面可以通过发生各种重构消除极性,而在生长过 程中始终维持表面的重构,就可以通过对这一系列

†通信作者. E-mail: jdguo@iphy.ac.cn

© 2015 中国物理学会 Chinese Physical Society

<sup>\*</sup> 国家重点基础研究发展计划 (973 计划)(批准号: 2012CB921700), 国家自然科学基金 (批准号: 11225422, 11474334) 和中国科学院 战略性先导科技专项 (B 类, 批准号 XDB07010100) 资助的课题.

复杂重构相<sup>[14,15]</sup>演化的原位、实时监测,实现对 高质量极性薄膜外延生长的精确控制<sup>[16]</sup>,其表面 形成的有序低维结构又会带来丰富的吸附和催化 性质<sup>[16-18]</sup>.



图 1 (a) LaTiO<sub>3</sub>的晶格结构示意图; (b)和 (c)分别给 出沿 (110)面内的 [001]和 [110]方向的截面结构示意图 (作为参考, SrTiO<sub>3</sub>的结构示意图相应示于右栏)

室温下LaTiO3具有正交结构(图1),空间群 是Pbnm<sup>[19]</sup>. 作为参考,图1右栏同时给出具有 更为简单立方结构的SrTiO3结构示意图. 两者都 是由钛氧八面体TiO<sub>6</sub>组成三维网络,其空隙分别 由La和Sr填充. 图1(b)和(c)分别给出LaTiO<sub>3</sub>和 SrTiO<sub>3</sub>(110) 面沿 [001] 和 [110] 两个方向的截面结 构示意图. 同立方结构的SrTiO<sub>3</sub>相比, LaTiO<sub>3</sub>的 氧八面体结构存在(001)面内的旋转[图1(b)左图] 和沿[001]轴的倾斜[图1(c)左图],相邻氧八面体的 旋转可以用Glazer符号a<sup>-</sup>b<sup>-</sup>c<sup>+</sup>来描述<sup>[20]</sup>.因此 在LaTiO<sub>3</sub>(110) 异质外延薄膜中, 由于晶格失配引 起的应变不仅会影响TiO<sub>6</sub>八面体的旋转,还会对 其倾斜产生调制作用,从而为材料物理性质的人 工设计提供了更多的机会.本文在SrTiO<sub>3</sub>(110)衬 底上, 通过沉积金属La和Ti形成(2×16)的重构 界面,并由此利用分子束外延(MBE)方法沉积La-TiO<sub>3</sub>(110)薄膜.在生长过程中,我们以原位反射 式高能电子衍射(RHEED)的强度作为实时反馈信 号控制La, Ti金属蒸发源快门的开关, 维持生长表 面重构结构不变,从而实现了严格阳离子化学配比 的高质量薄膜生长,并进一步研究了LaTiO<sub>3</sub>(110) 极性薄膜表面的微观结构与截止层类型.

## 2 实验部分

衬底处理和薄膜生长在超高真空 (UHV) 低温 扫描隧道显微镜 (LT-STM) 和 MBE 的联合系统中 进行.其中 MBE 生长腔体安装有 RHEED、低能 电子衍射仪 (LEED) 和氩离子溅射枪,本底真空 可达到1×10<sup>-10</sup> mbar (1 bar = 10<sup>5</sup> Pa).生长 后的样品可直接传入 STM 腔体 (本底真空好于 5×10<sup>-11</sup> mbar)进行观测.

#### 2.1 SrTiO<sub>3</sub>(110) 衬底处理

实验所采用的SrTiO<sub>3</sub>(110)单晶衬底从中国合 肥科晶材料技术公司购买.样品为单面抛光,斜切 角小于0.3°.SrTiO<sub>3</sub>(110)衬底经过丙酮和酒精超 声清洁处理后传入UHV腔体,依次进行氩离子溅 射(溅射能量1 keV,溅射电流13 μA,溅射时间10 min)和UHV高温退火(1000°C,约1 h),就可得到 单相的SrTiO<sub>3</sub>(110)-(4×1)重构表面.样品由其下 方的钨丝加热,表面温度通过腔外的红外测温仪 测量.

#### 2.2 薄膜生长

在常温常压下 LaTiO<sub>3</sub>不稳定<sup>[21]</sup>,制备时容易 得到热力学更稳定的 La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>相.因此在本实验 中采用真空或低氧压 (低于 5 × 10<sup>-6</sup> mbar)的氛围 进行生长,衬底温度维持在 900 °C.金属 La 和 Ti 分 別由 CREATEC 公司生产的高温分子束源炉生长, 蒸发源温度分别为 1350 °C 和 1570 °C, 波动小于 0.1°.金属 Ti 的生长速率可通过 SrTiO<sub>3</sub>(110)表面 重构的变化进行精确标定<sup>[15]</sup>,约为 0.25 ML/min [以 SrTiO<sub>3</sub> (110)体相截止面的原子密度为标准, 1 ML = 4.46 × 10<sup>14</sup> atoms/cm<sup>2</sup>].所有金属源快门 的开关用步进电机驱动并通过计算机自动控制.

#### 2.3 薄膜表征

薄膜的表面结构由UHV原位的STM在室温 下观测,STM采用电化学腐蚀制备的钨针尖并 在恒流工作模式下进行扫描.薄膜的外延结构 可通过XRD (Rigaku公司的SmartLab)的θ—2θ 扫描表征, X射线波长1.54 Å. 我们对原位生长的薄膜以及经过管式炉退火(氧气氛约1 atm (1 atm =  $1.01325 \times 10^5$  Pa), 700 °C, 4 h)的样品都进行了XRD测量, 并做了结构对比.

# 3 结果与讨论

## 3.1 LaTiO<sub>3</sub>薄膜生长的精确控制

SrTiO<sub>3</sub>(110)衬底经过氩离子溅射与退火后得 到表面的RHEED衍射图案示于图2(a).沿(110) 面内两个不同方向[001]和[110],除了红色箭头所 标示的整数衍射点外,还出现了沿[001]方向的 "4×"衍射周期.结合STM对表面形貌的高分辨率 观测,说明我们得到了单相的SrTiO<sub>3</sub>(110)-(4×1) 重构表面<sup>[15]</sup>.在该衬底表面沉积金属La/Ti,其 RHEED衍射特征发生变化,标志着新重构类型的 形成:约1 ML的金属La沉积后,沿[001]方向的 "4×"衍射斑点强度变弱;随后继续沉积1 ML的 金属Ti之后,出现微弱的"2×"重构.重复以上过 程,即当金属La和Ti的沉积总量分别达到2 ML 时,表面RHEED衍射图案如图2(b)所示.所有衍 射点都拉长变为明锐的长条,沿[001]方向的"2×" 周期清晰可见;而沿[110]方向也出现了新的衍射 点,其间距较小,说明出现了更大周期的结构.结 合之后STM表征,我们可以确定衬底表面形成了 (2×16)重构.



图 2 (a) SrTiO<sub>3</sub>(110)-(4 × 1) 重构表面沿 [001] 和 [110] 方向的 RHEED 衍射图案, 红色箭头指示整数衍射点, 绿色箭 头指示分数衍射点; (b) La 和 Ti (各约 2 ML) 沉积后形成 (2 × 16) 重构表面的 RHEED 图案; (c) 通过沉积 Ti 和 La 改 变 (2 × 16) 表面阳离子浓度所引起 RHEED 衍射斑点强度的变化 (详见正文); (d) 相应于 [Ti]/[La] 比值上升 (左图, 由时 刻②与①的 RHEED 图像差分得到) 或下降 (右图, 由时刻③与②的 RHEED 图像差分得到) 的 RHEED 衍射图案变化

我们进一步发现,新处理得到的(2×16)重构 表面对La/Ti成分的变化产生灵敏的响应,与之前 报道的SrTiO<sub>3</sub> (110)表面通过沉积Sr/Ti引起重构 和衍射特征的可逆变化极为类似<sup>[15,16]</sup>,即RHEED 各衍射点强度随着表面阳离子成分的改变发生相 应的变化.在本实验中,由于生长过程中La源和

Ti源的温度分别维持在1350°C和1570°C不变, 其生长速率也都稳定在固定值,因此分别控制蒸 发源快门开关的时间就可以精确调节表面的金 属沉积量.具体的实验观测结果示于图2(c):在 (2×16)重构表面上(时刻①),单独沉积金属Ti而 保持La源快门关闭,表面阳离子浓度比[Ti]/[La] 相对于初始 $(2 \times 16)$ 重构表面 $(r_{2 \times 16})$ 开始上升,相 应观察到RHEED 沿[001] 方向的"1×"衍射斑点 强度显著下降,而"2×"衍射斑点强度显著上升; 经过55 s后(时刻②),关闭Ti源快门只单独沉积 金属La, [Ti]/[La]比值开始下降, "1×"和"2×" 衍射斑点的强度也分别出现可逆的变化;经过 87 s 后(时刻③), RHEED斑点强度分别回复到初 始时刻①的数值, 衍射图案的其他特征也都与时 刻① 一致, 这说明 Ti 源在 1570°, 55 s 内与 La 源 在1350°C,87 s内给出相同的沉积量,[Ti]/[La] 比例也回复到时刻①的数值.图2(d) 直观地给出 [Ti]/[La] 比值不同时 RHEED 衍射斑点的变化规 律, 左图是相对于初始(2×16)重构表面富Ti的情 形(由时刻②与①的RHEED图像差分得到),"1×" 衍射斑点变弱而"2×"衍射斑点变强;随后富Ti程 度降低,相应地"2×"衍射斑点变弱而"1×"衍射斑 点变强,如右图(由时刻③与②的RHEED图像差

分得到) 所示. 重复以上过程, 可以观察到 RHEED 强度的可逆变化 [图 2 (c) 中的③-⑤].

利用(2×16)重构表面RHEED衍射强度随 [Ti]/[La]比例灵敏变化的特征, 就可以在MBE 生 长中实时判断La和Ti沉积速率的快慢和速率比, 以此相应地调节蒸发源的生长温度,或者精确调节 蒸发源快门的开关时间,从而使两种金属的沉积 量完全匹配. 在本工作中, 我们通过计算机读取的 RHEED 强度作为反馈信号自动控制蒸发源的快门 开关, 生长方法示意图在图 3 中给出. 如上所述, Ti 源的生长速率略快于La源,因此当"2×"衍射点强 度上升时(说明[Ti]/[La]比例升高),计算机触发Ti 源快门关闭;反之打开Ti源快门,而La快门一直 打开. 这样在生长过程中, 表面阳离子浓度始终维 持在一个较小的区间内可逆变化,能够实现对薄膜 化学配比的精确控制. 我们在整个生长过程保持 和衬底处理相同的高温条件(900°C)与低氧压气 氛,确保生长表面形成有序的重构并被RHEED实 时监测到. 这也能够有效补偿LaTiO<sub>3</sub>(110)的表面 极性,实现薄膜高质量的逐层生长.而在重构表面 下方,由热力学条件决定形成LaTiO3体相结构的 薄膜.



图 3 (a) MBE 生长中利用 RHEED 强度作为反馈信号控制金属蒸发源快门开关的方法示意图; (b) 依据薄膜生长中 RHEED "2×" 衍射斑点强度的变化, 达到设定的高/低阈值时计算机触发 Ti 源快门关闭/打开; (c) 薄膜生长过程示意图

078103-4

#### 3.2 XRD 测量结果

我们对原位生长的样品以及经过管式炉退 火的样品都进行了XRD的θ—2θ扫描.由于薄膜 厚度较低(均为~15 nm),导致SrTiO<sub>3</sub>(110)衬底 的衍射峰强度过高而淹没膜峰,如图4(a)所示, 在20°到80°的角度范围内只能分辨出衬底明锐 的(110)和(220)衍射峰.为了清楚地得到薄膜的 结构信息,我们测量了衬底衍射峰(~32.4°)附近 28°—31°和33°—36°小角度范围内的衍射谱.如 图 4 (b) 和 (c) 所示, 图中上部分的谱线对应于原位 生长并没有经过其他处理的样品, 薄膜的衍射峰位 于 29.19°, 对应面间距为 0.3 nm, 即 LaTiO<sub>3</sub> (110) 面<sup>[21]</sup>; 下部分谱线对应于经过管式炉退火 (氧气 氛约 1 atm, 700 °C, 4 h) 后的样品, LaTiO<sub>3</sub>(110) 面间衍射峰消失, 而在 35° 附近出现新的衍射峰, 对应 La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub> (005) 面的衍射<sup>[21]</sup>. 这说明在低氧 压气氛下, 利用 MBE 方法可以得到单相亚稳态的 LaTiO<sub>3</sub>/SrTiO<sub>3</sub>(110) 结构; 而经过退火氧化, 薄膜 结构变化形成热力学更加稳定的 La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>.



图 4 (a) 薄膜样品的 XRD 测量结果; (b) 和 (c) 原位生长薄膜样品 (上部分) 和退火处理样品 (下部分) 在 28°—31° 和 33°—36° 的 XRD 结果; (d) 薄膜表面的 STM 图像 (扫描偏压 2.3 V, 隧道电流 40 pA); (e) STM 图像中白线所示位置的高度轮廓

# 3.3 LaTiO<sub>3</sub>(110)极性表面和结果讨论

图 4 (d) 是 15 nm 厚薄膜表面的 STM 形貌图 像,可以看到边缘沿 [1ī0] 方向分布的一系列台阶. 每个台面内都具有相同的条状结构 (其精细结构在 下文给出).图 4 (e) 给出 STM 图像中白线所示位置 的高度轮廓,其中的数字和箭头分别对应于不同台 阶的起伏,其高度都大约是 0.28 nm 的整数倍,与 LaTiO<sub>3</sub> (110) 单元胞的高度 (~0.3 nm) 接近,也进 一步说明薄膜表面暴露出单一类型的截止面原子 层 [(LaTiO) 或 (O<sub>2</sub>) 层].

LaTiO<sub>3</sub>(110)薄膜表面台面内的精细结构在 图5给出, STM 图像在不同偏压下有较大的差异.

从图5(a)(正偏压, 未占据态图像)可以清晰地看 到, 薄膜表面由沿着[001]方向的带状结构排列 而成,相邻条带之间被暗沟分隔.条带的宽度都 在[110]体相周期的16倍左右,有细微的涨落,与 RHEED在[110]方向观察到的多重衍射特征符合. 在负偏压扫描条件下[占据态,图5(b)],带内的精 细结构变得更加清晰,它们由整齐排列的圆形亮点 组成,并且沿着[001]方向呈现明暗交替排列的特 征,对应于RHEED在[001]方向观察到的"2×"衍 射周期.但是相邻的"×16"条带之间,亮/暗圆点的 分布并不沿[110]方向互相对齐[如图5(c)中不同 颜色箭头所标示].



图 5 (a) 薄膜表面正偏压 (+2.3 V/40 pA) 和 (b) 负偏压 (-2.4 V/40 pA) 的 STM 图像; (c) 高分辨率的负偏压 STM 图像, 蓝色和绿色箭头标示出相邻"×16"条带中较亮圆点在 [001] 方向上的位置分布; (d) TiO<sub>6</sub> 八面体沿 [001] 方向的倾斜及其引起的 (110) 面内的周期性调制与 STM 图像的对比; (e) 钙钛矿结构氧化物 ABO<sub>3</sub>(110) 表面由 (ABO)<sup>4+</sup>(上图) 或 (O<sub>2</sub>)<sup>4-</sup>(下图) 原子层截止时, 可分别通过引入或去除电子补偿表面极性, 左侧和右侧分别 给出表面电子浓度改变前后薄膜内部电场 *E* 和势能 *V* 随距表面距离变化的示意图

在LaTiO<sub>3</sub>(110)体相结构中,TiO<sub>6</sub>八面体沿 [001]方向倾斜[图5(d)],导致在[001]方向出现 "2×"周期.再考虑到在薄膜生长过程中,表面 [Ti]/[La]比例升高时"2×"衍射斑点显著变强,而 [Ti]/[La]比例降低时"2×"衍射变弱,这进一步说 明STM观察到的"2×"周期来源于表面钛氧八面 体的有序排列.图5(d)给出了薄膜表面负偏压 STM图像和LaTiO<sub>3</sub>(110)面内倾斜钛氧八面体的 排列结构示意图,沿[001]方向,STM直接观察到 钛氧八面体倾斜对表面电子局域态密度的调制作 用[由于薄膜厚度较低,表面晶格参数更接近Sr-TiO<sub>3</sub>(110)衬底].而沿[110]方向出现的"×16"周 期与TiO<sub>6</sub>八面体在(001)面内的旋转有关,也可能 是薄膜表面为了进一步降低能量而发生的一种应 变弛豫方式.

氧化物的极性表面可能存在丰富的重构类型. 以SrTiO<sub>3</sub>(110)为例,已有报道发现了 ( $n \times 1$ )系列 重构<sup>[22-24]</sup>,(2×8),(6×8)和(1×10)等重构类 型<sup>[15,18,25]</sup>.本工作中发现的LaTiO<sub>3</sub>(110)-(2×16) 重构与SrTiO<sub>3</sub>(110)的(2×8),(6×8)重构比较接 近,都是由沿着[110]方向的长条排列而成<sup>[15]</sup>,对应 于表面TiO<sub>6</sub>八面体的排列结构.考虑到沿[110]方 向,SrTiO<sub>3</sub>或LaTiO<sub>3</sub>由(ABO)<sup>4+</sup>和(O<sub>2</sub>)<sup>4-</sup>层(A, B分别代表阳离子)交替排列形成相似的极性表 面,要补偿极性避免层间静电势能发散引起的不 稳定性,就必须改变表面截止层单位面积内的电

荷密度,即在(ABO)<sup>4+</sup>面截止的表面引入2个电 子/元胞,或者在(O<sub>2</sub>)<sup>4-</sup>面截止的表面去除2个电 子/元胞,如图5(e)所示.对SrTiO层截止的Sr-TiO<sub>3</sub>(110)表面而言,这意味着Ti<sup>4+</sup>被还原(向3d 的t2g轨道填充电子). X 射线光电子能谱(XPS)和 俄歇电子能谱 (AES) 等实验已经在 SrTiO<sub>3</sub>(110) 的 不同重构表面都发现了低价钛离子的存在<sup>[18,25]</sup>, 说明通过截止层的还原可以使极性表面变得较为 稳定. 相反对于LaTiO<sub>3</sub>(110)而言, Ti<sup>3+</sup>的 $t_{2g}$ 轨 道已经有一个电子占据,电子间强烈的库仑排斥作 用使得t2g轨道很难继续引入电子,因此在LaTiO 截止面难以实现极性补偿. 但是在氧截止面, 失去 电子补偿表面极性的过程可以通过Ti<sup>3+</sup>的氧化来 实现(变为 $Ti^{4+}$ ). 也就是说,由于La $TiO_3$ 中 $Ti^{3+}$ 3d 电子间的库仑相互作用导致其(110) 表面更容 易暴露出氧截止层,这也和STM的观测结果一致. XPS等表征手段将可以为这一结论提供更直接的 实验支持.

# 4 结 论

本文报道了高质量LaTiO<sub>3</sub>(110)薄膜的MBE 生长及其精确控制方法.我们在SrTiO<sub>3</sub>(110)衬 底上制备了(2×16)重构的缓冲层,利用此表面 RHEED衍射特征对阳离子浓度变化的灵敏响应, 发展出实时、自动精确控制金属蒸发源沉积速率的 方法,实现了薄膜高质量的逐层生长以及对阳离子 化学配比的精确控制.LaTiO<sub>3</sub>(110)薄膜表面暴露 出单一类型的氧截止层,保持(2×16)重构.结合 STM的高分辨率表征以及极性表面的电荷补偿分 析,我们提出LaTiO<sub>3</sub>薄膜中3d电子间强烈的库仑 排斥作用使得氧截止面更加稳定.本文为进一步深 入研究钛氧化物表面低维结构的吸附、催化等性质 提供了理想平台,更为利用不同晶向的对称性与异 质外延应变设计、调控强关联电子材料的磁、电性 能及其耦合作用奠定了实验基础.

#### 参考文献

[1] Tokura Y, Nagaosa N $2000\ Science\ \mathbf{288}\ 462$ 

- [2] Okimoto Y, Katsufuji T, Okada Y, Arima T, Tokura Y 1995 Phys. Rev. B 51 9581
- [3] Meijer G I, Henggeler W, Brown J, Becker O S, Bednorz J G, Rossel C, Wachter P 1999 *Phys. Rev. B* 59 11832
- [4] Hays C C, Zhou J S, Markert J T, Goodenough J B 1999
   *Phys. Rev. B* 60 10367
- [5] Kim K H, Norton D P, Budai J D, Chisholm M F, Sales B C, Christern D K, Cantoni C 2003 *Phys. Stat. Sol.* 200 346
- [6] Lichtenberg F, Widmer D, Bednorz J G, Williams T, Reller A 1991 Z. Phys. B Condensed Matter. 82 211
- [7] Ohtomo A, Muller D A, Grazul J L, Hwang H Y 2002 Nature 419 378
- [8] Schlom D G, Chen L Q, Pan X Q, Schmehl A, Zurbuchen M A 2008 J. Am. Ceram. Soc. 91 2429
- [9] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y 2012 Nature Mater. 11 103
- [10] Huang X, Dong S 2014 Mod. Phys. Lett. B 281 43010
- [11] Chen Y Z, Sun J R, Shen B G, Linderoth S 2013 Chin. Phys. B 22 116803
- [12] Wang Z, Zhong Z, Hao X, Gerhold S, Stoger B, Schmid M, Sanchez -B J, Varyhalov A, Franchini C, Held K, Diebold U 2014 PNAS 111 3933
- [13] Herranz G, Singh G, Bergeal N, Jouan A, Lesueur J, Gazquer J, Varela M, Scigaj M, Dix N, Sanchez F, Fontcuberta, J 2015 Nature Comm. 6 6028
- [14] Feng J, Zhu X, Guo J 2013 Surf. Sci. 614 38
- [15] Wang Z, Yang F, Zhang Z, Tang Y, Feng J, Wu K, Guo Q, Guo J 2011 *Phys. Rev. B* 83 155453
- [16] Feng J, Yang F, Wang Z, Yang Y, Gu L, Zhang J, Guo J 2012 AIP Advances 2 041407
- [17] Marshall M S J, Castell M R 2014 Chem. Soc. Rev. 43 2226
- [18] Li W, Liu S, Wang S, Guo Q, Guo J 2014 J. Phys. Chem. C 118 2469
- [19] Hemberger J, Nidda H -A K, Fritsch V, Deisenhofer J, Lobina S, Rudolf T, Lunkenheimer P, Lichtenberg F, Loidl A, Bruns D, Buchner B 2003 *Phys. Rev. Lett.* 91 066403
- [20] Glazer A M 1975 Acta Cryst. A **31** 756
- Havelia S, Balasubramaniam K R, Spurgeon S, Cormack F, Salvador P A 2008 J. Cryst. Growth **310** 1985
- [22] Wang Z, Wu K, Guo Q, Guo J 2009 Appl. Phys. Lett. 95 021912
- [23] Russell B C, Castell M R 2008 Phys. Rev. B 77 245414
- [24] Enterkin J A, Subramanian A K, Russell B C, Castell M R, Poeppelmeier K R, Marks L D 2010 Nat. Mater.
  9 245
- [25] Cao Y, Wang S, Liu S, Guo Q, Guo J 2012 J. Chem. Phys. 137 044701

SPECIAL ISSUE — Control of electronic states in surface low-dimensional structures

# Precise control of $LaTiO_3(110)$ film growth by molecular beam epitaxy and surface termination of the polar film<sup>\*</sup>

Li Wen-Tao<sup>1)</sup> Liang Yan<sup>1)2)</sup> Wang Wei-Hua<sup>1)</sup> Yang Fang<sup>1)</sup> Guo Jian-Dong<sup>1)3)†</sup>

1) (State Key Labratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (School of Physical Science and Technology, Soochow University, Suzhou 215006, China)

3) (Collaborative Innovation Center of Quantum Matter, Beijing 100871, China)
 (Received 3 March 2015; revised manuscript received 25 March 2015)

#### Abstract

Transition metal oxides exhibit abundant physical properties due to the electronic interactions between charge, orbit and spin degrees of freedom. Lanthanum titanate, LaTiO<sub>3</sub>, a typical strongly correlated electron material, shows Mott-type metal-insulator and antiferromagnetic transitions at low temperature. And these interesting behaviors can be tuned by adjusting the occupation of the  $t_{2g}$  orbit of  $Ti^{3+}$ , or introducing symmetry breaking or lattice strain into the heterointerfaces. Especially on  $LaTiO_3(110)$  surface, the anisotropic structure as well as the surface polarity allows the flexible control of artificial low-dimensional structure. However, the instability induced by surface polarity hinders the growth of high-quality  $LaTiO_3(110)$  film. Here we show that by keeping the growing surface reconstructed in the molecular beam epitaxy (MBE) process, the surface polarity can be effectively compensated for, allowing the high-quality layer-by-layer film growth. Moreover, the intensity of reflective high-energy electron diffraction (RHEED) pattern sensitively changes with the surface cation concentration. Therefore the relative deposition rates of La and Ti sources can be monitored and further be precisely calibrated in situ and in real-time. We first prepare the  $(2 \times$ 16) reconstruction on  $SrTiO_3(110)$  surface by depositing La and Ti (2 ML for each) metals. Further increasing the Ti concentration on  $(2 \times 16)$ , i. e., the [Ti]/[La] ratio, results in the significant decrease of RHEED " $1 \times$ " intensity and the increase of " $2 \times$ " intensity. And the change of RHEED intensity is quantitatively reversible through reducing the [Ti]/[La] ratio by the same amount. We set the evaporation rate of Ti source to be slightly higher than that of La for the MBE film growth. And the shutter state of Ti source is controlled to be open or close, which is determined by the change of RHEED intensity. Precise cation stoichiometry is achieved in the  $LaTiO_3(110)$  film. X-ray diffraction confirms the single crystallinity of the film while scanning tunneling microscope images indicate the atomically flat surface with  $(2 \times 16)$  reconstruction that is responsible for the stabilization of the polar surface. The annealing of the sample in oxygen at 700 °C will oxidize the LaTiO<sub>3</sub> film into the thermodynamically stable phase, i. e. , La<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>, although the as-grown  $LaTiO_3$  phase can be stable at room temperature. The high-resolution STM images reveal the detailed structural information of the  $(2 \times 16)$  film surface-along the [001] direction, the tilt of TiO<sub>6</sub> octahedron in LaTiO<sub>3</sub> lattice results in the "2  $\times$ " periodicity modulation on the (110) surface. The " $\times$  16" periodicity along [110] might be related to the rotation of  $TiO_6$  octahedron in (001) plane or to the strain relief on the surface. Both of the RHEED and STM observations indicate that the film surface is terminated by the  $TiO_6$  octahedron, i. e., the  $(O_2)$  atom layer. Indeed the  $LaTiO_3(110)$  polar surface can be stabilized by making two holes on the (O<sub>2</sub>) layer by oxidizing Ti<sup>3+</sup> into Ti<sup>4+</sup>. On the contrary, due to the Coulomb repulsion between electrons on  $Ti^{3+}$  3d orbit, the (110) surface is difficult to reduce (to introduce extra electrons). Therefore the (LaTiO) termination layer cannot be stable.

**Keywords:** LaTiO<sub>3</sub>(110) film, MBE, polar surface

**PACS:** 81.15.Hi, 68.55.Nq, 68.47.Gh

**DOI:** 10.7498/aps.64.078103

<sup>\*</sup> Project supported by the National Basic Research Project of China (Grant No. 2012CB921700), National Natural Science Foundation of China (Grant Nos. 11225422 & 11474334) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB07010100).

<sup>†</sup> Corresponding author. E-mail: jdguo@iphy.ac.cn