物理学报 Acta Physica Sinica

径向偏振光下的长焦、紧聚焦表面等离子体激元透镜

陆云清 呼斯楞 陆懿 许吉 王瑾

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light

Lu Yun-Qing Hu Si-Leng Lu Yi Xu Ji Wang Jin

引用信息 Citation: Acta Physica Sinica, 64, 097301 (2015) DOI: 10.7498/aps.64.097301 在线阅读 View online: http://dx.doi.org/10.7498/aps.64.097301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2015/V64/I9

您可能感兴趣的其他文章 Articles you may be interested in

基于含时密度泛函理论的表面等离激元研究进展

Progress of surface plasmon research based on time-dependent density functional theory 物理学报.2015, 64(7): 077303 http://dx.doi.org/10.7498/aps.64.077303

石墨烯基双曲色散特异材料的负折射与体等离子体性质

Negative refraction and bulk polariton properties of the graphene-based hyperbolic metamaterials 物理学报.2015, 64(6): 067301 http://dx.doi.org/10.7498/aps.64.067301

三角缺口正三角形纳米结构的共振模式

Resonance mode of an equilateral triangle with triangle notch 物理学报.2014, 63(12): 127301 http://dx.doi.org/10.7498/aps.63.127301

含有凹口的金属纳米环形共振器的本征模式分裂

Splitting of transmission modes in a nanoscale metal ring resonator with a notch 物理学报.2014, 63(1): 017301 http://dx.doi.org/10.7498/aps.63.017301

介观尺寸原子链中的等离激元:紧束缚模型

Plasmonic excitations in mesoscopic-sized atomic chains: a tight-binding model 物理学报.2013, 62(17): 177301 http://dx.doi.org/10.7498/aps.62.177301

径向偏振光下的长焦、紧聚焦表面等离子体 激元透镜*

陆云清* 呼斯楞 陆懿 许吉 王瑾*

(南京邮电大学光电工程学院,南京 210023)

(2014年8月3日收到;2014年12月19日收到修改稿)

表面等离子体激元透镜 (plasmonic lens, PL) 是一种通过激发和操控表面等离子体激元 (SPPs), 突破衍 射极限, 实现亚波长紧聚焦的纳米光子器件.如何实现高效率的紧聚焦及调控,一直是研究 PL 的重点.如果 选取电矢量沿径向振动的径向偏振光作为 PL 的入射光,可从各个方向激发 SPPs,提高紧聚焦的能量效率. 本文提出了一种在径向偏振光激发下的长焦深、长焦距、亚波长紧聚焦的表面等离子体激元透镜,该透镜由中 心T 形微孔、阶梯形同心环和同心环结构组成.本文首先利用有限元方法数值分析了中心微孔-同心环结构 透镜的聚焦特性,结果显示径向偏振光由底部入射可高效激发 SPPs,并且中心微孔透射光与散射至自由空间 的 SPPs 由于多光束干涉形成了紧聚焦.为进一步压缩焦斑、增加焦距、加深焦深、改善透镜聚焦特性,本文引 入中心 T 形微孔-阶梯形同心环结构,从而对阶梯表面的 SPPs 同时提供了相位调制和传播方向的控制.经过 参数优化,该透镜结构实现了光斑焦深、半高宽、焦距分别是入射光波长的 2.5 倍、0.388 倍、3.22 倍的亚波长紧 聚焦;而且该透镜具有结构紧凑、尺寸小、易于集成的优点,满足了纳米光子学对于器件微型化和高度集成化 的要求.该研究结果在纳米光子集成、近场光学成像与探测、纳米光刻等相关领域具有潜在的应用价值.

关键词:表面等离子体激元透镜,径向偏振光,紧聚焦,长焦距 PACS: 73.20.Mf, 42.25.Hz, 42.50.St, 42.82.Cr

DOI: 10.7498/aps.64.097301

1引言

纳米光子器件设计及其集成是纳米光子学的 一个研究热点,要求单元器件的尺寸越来越小,器 件的空间距离也越来越小,并且能够在纳米尺度 实现超衍射极限的光学调控,而基于表面等离子 体激元(surface plasmon polaritons, SPPs)的各种 纳米光子器件被认为是最有希望实现纳米全光集 成回路的基础^[1]. SPPs 是局域在金属表面的一 种电磁波模式^[2-5],其本质是在金属-介质界面上 光和金属表面的自由电子相互作用激发并耦合电 荷密度起伏的电磁振荡,具有近场增强、表面受 限、短波长等特性,能够突破衍射极限,是目前实 现全光集成的方法之一.表面等离子体激元透镜 (plasmonic lens, PL)正是一种能够有效激发和操 控SPPs、突破衍射极限,实现亚波长紧聚焦的纳米 光子器件^[6-16],在纳米光子集成、超分辨成像、纳 米光刻、近场成像与探测、纳米粒子操纵等领域有 着重要的应用^[17-24].

实现高能量效率、长焦深、长焦距、亚波长紧 聚焦是PL透镜设计的主要方向.近年来,诸如狭 缝-光栅型透镜^[6,7]、同心环型透镜^[8-14]、微孔阵列 型透镜^[15-17]等各种PL透镜结构被提出.这些工 作通常采用亚波长孔或缝等结构激发SPPs实现亚 波长紧聚焦^[21-23],因此,PL透镜聚焦效率与SPPs 的激发效率紧密相关,而SPPs的激发效率取决于 入射光束的偏振态.例如,当激发光束为线/圆偏振

* 南京邮电大学基金 (批准号: NY211060, NY213028, NY212008) 和江苏省基础研究计划基金 (批准号: BK20131383) 资助的课题.

© 2015 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: luyq@njupt.edu.cn

[‡]通信作者. E-mail: jinwang@njupt.edu.cn

光时, 光束只能在一个方向上激发 SPPs^[9], 激发效 率较低. 如果入射光束是径向偏振光, 即在光束横 截面内任意点的电矢量都沿径向振动, 可以从各个 方向激发 SPPs, 从而提高 PL 透镜的能量效率; 而 且, 由于径向偏振光电场分布的特殊性, 在合适的 透镜结构下聚焦, 可以在焦点附近形成很强的纵向 光场分量, 从而实现超衍射极限的紧聚焦光斑. 实 际上, 采用高数值孔径光学透镜也可实现对径向偏 振光的超衍射极限的紧聚焦^[25-27], 如 Wang 等将 二元光学相位元件与高数值孔径物镜结合, 获得了 半高宽为0.43 λ_0 的紧聚焦光斑 (λ_0 为真空入射光波 长)^[27], 但是高数值孔径光学透镜的尺寸较大, 不 易于实现高度集成化的微型纳米光子器件.

目前, 通过优化透镜结构而引入新的工作机 理, 以实现PL透镜高效率的紧聚焦及有效的特 性调控, 是针对径向偏振光入射的PL透镜的研 究重点.例如文献[10]中的PL透镜, 入射光在同 心狭缝形成的金属-介质-金属(M-I-M)结构中激 发SPPs, 并在透镜表面传播, 以此提高SPPs激发 效率. Peng 等在这一结构基础上增加环形狭缝 和同心的沟槽^[12], 将激发的SPPs散射到自由空 间, 通过干涉形成聚焦, 实现了一种超长焦深、高 分辨率透镜, 其焦距为2.1λ₀, 半高宽 (full width half maximum, FWHM)为0.44λ₀, 焦深 (depth of focus, DOF)为2.65λ₀.这些研究给紧聚焦 PL透镜 结构设计提供了一定的思路.

本文设计了一种径向偏振光激发下的长焦深、 长焦距、紧聚焦PL透镜,该透镜由处于中心的T形 微孔、阶梯形同心环和同心环结构组成.径向偏振 光由底部入射并从各个方向高效激发SPPs,处于 中心的T形微孔在增加透射光强的同时,可通过多 模干涉,提高聚焦效率^[7],其透射光与散射至自由 空间的SPPs由于多光束干涉形成紧聚焦.本文进 一步引入了阶梯形同心环沟槽结构,在对阶梯表面 的SPPs提供相位调制的同时,可以控制SPPs的传 播方向,将同心环透射光反射至轴心,进一步压缩 焦斑,增加焦距和焦深,改善了透镜聚焦特性.

2 理论模型

本文提出的 PL 透镜由中心微孔和同心环结构 构成,通过设计中心微孔和同心环的形状、尺寸和 位置实现长焦深、长焦距、亚波长紧聚焦.如图1所 示为由中心圆孔和多级同心环构成的透镜结构示 意图,图1(a)为PL透镜聚焦三维示意图,径向偏 振光背照式高效激发SPPs,中心微孔透射光与散 射至自由空间的SPPs由于多光束干涉,在自由空 间中形成紧聚焦光斑;图1(b)为透镜结构二维横 截面示意图,其中,衬底为SiO₂,上面镀有300 nm 厚金膜, $D_{\rm C}$ 表示中心微孔直径,w为同心环宽度, R_M 表示M级同心环中心半径.中心微孔的透射 光与半径为 R_M 的同心环间透射光相位满足下式:

$$\Delta \varphi = 2M\pi + \frac{2\pi fn}{\lambda_0} - \frac{2\pi n\sqrt{f^2 + R_M^2}}{\lambda_0},$$

(M = 1, 2, 3...), (1)

式中n为介质折射率, f为焦距, λ_0 为真空光波长. 当 $\Delta \varphi$ 为0时, 将产生多光束干涉, 在自由空间中 形成一个亚波长焦斑, 进而可确定给定焦距对应的 同心环位置.

图1 中心微孔-同心环透镜结构示意图 (a)透镜聚 焦三维示意图,径向偏振光沿z轴正方向入射,高效激发 SPPs,在自由空间中形成紧聚焦光斑; (b)透镜结构二维 横截面示意图

Fig. 1. Structure layout of the PL consisting of a micro-hole and concentric rings. (a) 3D-view of the PL illuminated under a radially polarized light, where SPPs can be excited efficiently and a tightly focused spot in the free space is achieved; (b) The cross-section of the PL structure.

PL透镜是通过操控由入射电磁波与金属表面自由电子的相互作用而产生的SPPs实现相干聚焦,由此产生的SPPs的各项特性可以使用基于

宏观 Maxwell 方程组的经典电磁学来进行分析^[28]. SPPs的波矢表示为ksp,其色散关系表达式为

$$k_{\rm sp}\left(\omega\right) = \frac{\omega}{c} \sqrt{\varepsilon_{\rm m}\left(\omega\right) \varepsilon_{\rm d} / (\varepsilon_{\rm m}\left(\omega\right) + \varepsilon_{\rm d})}, \quad (2)$$

其中 ω/c 为入射光在真空中的波矢, ε_d 为介质的介 电常数. 对于SiO₂ $\varepsilon_d = (1.45)^2$, $\varepsilon_m(\omega)$ 为金属的介 电常数,基于改进的Drude-Lorentz模型^[29,30],入 射光波长为632.8 nm时,金膜的介电常数

$$\varepsilon_{\rm Au}(\omega) = -9.811 + 1.9645i.$$

SPPs 波长为 $\lambda_{sp} = 2\pi/\text{Re} \{k_{sp}\}.$

本文所采用的径向偏振光是指电矢量振动方 向在光束横截面上具有轴对称性并且始终沿径向 的一种矢量偏振光束. 假定光束不沿 Z 轴发散, 这 样的径向偏振光矢量光束电场可近似表达为

$$E(r,\varphi) = \sqrt{2r/\omega_0} \exp\left(-r^2/\omega_0^2\right) \hat{e}_{\rm r},\qquad(3)$$

其中ω₀为高斯光束束腰半径,在本文的透镜设计 中设定为3 µm.

模拟结果与分析 3

中心微孔-同心环透镜 3.1

0.28(a)

0.27

0.26

0.25

0.24

0.23

0.22

0.21

0.20

0.19

0

 $T_{1}/10^{-1}$

本文采用中心微孔结构,在增加透射光强的 同时,通过多模干涉,提高聚焦效率^[7],其透射 光与由同心环结构散射至自由空间的SPPs通过 多光束干涉,在自由空间中形成紧聚焦光斑.如 图1所示为中心微孔-同心环透镜结构示意图,及 其利用有限元算法模拟分析得到的透镜聚焦特性. 采用径向偏振光背照式激发 SPPs, 入射光波长为 $\lambda_0 = 632.8 \text{ nm}, \text{SiO}_2 衬底折射率 n_{\text{sub}} = 1.45, f =$ 460 nm, 由于聚焦离子束 (FIB) 可以容易实现 100 nm至300 nm的蚀刻工作,因此选择同心环宽度 w = 150 nm.

径向偏振光下该透镜利用多级同心环结构高 效激发 SPPs, 并将 SPPs 散射至自由空间, 散射光 与中心微孔透射光通过多光束干涉形成紧聚焦 光斑. 相对于单孔结构, 由于SPPs具有极强的表 面束缚性,进而能够突破衍射极限,增强透射,如 图2(a)所示为中心微孔-同心环透镜透射率与单 孔结构透射率的对比, T1为中心微孔同心环透镜 透射率, T2为单孔结构透射率, 相对于单孔结构, 中心微孔同心环透镜透射率高2-3个数量级,透 射率显著增加. 同心环的空气沟槽与两侧金属 形成了M-I-M结构,由径向偏振光高效激发SPPs, 当中心孔直径 $D_{\rm C}=720~{\rm nm}$ 时,与中心微孔透射 光波矢匹配,形成透射峰.如图2(b)所示为中心 微孔-同心环透镜焦斑 FWHM 随孔直径 Dc 的变 化关系, 当 $D_{\rm C} = 720$ nm时, 透镜焦斑 FWHM为 极小值,约为入射光波长的0.383倍,实现亚波长 紧聚焦. 中心微孔同心环透镜聚焦特性如图3所 示,图3(a)为光场强度分布,光场强度表达式为 $|E|^2 = |E_r|^2 + |E_z|^2$, 即光场强度由纵向分量和径 向分量组成,光场强度的分布总体与纵向分量的强 度分布相同, 而横向分量强度几乎可以忽略不计. 图 3(b) 为 R = 0, 即孔中心沿 z 方向光强分布曲线, 可见该透镜DOF约为入射光波长的0.99倍,插图 为焦面上 $(z = 2.15\lambda_0)$ 光强分布曲线, 焦斑 FWHM 约为入射光波长的0.383倍.

图 2 (a) 透射率随中心孔直径 $D_{\rm C}$ 的变化关系, T_1 为中心微孔同心环透镜透射率, T_2 单孔结构透射率; (b)中心 微孔-同心环透镜焦斑半高宽随中心孔直径 D_C 的变化关系

 $D_{C} = 720 \text{ nm}$

1.2

0.2 0.4 0.6 0.8 1.0

 $D_{\rm C}/\mu{\rm m}$

Fig. 2. (a) The transmittances of the PL consisting of a micro-hole and concentric rings T_1 and of the PL consisting of a single micro-hole T_2 as functions of the diameter of the micro-hole $D_{\rm C}$; (b) FWHM as a function of $D_{\rm C}$ for the PL consisting of a micro-hole and concentric rings.

图 3 $D_{\rm C} = 720$ nm 时,中心微孔 - 同心环透镜聚焦特性 (a) 光场强度分布图; (b) R = 0,即孔中心沿 z 方向光 强分布曲线 (插图为焦面上 ($z = 2.15\lambda_0$) 光强分布曲线)

Fig. 3. Focusing properties of the PL consisting of a micro-hole and concentric rings for $D_{\rm C} = 720$ nm. (a) Intensity distribution; (b) The intensity profile along the z direction for R = 0, and the inset is the intensity profile on the focal plane for $z = 2.15\lambda_0$.

3.2 中心 T 形微孔同心环透镜

尽管中心微孔同心环透镜具有一定的聚焦能力,但其聚焦特性表现为焦深浅、焦距短、具有一定半高宽的亚波长聚焦,使其应用受到一定的限制,为进一步压缩焦斑,增大焦距,改善透镜的聚 焦特性,引入阶梯结构,将中心圆孔改为T形微孔. 中心T形微孔-同心环透镜结构侧视图如图4(a)所示,其中,*D*_{C1}为小孔直径,定为720 nm 保持不变, D_{C2} 为大孔直径,二者差值为阶梯长度 wg_1 ,阶梯 深度固定为150 nm.利用中心T形微孔的阶梯结 构进行相位调制,可将焦点进一步推离金属表面, 同时阶梯结构对于阶梯表面的SPPs具有明显的反 射作用,可进一步压缩焦斑,如图4(b)所示为中心 T形微孔-同心环透镜半高宽随阶梯长度 wg_1 的变 化关系,当 $wg_1 = 0$ 时,为前面所述的中心微孔-同 心环透镜,当 $wg_1 = 145$ nm时,焦斑得到进一步压 缩,其半高宽约为入射光波长的0.378 倍,进而将阶

图4 (a) 中心 T 形微孔-同心环透镜结构侧视图; (b) 中心 T 形微孔-同心环透镜半高宽随阶梯长度 wg1 的变化关系; (c) 中心 T 形微孔-同心环透镜焦深和焦距随阶梯长度 wg1 的变化关系; (d) 阶梯长度 wg1 = 145 nm 时, 中心 T 形微孔-同心环透镜光场强度分布图

Fig. 4. (a) The cross-section of the PL consisting of a T-shape micro-hole and concentric rings; (b) FWHM as a function of the width of the staircase wg_1 ; (c) focal length and DOF as functions of the wg_1 ; (d) intensity distribution for $wg_1 = 145$ nm.

梯长度 wg_1 确定为145 nm. 如图 4 (c) 所示为中心 T形微孔-同心环透镜焦深和焦距随阶梯长度 wg_1 的变化关系, 当 $wg_1 = 145$ nm 时, 在保证亚波长紧 聚焦的前提下, 焦深取为一峰值, 焦深与焦距均显 著增加. 如图 4 (d) 所示为阶梯长度 $wg_1 = 145$ nm 时, 中心T形微孔-同心环透镜光场强度分布图, 其 焦斑相对于中心微孔-同心环透镜焦斑焦距变长, 焦深加深, 半高宽进一步压缩, 聚焦特性得到了显 著的改善.

3.3 中心 T 形微孔阶梯形同心环透镜

为进一步压缩焦斑,增加焦距,加深焦深,在 同心环上同样蚀刻周期性阶梯结构,将同心环透 射光反射至轴心可以同时实现阶梯表面 SPPs 相位 的调制和传播方向的控制.如图5(a)所示为中心 T形微孔-阶梯形同心环透镜结构侧视图,其中阶 梯结构标记方法与同心环标记方式相同.为确定 最优的阶梯长度,首先将第一级同心环改为阶梯形 同心环,阶梯长度为wg2,其他同心环结构不变,如 图 5 (b) 所示为透镜焦距和焦深随 wg2 的变化关系, 当 $wg_2 = 0$ 时为中心T形微孔-同心环透镜,由图 可见,将同心环改为阶梯形同心环后,焦距和焦深 都得到了一定幅度的增加, 当 $wg_2 = 125$ nm 时最 佳,因此在其余同心环上依次添加长度为125 nm 的阶梯结构.如图5(c)所示为中心T形微孔-阶梯 形同心环透镜焦距和焦深随阶梯形同心环数目的 变化关系,当阶梯数量为4时,焦距和焦深达到最 优值,因此在中心T形微孔和同心环结构之间添加 四级阶梯形同心环结构时,能使更多光束反射至中 心,有效增加焦距和焦深.如图5(d)所示为由中心 T形微孔、四个阶梯形同心环和三个同心环构成的 透镜光场分布,实现了长焦深、长焦距、亚波长紧 聚焦.

图5 (a) 中心T形微孔-阶梯形同心环透镜结构侧视图,除中心孔阶梯外,阶梯形同心环结构依次标记为第1,2,3, 4,…级(为方便标注,仅给出侧视图的一半);(b)透镜焦距和焦深随第一级阶梯形同心环阶梯长度 *wg*₂ 的变化关系,当 *wg*₂ = 125 nm 时最佳;(c) 中心T形微孔-阶梯形同心环透镜焦距和焦深随阶梯形同心环数目的变化关系;(d) 由中心T形 微孔、四个阶梯形同心环和三个同心环构成的透镜的光场分布,实现了长焦深、长焦距、亚波长紧聚焦

Fig. 5. (a) The cross-section of the PL consisting of a T-shape micro-hole, concentric rings and multi-level step-like structures; (b) focal length and DOF as functions of the wg_2 , where the compromised optimum is at $wg_2 = 125$ nm; (c) focal length and DOF as functions of the number of step-like concentric rings; (d) intensity distribution of the PL consisting of a T-shape micro-hole, three concentric rings and four multi-level step-like structures, where a subwavelength-scale tightly focusing with a long depth and a long focal length is achieved.

4 结 论

本文利用有限元方法模拟分析了径向偏振光 激发下的中心微孔-同心环结构、中心T形微孔-同 心环结构和中心 T 形微孔-阶梯形同心环结构等三 种PL透镜的聚焦特性. 在本文提出的第三个结构 中,中心T形微孔透射光与由阶梯形同心环散射至 自由空间的SPPs通过多光束干涉,实现了亚波长 尺度上的紧聚焦; 该结构在对阶梯表面的 SPPs 提 供相位调制的同时,控制SPPs的传播方向,可进 一步压缩焦斑, 增加焦距, 加深焦深, 改善透镜的 聚焦特性. 基于理论基础, 本文构建了一种由中心 T形微孔、四个阶梯形同心环和三个同心环构成 的PL透镜,在波长为632.8 nm的径向偏振光激发 下,获得了焦深 $2.5\lambda_0$ 、半高宽 $0.388\lambda_0$ 、焦距 $3.22\lambda_0$ 的亚波长紧聚焦,相对于文献[12]中PL透镜的聚 焦效果,在确保长焦深的同时,焦斑更小、焦距更 长. 相对于高数值孔径光学透镜, 本文提出的PL 透镜具有结构紧凑、尺寸小、易于集成的优点,满 足了纳米光子学对于器件微型化和高度集成化的 要求,并且,利用该PL透镜所获得的紧聚焦光斑尺 寸(0.388λ₀)优于采用高数值孔径透镜紧聚焦结果 $(0.43\lambda_0)^{[27]}$.这种长焦深、长焦距、亚波长紧聚焦 PL透镜在纳米光子集成、近场光学成像与探测、纳 米光刻等相关领域具有潜在的应用价值.

参考文献

- Chen J, Li Z, Zhang X, Xiao J, Gong Q 2013 Sci. Rep. 3 1451
- [2] Raether H 1988 Surface plasmons on smooth surfaces (Berlin Heidelberg: Springer)
- [3] Ghaemi H F, Thio T, Grupp D E, Ebbesen T W, Lezec
 H J 1998 *Phys. Rev. B* 58 6779
- [4] Martin-Moreno L, Garcia-Vidal F, Lezec H, Pellerin K, Thio T, Pendry J, Ebbesen T 2001 *Phys. Rev. Lett.* 86 1114
- [5] Lezec H J, Degiron A, Devaux E, Linke R, Martin-Moreno L, Garcia-Vidal F, Ebbesen T W 2002 Science 297 820

- [6] Zheng G G, Xu L H, Pei S X, Chen Y Y 2014 Chin. Phys. B 23 034213
- [7] Chen J, Wang C, Lu G, Li W, Xiao J, Gong Q 2012 Opt. Express. 20 17734
- [8]~ Wang J, Fu Y Q 2013 Chin. Phys. B ${\bf 22}$ 090206
- [9] Zhang M, Wang J, Tian Q 2013 Opt. Express. 21 9414
- [10] Chen W, Abeysinghe D C, Nelson R L, Zhan Q 2009 Nano Lett. 9 4320
- [11] Yi J M, Cuche A, Devaux E, Genet C, Ebbesen T W 2014 ACS Photonics 1 365
- [12] Peng R, Li X, Zhao Z, Wang C, Hong M, Luo X 2014 Plasmonics 9 55
- [13] Chen J 2013 Plasmonics 8 931
- [14] Song W T, Lin F, Fang Z Y, Zhu X 2010 Acta Phys.
 Sin. 59 6921 (in Chinese) [宋文涛,林峰,方哲宇,朱星 2010 物理学报 59 6921]
- [15] Ebbesen T W, Lezec H, Ghaemi H, Thio T, Wolff P 1998 Nature 391 667
- [16] Genet C, Ebbesen T W 2007 Nature 445 39
- [17] Goh X M, Lin L, Roberts A 2011 J. Opt. Soc. Am. B 28 547
- [18] Liu Z, Lee H, Xiong Y, Sun C, Zhang X 2007 Science 315 1686
- [19] Smolyaninov I I, Hung Y J, Davis C C 2007 Science 315 1699
- [20] Kim S, Jin J, Kim Y J, Park I Y, Kim Y, Kim S W 2008 *Nature* 453 757
- [21] Lee B, Kim S, Kim H, Lim Y 2010 Prog. Quantum Electron. 34 47
- [22] Li L, Li T, Wang S, Zhu S, Zhang X 2011 Nano Lett. 11 4357
- [23] Jia B, Shi H, Li J, Fu Y, Du C, Gu M 2009 Appl. Phys. Lett. 94 151912
- [24] Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G
 H, Du L, Zhu S, Lei T, Yuan X C 2013 Nat. Commun.
 4 2891
- [25] Zhao W Q, Tang F, Qiu L R, Liu D L 2013 Acta Phys.
 Sin. 62 054201 (in Chinese) [赵维谦, 唐芳, 邱丽荣, 刘大礼 2013 物理学报 62 054201]
- [26] Wang Z, Gao C Q, Xin J T 2012 Acta Phys. Sin. 61
 124209 (in Chinese) [王铮, 高春清, 辛璟焘 2012 物理学报
 61 124209]
- [27] Wang H F, Shi L P, Lukyanchuk B, Sheppard C, Chong C T 2008 Nature Photonics 2 501
- [28] Jackson J D 1999 Classical electrodynamics (3rd ed.) (New York: Wiley)
- [29] Vial A, Grimault A S, Macías D, Barchiesi D, de La Chapelle M L 2005 Phys. Rev. B 71 085416
- [30] Rakic A D, Djurišic A B, Elazar J M, Majewski M L 1998 Appl. Opt. 37 5271

Plasmonic lens with long focal length and tight focusing under illumination of a radially polarized light^{*}

Lu Yun-Qing[†] Hu Si-Leng Lu Yi Xu Ji Wang Jin[‡]

(College of Optoelectronic Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China)
 (Received 3 August 2014; revised manuscript received 19 December 2014)

Abstract

Plasmonic lens (PL) is a nano-optical device, with which a tight focusing spot in a subwavelength-scale can be achieved by exciting and controlling surface plasmon polaritons (SPPs), thus the diffraction limit can be broken for attaining the shorter effective wavelength of the SPPs. The key issue in studying the PL is to achieve a tight focusing point and focus-control effectively. Optimal plasmonic focusing can be achieved by utilizing the radially polarized light and the rotational symmetric structures of the PL. Radially polarized light is a cylindrical vector beam whose local polarization of electric field is always parallel to the radial direction. As a radially polarized light is used as the incident light in a PL, the SPPs can be excited in all directions, so as to increase the efficiency of focussing. The focussing efficiency can be further increased, and the characteristics of the focus, such as spot size, shape, and strength etc., can be manipulated through appropriate designs of the PL structures. In this work, under an illumination of a radially polarized light, a new type of plasmonic lens is proposed to achieve a long depth of focus (DOF), a long focal length, and a sub-wavelength-scale tight focussing spot. This kind of plasmonic lens consists of a T-shape micro-hole, concentric rings, and multi-level step-like structures. The focussing properties of such plasmonic lenses are analyzed in terms of the finite element method (FEM). Simulation results show that SPPs can be excited efficiently in such structures and the tight-focusing is realized via the multiple-beam interference between the light radiating from the concentric rings and the transmitted light from the center hole. The T-shape micro-hole and step-like concentric ring structures can provide control for the phase modulation and the propagation direction of the SPPs along the bottom of the groove, thus leading to a compressed focal spot, a longer focal length, an increased depth of focus, and to improving the focussing properties. In an optimized PL design, a focal spot of $\sim 2.5\lambda_0$ DOF, $\sim 0.388\lambda_0$ FWHM, and $\sim 3.22\lambda_0$ focal length is achieved under the illumination of a radially polarized light ($\lambda_0 = 632.8$ nm). The PL structure is compact, and can be easily integrated with other nano-devices. The PL proposed above has potential applications in nano-scale photonic integration, near-field imaging and sensing, nano-photolithography, and in other related areas.

Keywords: Plasmonic lens, radially polarized light, tight focusing, long focal lengthPACS: 73.20.Mf, 42.25.Hz, 42.50.St, 42.82.CrDOI: 10.7498/aps.64.097301

^{*} Project supported by the Nanjing University of Posts and Telecommunications Foundation, China (Grant Nos. NY211060, NY213028, NY212008), and the Jiangsu Provincial Research Foundation for Basic Research, China (Grant No. BK20131383).

[†] Corresponding author. E-mail: luyq@njupt.edu.cn

 $[\]ddagger$ Corresponding author. E-mail: jinwang@njupt.edu.cn