物理学报 Acta Physica Sinica

双势垒抛物势阱磁性隧道结隧穿磁阻及自旋输运性质的研究 黄政 龙超云 周勋 徐明 Study on tunneling magnetoresistance effects in parabolic well magnetic tunneling junction with double barriers Huang Zheng Long Chao-Yun Zhou Xun Xu Ming

引用信息 Citation: Acta Physica Sinica, 65, 157301 (2016) DOI: 10.7498/aps.65.157301 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.157301 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I15

您可能感兴趣的其他文章 Articles you may be interested in

Heusler 合金 Co₂MnAl(100) 表面电子结构、磁性和自旋极化的第一性原理研究

First-principles study of the electronic structure, magnetism, and spin-polarization in Heusler alloy $Co_2MnAl(100)$ surface

物理学报.2015, 64(14): 147301 http://dx.doi.org/10.7498/aps.64.147301

不同N掺杂构型石墨烯的量子电容研究

Quantum capacitance performance of different nitrogen doping configurations of graphene 物理学报.2015, 64(12): 127301 http://dx.doi.org/10.7498/aps.64.127301

单轴压力下 Ge₂X₂Te₅(X=Sb, Bi) 薄膜拓扑相变的第一性原理研究 First-principles study on the uniaxial pressure induced topological quantum phase transitions of Ge₂X₂Te₅ (X=Sb, Bi) thin films 物理学报.2015, 64(10): 107301 http://dx.doi.org/10.7498/aps.64.107301

磁场中的拓扑绝缘体边缘态性质

Edge mode of InAs/GaSb quantum spin hall insulator in magnetic field 物理学报.2015, 64(9): 097302 http://dx.doi.org/10.7498/aps.64.097302

I掺杂金红石 TiO₂(110) 面的第一性原理研究

First-principles investigation of iodine doped rutile TiO₂(110) surface 物理学报.2014, 63(20): 207302 http://dx.doi.org/10.7498/aps.63.207302

双势垒抛物势阱磁性隧道结隧穿磁阻及自旋 输运性质的研究^{*}

黄政^{1)2)†} 龙超云²⁾ 周勋³⁾ 徐明⁴⁾

1)(贵州理工学院电气工程学院,贵阳 550003)
 2)(贵州大学,光电子技术及应用重点实验室,贵阳 550025)
 3)(贵州师范大学物理与电子科学学院,贵阳 550001)
 4)(四川师范大学物理与电子工程学院,贵阳 610066)
 (2016年4月18日收到;2016年5月27日收到修改稿)

采用相干量子输运理论和传递矩阵的方法,在抛物势阱磁性隧道结(F/PW/F)的铁磁和半导体势阱间插 入另一种半导体作为势垒,构造具有双势垒的抛物势阱磁性隧道结作为研究对象,研究了抛物势阱宽度、自旋 轨道耦合效应、角度效应及插入势垒厚度对隧穿磁阻及自旋输运性质的影响.计算结果表明,通过适当调节 Rashba 自旋轨道耦合强度和插入势垒的厚度,可以实现隧穿磁阻(TMR)的调制,能获得较大的TMR值,这 些特点有助于促进新型磁性隧道结的开发和应用.

关键词: 自旋轨道耦合, 磁性隧道结, 隧穿磁阻 **PACS:** 73.20.At, 75.70.Cn, 72.25.-b

DOI: 10.7498/aps.65.157301

1引言

20世纪90年代, Datta 和 Das 利用外电场调节 的自旋轨道耦合作用开创性的提出了自旋三极 管概念, 通过 Rashba 自旋轨道耦合效应可有效 地调控电子的自由度, 因而对铁磁/半导体/铁磁 (F/S/F)等异质结自旋输运性质的研究成为近年 来的热点^[1-8].其中, Mireles 和 Kirczenow^[9]提出 了F/S/F磁性隧道结中的相干量子输运理论,并 利用 Landauer 弹道输运理论研究了相干量子输 运.Schapers等^[10]研究了F/S/F晶体管中的干涉 效应,发现在考虑量子干涉情况下,可以将自旋信 号放大.Autes等^[11]对磁性隧道结磁性层厚度变 化对输运影响的研究, 理论上预言了FM 厚度取适 当值时, 会得到很大的隧穿磁电阻.Guo等^[12]在 研究电子隧穿铁磁体/绝缘体(半导体)/铁磁体时, 揭示了量子尺寸效应和Rashba 自旋轨道耦合效应 对渡越时间的影响.谢征微等^[13,14]研究了Rashba 自旋轨道耦合强度和不同材料层厚度对磁性半导 体双自旋过滤隧道结中隧穿磁阻(TMR)和隧穿电 导的影响,结果发现TMR随Rashba 自旋轨道耦 合强度的增加发生振荡频率增大的非周期振荡.

同时,随着半导体工艺技术的不断进步,人们 利用分子束外延 (MBE)或金属有机化学气相沉积 (MOCVD)方法制造出抛物势阱结构,结构独特的 势阱具有一些不同于常规势阱的特殊性质^[15],进 而引起了学者们的关注.一般对抛物量子阱的研究 工作主要集中在远红外吸收、磁致输运、回旋共振、 光致发光等几个方面^[16–18],而对抛物量子阱考虑 了自旋属性的研究报道还很少.2003年,Gusev和

^{*} 国家自然科学基金(批准号: 11465006, 11565009)、贵州省科学技术基金(批准号: 黔科合J字[2014]2078号)、贵州省教育厅优秀 科技创新人才奖励计划(批准号: 黔教合KY[2015]489)和贵州理工学院高层次人才科研启动经费项目(批准号: XJGC20150401) 资助的课题.

[†]通信作者. E-mail: huangz888@163.com

^{© 2016} 中国物理学会 Chinese Physical Society

Quivy^[19]在不同宽度的抛物量子阱中对磁致电阻 进行测量时,观测到了不规则的峰值,并将此现象 归结为传输过程中磁场相关的交换能对磁致电阻 峰值的影响. 2006年, Hashimzade和Hasanov^[20] 研究抛物量子阱中的自旋相关电导率,得到了负磁 致电阻的普遍表达式,并阐述了其产生机理. 2010 年,刘德等^[21]研究了抛物势阱磁性隧道结中的自 旋输运及磁致电阻效应,发现隧穿概率和隧穿磁 电阻随抛物势阱宽度的增加发生周期性的振荡, Rashba 自旋耦合效应强度的增加加大了隧穿概率 和隧穿磁电阻的振荡频率. 2011年, Chen和Lu^[22] 研究了抛物势阱中电子的古斯-汉森位移,发现可 通过调节古斯-汉森位移的方法来分离不同自旋方 向的电子束.

本文在抛物势阱磁性隧道结(F/PW/F)的铁 磁和半导体势阱间插入另一种半导体作为势垒,构 造具有双势垒的抛物势阱磁性隧道结作为研究对 象,研究了半导体阱宽、阱深及半导体势垒对隧道 结隧穿磁阻及自旋极化率等自旋输运性质的影响.

2 理论和计算

考虑自旋电子通过含有双势垒的F/I/PW/ I/F抛物势阱磁性隧道结,结构模型如图1所示.F 表铁磁金属,PW代表抛物势阱,I代表势垒.采用 类似Stoner-Wohlfarth的磁化模型,其中电子能级 发生了分裂,自旋指向不同电子的能级差用一个交 换劈裂能 Δ 表示,左右两侧铁磁电极的磁矩 $m_{\rm L}$ 和 $m_{\rm R}$ 夹角用 θ 表示.为方便考虑,这里选取坐标系的 z轴平行于左边铁磁电极的磁矩 $m_{\rm L}$.本文中的PW 采用由半导体材料 GaAs/Al_xGa_{1-x}As/GaAs构成 的组分对称抛物势阱,用Al组分x来决定阱深 V_0 .

假定自旋极化的电子沿y轴方向由左边铁磁 层 (y < 0)隧穿长度是L的半导体对称抛物势阱并 隧穿至右边铁磁层 (y > L).通过施加外场,在半 导体抛物势阱区域中产生Rashba 自旋轨道耦合作 用.假设此半导体区域具有准一维波导形状,它能 够严格限制自旋极化电子的横向运动,并使其沿着 垂直隧道结界面的y方向输运.由于z方向上的势 阱很窄,故在通常实验条件下,此方向上只有最低 子能带被占据,所以这里选取该子能带能量为能量 零点,同时忽略此方向的贡献.为方便考虑,这里 半导体两端的势垒厚度取相同的数值.考虑了电 子与空间相关的有效质量,在单带有效质量近似 下,F/I/PW/I/F磁性隧道结的Hamiltonian可分 别表示为

$$\hat{H}_{\rm f} = \frac{1}{2} \hat{p}_y \frac{1}{m_{\rm f}^*} \hat{p}_y + \frac{1}{2} \Delta \sigma_Z, \qquad (1)$$

$$\hat{H}_d = \frac{1}{2} \hat{p}_y \frac{1}{m_d^*} \hat{p}_y + \frac{1}{2\hbar} \sigma_Z (\hat{p}_y \alpha_{\rm R} + \alpha_{\rm R} \hat{p}_y) + \delta E_{\rm C}, \qquad (2)$$

$$\hat{H}_{\rm S} = \frac{1}{2} \hat{p}_y \frac{1}{m_{\rm S}^*} \hat{p}_y + \frac{1}{2\hbar} \sigma_Z (\hat{p}_y \alpha_{\rm R} + \alpha_{\rm R} \hat{p}_y) + \delta E_{\rm C} + V(y), \qquad (3)$$

其中, \hat{p}_y 为电子的动量算符, $m_{\rm f}^*$ 为电子在铁磁体中 的有效质量, σ_Z 表示 Pauli 自旋矩阵, Δ 为铁磁体 中的交换劈裂能, $\delta E_{\rm C}$ 为铁磁体与半导体之间的导 带不匹配, $\alpha_{\rm R}$ 表示 Rashba 自旋轨道耦合参数.

抛物势阱结构势为

$$V(y) = \begin{cases} \frac{4V_0}{L^2} \left(y - \frac{L}{2}\right)^2, & d \le y \le L + d, \\ 0, & y < d, & y > L + d, \end{cases}$$
(4)

式中 V_0 表示抛物势阱的深度, L表示抛物势阱的宽度, 其中Al含量x的关系可由下式决定^[23,24]

$$V_0 = \begin{cases} 0.75x \text{ (eV)}, & 0 \leq x \leq 0.45, \\ 0.75x + 0.69(x - 0.45)^2 \theta \text{ (eV)}, & (5) \\ & 0.45 \leq x \leq 1. \end{cases}$$

对应 V_0 ,半导体Al_xGa_{1-x}As中电子的有效质量为

$$m_{\rm s}^* = (0.0665 + 0.0835x)m_{\rm e},$$
 (6)

其中 m_e 为自由电子的静止质量.于是,在铁磁区域 (y < 0 和 y > L + 2d)中电子的本征波函数可写为

$$\psi_{\mathrm{L}\sigma}(y) = A_{\mathrm{L}\sigma} \,\mathrm{e}^{\mathrm{i}\,k_{\mathrm{L}\sigma}\,y} + B_{\mathrm{L}\sigma} \,\mathrm{e}^{-\mathrm{i}\,k_{\mathrm{L}\sigma}\,y},$$

式中的L, R分别表示左边和右边的铁磁层; $k_{L\sigma}$ 和 $k_{R\sigma}$ 为铁磁体处于自旋态 σ 态时的Fermi波矢; $\sigma =\uparrow,\downarrow$ 表示分裂能带结构不同的自旋状态;

$$k_{\upsilon\sigma} = \sqrt{\frac{2m_{\rm f}}{\hbar^2} (E_{\rm f} - 1/2\lambda_{\sigma}\Delta)}$$

半导体势垒区域 (0 < y < d 和 L + d < y < L + 2d) 中电子的波函数为

$$\psi^{sv}_{\uparrow}(y) = C_{sv\uparrow} e^{ik^{sv}_{\uparrow}y} + D_{sv\uparrow} e^{-ik^{sv}_{\downarrow}y},$$

$$0 < y < d,$$

$$\psi^{sv}_{\downarrow}(y) = C_{sv\downarrow} e^{ik^{sv}_{\downarrow}y} + D_{sv\downarrow} e^{-ik^{sv}_{\uparrow}y},$$

$$L + d < y < L + 2d,$$
(10)

其中v = L, R分别表示左边和右边的势垒层, k_{σ}^{sv} 为势垒中处于自旋态 σ 态时的 Fermi 波矢,

$$k_{\sigma}^{\mathrm{s}\upsilon} = \sqrt{\frac{2m_{\mathrm{s}\upsilon}^{*}}{\hbar^{2}}(E_{\mathrm{f}} - \delta E_{\mathrm{C}}) + k_{\mathrm{Rs}\upsilon}^{2}} - \lambda_{\sigma}k_{\mathrm{Rs}\upsilon}.$$

对于半导体抛物势阱区域,把该区域分割为很薄的多个相互连接的矩形窄层,其层数 $j = 1, 2, 3, \dots, m, y_j$ 为第j层半导体和第j + 1层半导体交界处的坐标.

则对于半导体*j*层中,自旋相关的波函数可 以写为

$$\psi^{\rm sj}_{\uparrow}(y) = C_{\uparrow j} \,\mathrm{e}^{\mathrm{i}k^{\rm sj}_{\uparrow}y} + D_{\uparrow j} \,\mathrm{e}^{-\mathrm{i}k^{\rm sj}_{\downarrow}y},\tag{11}$$

$$\psi_{\downarrow}^{\mathrm{sv}}(y) = C_{\mathrm{sv}\downarrow} \,\mathrm{e}^{\mathrm{i}k_{\downarrow}^{\mathrm{sv}}y} + D_{\mathrm{sv}\downarrow} \,\mathrm{e}^{-\mathrm{i}k_{\uparrow}^{\mathrm{sv}}y},\qquad(12)$$

其中,

$$k_{\sigma}^{\rm sj} = \sqrt{2m_{\rm sj}^{*}(E_{\rm f} - \delta E_{\rm Cj} - V(y)/\hbar^{2} + k_{\rm R}^{2}) - \lambda_{\sigma}k_{\rm R}}$$
(13)

为半导体j层区域内 σ 自旋态的自旋轨道劈裂带的Fermi波矢, $k_{\rm R} = m_{\rm s}^* \alpha(y)/\hbar^2$ 为半导体j层中的Rashba自旋轨道波矢.

考虑边界处波函数的连续性和概率流守恒以 及旋量的坐标系变换关系,可以得到:

$$\psi_{f\sigma}^{\mathrm{L}}(0) = \psi_{\sigma}^{\mathrm{sL}}(0), \qquad (14)$$

$$\psi_{\sigma}^{\mathrm{sL}}(d) = \psi_{\sigma \, i=1}^{\mathrm{s}}(d),\tag{15}$$

$$\psi^{\mathbf{s}}_{\sigma j}(y_j) = \psi^{\mathbf{s}}_{\sigma j+1}(y_j) \quad j < m, \tag{16}$$

$$\psi^{\mathrm{s}}_{\sigma\,i=m}(L+d) = \psi^{\mathrm{sR}}_{\sigma}(L+d),\tag{17}$$

$$\begin{pmatrix} \psi_{\uparrow}^{\mathrm{sR}}(L+2d) \\ \psi_{\downarrow}^{\mathrm{sR}}(L+2d) \end{pmatrix} = \begin{pmatrix} \cos\frac{\theta}{2} & \sin\frac{\theta}{2} \\ -\sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{pmatrix} \begin{pmatrix} \psi_{f\uparrow}^{\mathrm{R}}(L+2d) \\ \psi_{f\downarrow}^{\mathrm{R}}(L+2d) \end{pmatrix}, \quad (18)$$
$$\mu_{0}\frac{\partial}{\partial u}\psi_{f\sigma}^{\mathrm{L}}(0)$$

$$= \left(\frac{\partial}{\partial y} + i\lambda_{\sigma}k_{\rm RsL}\right)\psi_{\sigma}^{\rm sL}(0), \tag{19}$$
$$\left(\mu_{\rm I}\frac{\partial}{\partial y} + i\lambda_{\sigma}k_{\rm RsL}\right)\psi_{\sigma}^{\rm sL}(d)$$

$$= \left(\frac{\partial}{\partial y} + i\lambda_{\sigma}k_{\rm R}\right)\psi^{\rm s}_{\sigma j=1}(d), \qquad (20)$$

$$\begin{pmatrix} \mu_j \overline{\partial y} + i\lambda_\sigma \kappa_{\rm R} \end{pmatrix} \psi^{\rm s}_{\sigma j}(y_j)$$

$$= \left(\frac{\partial}{\partial y} + i\lambda_\sigma k_{\rm R} \right) \psi^{\rm S}_{\sigma j+1}(y_j) \quad j < m,$$
(21)

$$\begin{pmatrix}
\left(\mu_{m}\frac{\partial}{\partial y}+i\lambda_{\sigma}k_{R}\right)\psi_{\sigma j=m}^{s}(L+d) \\
=\left(\frac{\partial}{\partial y}+i\lambda_{\sigma}k_{RsR}\right)\psi_{\sigma}^{sR}(L+d), \quad (22) \\
\left(\left(\frac{\partial}{\partial y}+ik_{RsR}\right)\psi_{\uparrow}^{sR}(L+2d) \\
\left(\frac{\partial}{\partial y}-ik_{RsR}\right)\psi_{\uparrow}^{sR}(L+2d) \\
=\left(\cos\frac{\theta}{2}\sin\frac{\theta}{2} \\
-\sin\frac{\theta}{2}\cos\frac{\theta}{2}\right)\begin{pmatrix}
\mu_{2}\frac{\partial}{\partial y}\psi_{f\downarrow}^{R}(L+2d) \\
\mu_{2}\frac{\partial}{\partial y}\psi_{f\downarrow}^{R}(L+2d)
\end{pmatrix}, \quad (23)$$

其中, $\mu_0 = \frac{m_{sL}^*}{m_f^*}$, $\mu_1 = \frac{m_{s1}^*}{m_{sL}^*}$, $\mu_j = \frac{m_{sj+1}^*}{m_{sj}^*}$, $\mu_m = \frac{m_{sR}^*}{m_{sm}^*}$, $\mu_2 = \frac{m_{sR}^*}{m_f^*}$ 与自旋 $\sigma = \uparrow, \downarrow$ 相对应的 有 $\lambda_{\uparrow\downarrow} = \pm 1$.由上述波函数的边界条件可得:

$$\begin{bmatrix} A_{\mathrm{L}\uparrow} \\ B_{\mathrm{L}\uparrow} \\ A_{\mathrm{L}\downarrow} \\ B_{\mathrm{L}\downarrow} \end{bmatrix} = \begin{bmatrix} T_{0\uparrow} & 0 \\ 0 & T_{0\downarrow} \end{bmatrix} \begin{bmatrix} T_{1\uparrow} & 0 \\ 0 & T_{1\downarrow} \end{bmatrix} \begin{bmatrix} T_{2\uparrow} & 0 \\ 0 & T_{2\downarrow} \end{bmatrix} \begin{bmatrix} T_{3\uparrow} & 0 \\ 0 & T_{3\downarrow} \end{bmatrix}$$
$$\times \begin{bmatrix} T_{\mathrm{PW}\uparrow} & 0 \\ 0 & T_{\mathrm{PW}\downarrow} \end{bmatrix} \begin{bmatrix} T_{4\uparrow} & 0 \\ 0 & T_{4\downarrow} \end{bmatrix} \begin{bmatrix} T_{5\uparrow} & 0 \\ 0 & T_{5\downarrow} \end{bmatrix}$$
$$\times \begin{bmatrix} T_{6\uparrow} & 0 \\ 0 & T_{6\downarrow} \end{bmatrix} \begin{bmatrix} T_{7\uparrow} & T_{7\uparrow} \\ T_{7\downarrow}' & T_{7\downarrow} \end{bmatrix} \begin{bmatrix} A_{\mathrm{R}\uparrow} \\ B_{\mathrm{R}\downarrow} \\ B_{\mathrm{R}\downarrow} \end{bmatrix}.$$
(24)

157301-3

若令传递矩阵为S,则

$$\begin{bmatrix} A_{L\uparrow} \\ B_{L\uparrow} \\ A_{L\downarrow} \\ B_{L\downarrow} \end{bmatrix} = \boldsymbol{S} \begin{bmatrix} A_{R\uparrow} \\ B_{R\uparrow} \\ A_{R\downarrow} \\ B_{R\downarrow} \end{bmatrix},$$
(25)

$$\boldsymbol{S} = \begin{bmatrix} T_{0\uparrow} & 0\\ 0 & T_{0\downarrow} \end{bmatrix} \begin{bmatrix} T_{1\uparrow} & 0\\ 0 & T_{1\downarrow} \end{bmatrix} \begin{bmatrix} T_{2\uparrow} & 0\\ 0 & T_{2\downarrow} \end{bmatrix} \begin{bmatrix} T_{3\uparrow} & 0\\ 0 & T_{3\downarrow} \end{bmatrix}$$
$$\times \begin{bmatrix} T_{PW\uparrow} & 0\\ 0 & T_{PW\downarrow} \end{bmatrix} \begin{bmatrix} T_{4\uparrow} & 0\\ 0 & T_{4\downarrow} \end{bmatrix} \begin{bmatrix} T_{5\uparrow} & 0\\ 0 & T_{5\downarrow} \end{bmatrix}$$
$$\times \begin{bmatrix} T_{6\uparrow} & 0\\ 0 & T_{6\downarrow} \end{bmatrix} \begin{bmatrix} T_{7\uparrow} & T_{7\uparrow}'\\ T_{7\downarrow}' & T_{7\downarrow} \end{bmatrix}, \qquad (26)$$

上式中S为一个 4×4 的矩阵,其中, $T_{0\sigma}$ — $T_{7\sigma}$ 表达式见附录A.

据此就可以得到自旋电子态为 σ 的隧穿系数 T_{σ} ,对于自旋向上电子的隧穿系数为

$$T_{\uparrow} = \frac{k_{\mathrm{R}\uparrow}}{k_{\mathrm{L}\uparrow}} \left| A_{\mathrm{R}\uparrow} \right|^2 + \frac{k_{\mathrm{R}\downarrow}}{k_{\mathrm{L}\uparrow}} \left| A_{\mathrm{R}\downarrow} \right|^2, \qquad (27)$$

其中,

$$A_{\rm R\uparrow} = -\frac{S_{33}}{S_{13}S_{31} - S_{11}S_{33}},$$

$$A_{\rm R\downarrow} = \frac{S_{31}}{S_{13}S_{31} - S_{11}S_{33}}.$$
 (28)

自旋向下电子的隧穿系数为

$$T_{\downarrow} = \frac{k_{\mathrm{R}\uparrow}}{k_{\mathrm{L}\downarrow}} \left| A_{\mathrm{R}\uparrow}' \right|^2 + \frac{k_{\mathrm{R}\downarrow}}{k_{\mathrm{L}\downarrow}} \left| A_{\mathrm{R}\downarrow}' \right|^2, \qquad (29)$$

其中,

$$A'_{R\uparrow} = -\frac{S_{13}}{S_{11}S_{33} - S_{31}S_{13}},$$

$$A'_{R\downarrow} = \frac{S_{11}}{S_{11}S_{33} - S_{31}S_{13}}.$$
(30)

根 据 Landauer-Buttiker 方 程^[25] 隧 穿 电 导 定义为

$$G_{\sigma}(\theta) = \frac{e^2}{h} T_{\sigma}(\theta).$$
(31)

在隧穿系数 $T_{\sigma}(\theta)$ 的基础上,便可以得到隧穿电导. 隧穿磁阻(TMR)则可以定义为

$$\mathrm{TMR}(\theta) = \frac{[G_{\uparrow}(\theta) + G_{\downarrow}(\theta)] - [G_{\uparrow}(\pi) + G_{\downarrow}(\pi)]}{G_{\uparrow}(\pi) + G_{\downarrow}(\pi)}.$$
(32)

自旋极化率P定义为

$$P = \frac{T_{\uparrow}(\theta) - T_{\downarrow}(\theta)}{T_{\uparrow}(\theta) + T_{\downarrow}(\theta)}.$$
(33)

3 数值结果与讨论

对插入了双势垒的F/I/PW/I/F抛物势阱磁 性隧道结自旋相关的输运性质进行了研究,在数 值计算中选取的参数如下:有效质量这里定义 为 $m_{\rm f}^* = m_{\rm e}$,其中 $m_{\rm e}$ 是自由电子的质量;铁磁金 属中的交换劈裂能设为 $\Delta = 3.46$ eV,同时,导 带不匹配 $\delta E_{\rm C} = 2.4$ eV, $E_{\rm f} = 2.47$ eV.对于铁 磁金属来说,Fermi波矢 $k_{\rm F\uparrow} = 0.44 \times 10^8$ cm⁻¹, $k_{\rm F\downarrow} = 1.05 \times 10^8$ cm⁻¹^[9]. 左右两侧铁磁和半 导体抛物势阱间的势垒厚度取相同的数值. 这 里采用GaAs 的Rashba 波矢 $k_{\rm R} = m_{\rm s}^* \alpha_{\rm R}/\hbar^2$,将 Rashba 自旋轨道耦合强度表示为 $k_{\rm R}/k_0$,其中 $k_0 = 1.0 \times 10^5$ cm⁻¹.

图 2 给出了不同角度 θ 时隧穿磁阻 TMR 随半导体阱宽变化的关系.取 Rashba 波矢 $k_{\rm R} = 2k_0$, 由图可以看出,不同角度下的隧穿磁阻随阱宽的 增加作同周期的简谐振荡,相邻波峰、波谷之间 的距离均相等,且振幅随角度 θ 的增加越来越小. 在 $\theta = 0$ 处,有较高的 TMR 值,此时接近 20%,在 $\theta = \pi$ 处, TMR 的值恒为零.在 Rashba 波矢取某 些值时, TMR 的符号也由正变成了负.

图 2 不同角度下隧穿磁阻随半导体阱宽的变化 $(k_{\rm R} = 2k_0, d = 1 \text{ nm})$

Fig. 2. Tunnel magnetic resistance at $k_{\rm R} = 2k_0$ as a function of the width of the parabolic-well L(d = 1 nm).

图 3 给出了*TMR*在不同角度下随自旋轨道耦 合强度的变化关系,取半导体长度 $L = 1.0 \mu m$.随 着 $k_{\rm R}/k_0$ 的增加,TMR相邻波峰和波谷间的距离 逐渐缩短,TMR呈现出振荡周期变小、峰谷比变 大的振荡行为.TMR随角度的变化趋势与图 2 相 似,当两端铁磁区域磁矩角度 θ 在到 π 间变化时, TMR呈单调递减的规律,而且在 Rashba 波矢取某 些值时, TMR 的符号也由正变成了负. 在 $\theta = 0$ 时, Rashba 波矢取为1.12 k_0 , 4.38 k_0 , 6.21 k_0 , 7.62 k_0 和 8.71 k_0 处TMR 的峰值可以达到20%, 而在 $\theta = \pi$ 处, TMR 的值恒为零. 这是因为随着角度的增加, 交换劈裂能抑制了隧道结中的电子遂穿.

图 3 不同角度下隧穿磁阻随 Rashba 自旋轨道耦合强度 $k_{\rm R}/k_0$ 的变化 (d = 1 nm)

Fig. 3. Tunnel magnetic resistance at $L = 1.0 \ \mu\text{m}$ as a function of Rashba spin-orbit coupling strength $k_{\rm R}/k_0$ $(d = 1 \ \text{nm})$.

自旋极化率是表征隧穿电子束中不同指向自旋电子隧穿差别的物理量.从图4可见,自旋极化率*P*随阱宽的增加呈周期性振荡,势垒厚度的增加不改变其振荡周期.但插入势垒后,使自旋极化率出现了相位差,且势垒宽度增加,相位差增大.同时,自旋极化率的峰谷比随垒厚增加明显增大,峰值增加,当势垒强度*d* = 2 nm时,自旋极化率的值最大,接近40%,说明势垒的存在极大地影响了自旋电子的极化输运,也表明适当调控插入势垒的宽度,可以在此种结构的隧道结中获得较高的自旋极化率.图中自旋极化率出现了负值,表明出现了自旋翻转现象.

图 5 展示了隧穿磁电阻 TMR 在不同势全宽 度下随半导体阱宽的变化关系,取 Rashba 波矢 $k_{\rm R} = 2k_0$,其中虚线、实线和点虚线分别表示势垒 厚度取 d = 0, 1, 2 nm 时的情况.从图中可以看 出,不同势垒厚度下的隧穿磁电阻随半导体抛物势 阱宽度的增加做同周期的简谐振荡,邻近波峰、波 谷间的距离恒定不变,这是隧道结量子尺寸效应引 起的,且 TMR 中出现了负值.对于势垒厚度的增 加,TMR 则呈现出振荡周期不变,峰谷比增大的输 运行为,并且在 d = 2 nm 时的 TMR 值达到最大, TMR 达到 22.4%,同时,势垒的存在也使 TMR 的 相位发生了移动.

图 4 不同势垒宽度下自旋极化率随半导体阱宽的变化 自旋轨道耦合大小设为 $2k_0$ 虚线、实线、点划线分别对应 势垒宽度 d = 0, 1, 2 nm 的情况

Fig. 4. Spin polarization (P) againsts the L for $k_{\rm R} = 2k_0$, the dash, solid and dash-dotted lines correspond to d = 0, 1, 2 nm, respectively.

图5 不同势全宽度下隧穿磁阻随半导体阱宽的变化 自 旋轨道耦合大小设为 2k₀ 虚线、实线、点划线分别对应势 垒宽度 d = 0, 1, 2 nm 的情况

Fig. 5. Tunnel magnetic resistance against the L for $k_{\rm R} = 2k_0$, the dash, solid and dash-dotted lines correspond to d = 0, 1, 2 nm, respectively.

图 6 给出了自旋极化率随 Rashba 自旋轨道耦 合强度 $k_{\rm R}/k_0$ 的变化情况.可以看出,随着 $k_{\rm R}/k_0$ 的增加,自旋极化率 P 发生峰值增大、周期和峰谷 比均减少的准周期性振荡,具有共振隧穿的特性. 增加势垒的厚度,自旋极化率出现了负值,出现了 自旋翻转现象,同时自旋极化率的极大值显著增 大,在垒厚 d = 2 nm时,自旋极化率值最大.这 表明,在选取的参数合适时可得到较高的自旋极 化率.

图 7 展示了隧穿磁电阻 TMR 在不同势垒厚度 下随自旋轨道耦合的变化.从图可见,随着 k_R/k₀ 的增加, TMR 的曲线振荡得越来越快,其振荡振幅 逐渐增大,相邻波峰间的距离也逐渐减小,波峰也 变得越窄,具有共振传输的行为.随着势垒厚度的 增加, TMR的峰值是逐渐增加的, 这与图 5 得到结论一致. 由此可见, 通过适当调节 Rashba 自旋轨道耦合强度和插入势垒的厚度, 可以实现 TMR 的调制, 获得较大的 TMR 值.

图 6 不同势全宽度下自旋极化率随 Rashba 自旋轨道耦 合强度 $k_{\rm R}/k_0$ 的变化 虚线、实线、点划线分别对应势垒 宽度 d = 0, 1, 2 nm 的情况

Fig. 6. Spin polarization as a function of Rashba spin-orbit coupling strength $k_{\rm R}/k_0$ the tunnel barrier d = 0 nm, d = 1 nm, and d = 2 nm, respectively.

图 7 不同势全宽度下隧穿磁阻随 Rashba 自旋轨道耦合 强度 $k_{\rm R}/k_0$ 的变化 虚线、实线、点划线分别对应势全宽 度 d = 0, 1, 2 nm 的情况

Fig. 7. Tunnel magnetic resistance as a function of Rashba spin-orbit coupling strength $k_{\rm R}/k_0$ with the tunnel barriers d = 0 nm, d = 1 nm, and d = 2 nm, respectively.

为了进一步说明插入势垒对输运性质的作用, 研究了铁磁和半导体抛物阱间插入对称双势垒厚 度对隧穿磁阻TMR的影响,如图8所示,其中势垒

附录A

厚度从零增加到5 nm, 虚线、实线和点虚线分别表 示自旋耦合强度 $k_{\rm R}/k_0 = 1, 2, 3$ 时的情况. 从图中 可以看到, 插入势垒厚度从零增加到d = 1.2 nm 时, TMR 随插入势垒d厚度的增加呈现出指数形 式的明显增加, 且这种变化趋势在取不同自旋轨道 耦合强度时均相同, 继续增加势垒厚度, TMR 值增 加减缓, 逐渐趋于饱和, 在d增大到2 nm 后, 无论 势垒层厚度如何改变, TMR 的值基本恒定不变. 这 进一步说明薄势垒的存在有利于隧穿磁阻的增加, 只要选取合适的插入势垒厚度, 完全可以获得大而 稳定的 TMR 值.

图 8 不同自旋轨道耦合强度下, 隧穿磁阻 TMR 随插入 势垒厚度的变化关系

Fig. 8. Tunnel magnetic resistance at $L = 1.0 \ \mu m$ as a function of the thickness of the barrier with $k_{\rm R}/k_0 = 1, 2, 3$, respectively.

4 结 论

本文考虑了Rashba自旋轨道耦合效应,以纳 米级半导体作为势垒,采用量子相干理论和传递矩 阵的方法计算了F/I/PW/I/F抛物势阱磁性隧道 结的隧穿磁阻和自旋极化率.TMR随自旋轨道耦 合强度的增加表现出了典型的共振隧穿特性,在抛 物势阱隧道结中插入势垒后,明显提高了TMR的 值,这表明通过适当调节Rashba自旋轨道耦合强 度和插入势垒的厚度,可以实现TMR的调制,获得 较大的TMR值,这些特点可以为新型自旋电子器 件的开发和设计提供理论上的参考.

$$S = \begin{bmatrix} T_{0\uparrow} & 0\\ 0 & T_{0\downarrow} \end{bmatrix} \begin{bmatrix} T_{1\uparrow} & 0\\ 0 & T_{1\downarrow} \end{bmatrix} \begin{bmatrix} T_{2\uparrow} & 0\\ 0 & T_{2\downarrow} \end{bmatrix} \begin{bmatrix} T_{3\uparrow} & 0\\ 0 & T_{3\downarrow} \end{bmatrix} \begin{bmatrix} T_{\mathrm{PW}\uparrow} & 0\\ 0 & T_{\mathrm{PW}\downarrow} \end{bmatrix} \begin{bmatrix} T_{4\uparrow} & 0\\ 0 & T_{4\downarrow} \end{bmatrix} \begin{bmatrix} T_{5\uparrow} & 0\\ 0 & T_{5\downarrow} \end{bmatrix} \begin{bmatrix} T_{6\uparrow} & 0\\ 0 & T_{6\downarrow} \end{bmatrix} \begin{bmatrix} T_{7\uparrow} & T_{7\uparrow}' \\ T_{7\downarrow}' & T_{7\downarrow}' \end{bmatrix}$$

$$\begin{split} T_{0\sigma} &= \frac{1}{2\mu_{0}ik_{L\sigma}} \begin{bmatrix} \mu_{0}ik_{L\sigma} & 1\\ \mu_{0}ik_{L\sigma} & -1 \end{bmatrix}, \\ T_{1\uparrow} &= \begin{bmatrix} 1 & 1\\ ik_{\uparrow}^{sL} + ik_{RsL} - ik_{\downarrow}^{sL} + ik_{RsL} \end{bmatrix}, \\ T_{1\downarrow} &= \begin{bmatrix} 1 & 1\\ ik_{\downarrow}^{sL} - ik_{RsL} - ik_{\uparrow}^{sL} - ik_{RsL} \end{bmatrix}, \\ T_{2\uparrow} &= \begin{bmatrix} \frac{-\mu k_{\downarrow}^{sL} + k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\uparrow}^{sL}d} \\ \frac{\mu k_{\uparrow}^{sL} + k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\uparrow}^{sL}d} \\ \frac{\mu k_{\uparrow}^{sL} + k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\uparrow}^{sL}d} \\ \frac{\mu k_{\uparrow}^{sL} + k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\downarrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\downarrow}^{sL}d} \\ \frac{\mu k_{\uparrow}^{sL} + k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\downarrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{-ik_{\downarrow}^{sL}d} \\ \frac{\mu k_{\downarrow}^{sL} - k_{RsL}}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\downarrow}^{sL}d} \\ \frac{1}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\downarrow}^{sL}d} \\ \frac{1}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\uparrow}^{sL}d} \frac{-i}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\downarrow}^{sL}d} \\ \frac{1}{\mu k_{\uparrow}^{sL} + \mu k_{\downarrow}^{sL}} e^{ik_{\downarrow}^{sL}d} (-ik_{\downarrow}^{s1} + ik_{R1}) e^{-ik_{\downarrow}^{sL}d} \end{bmatrix}, \\ T_{3\downarrow} = \begin{bmatrix} e^{ik_{\downarrow}^{sL}d} & e^{-ik_{\uparrow}^{sL}d} \\ \frac{\mu k_{\downarrow}^{sm} + k_{Rm}}{\mu k_{\downarrow}^{sm}} e^{-ik_{\uparrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{-ik_{\uparrow}^{sm}L + d} \\ \frac{\mu k_{\downarrow}^{sm} + k_{Rm}}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{-ik_{\downarrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{-ik_{\downarrow}^{sm}L + d} \\ \frac{\mu k_{\downarrow}^{sm} + k_{Rm}}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{-ik_{\downarrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} \\ \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} \\ \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} \\ \frac{1}{\mu k_{\uparrow}^{sm} + \mu k_{\downarrow}^{sm}} e^{ik_{\uparrow}^{sm}L + d} & \frac{1}{\mu k_{\uparrow}^{s$$

$$\begin{split} T_{5\uparrow} &= \begin{bmatrix} e^{ik_{\uparrow}^{\mathrm{R}}L+d} & e^{-ik_{\downarrow}^{\mathrm{R}}L+d} \\ (\uparrow^{\mathrm{sR}} + k_{\mathrm{RsR}})e^{ik_{\uparrow}^{\mathrm{sR}}L+d} & (-\downarrow^{\mathrm{sR}} + k_{\mathrm{RsR}})e^{-ik_{\downarrow}^{\mathrm{sR}}L+d} \end{bmatrix}, \\ T_{5\downarrow} &= \begin{bmatrix} e^{ik_{\downarrow}^{\mathrm{R}}L+d} & e^{-ik_{\uparrow}^{\mathrm{R}}L+d} \\ (\downarrow^{\mathrm{sR}} - k_{\mathrm{RsR}})e^{ik_{\downarrow}^{\mathrm{sR}}L+d} & (-\uparrow^{\mathrm{sR}} - k_{\mathrm{RsR}})e^{-ik_{\uparrow}^{\mathrm{sR}}L+d} \end{bmatrix}, \\ T_{6\uparrow} &= \begin{bmatrix} \frac{k_{\downarrow}^{\mathrm{sR}} + k_{\mathrm{RsR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\uparrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\uparrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\uparrow}^{\mathrm{sR}} + k_{\mathrm{RsR}}^{\mathrm{sR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\uparrow}^{\mathrm{sR}} + k_{\mathrm{RsR}}^{\mathrm{sR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\uparrow}^{\mathrm{sR}} + k_{\mathrm{RsR}}^{\mathrm{sR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{ik_{\uparrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\downarrow}^{\mathrm{sR}} - k_{\mathrm{RsR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{ik_{\uparrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\downarrow}^{\mathrm{sR}} - k_{\mathrm{RsR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{ik_{\uparrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\downarrow}^{\mathrm{sR}} - k_{\mathrm{RsR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{ik_{\uparrow}^{\mathrm{sR}}L+2d} & \frac{1}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{-ik_{\downarrow}^{\mathrm{sR}}L+2d} \\ \frac{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}}{k_{\uparrow}^{\mathrm{sR}} + k_{\downarrow}^{\mathrm{sR}}} e^{ik_{\downarrow}^{\mathrm{sR}}L+2d} & \cos \frac{\theta}{2} e^{-ik_{\mathrm{R}\uparrow}L+2d} \\ \cos \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\uparrow} e^{ik_{\mathrm{R}\uparrow}L+2d} & \cos \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\uparrow} e^{-ik_{\mathrm{R}\uparrow}L+2d} \\ \sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow}} e^{ik_{\mathrm{R}\downarrow}L+2d} & \cos \frac{\theta}{2} e^{-ik_{\mathrm{R}\downarrow}L+2d} \\ \cos \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow} e^{ik_{\mathrm{R}\downarrow}L+2d} & -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow} e^{-ik_{\mathrm{R}\downarrow}L+2d} \\ -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow}} e^{ik_{\mathrm{R}\uparrow}L+2d} & -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow} e^{-ik_{\mathrm{R}\downarrow}L+2d} \\ -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\uparrow} e^{ik_{\mathrm{R}\uparrow}L+2d} & -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow} e^{-ik_{\mathrm{R}\downarrow}L+2d} \\ -\sin \frac{\theta}{2} \mu_{2} k_{\mathrm{R}\downarrow} e^{ik_{\mathrm{R}\uparrow}L+2d} & -\sin \frac{\theta}{2} \mu$$

$$T_{\rm PW\uparrow} = \begin{bmatrix} \frac{k_{\uparrow}^{\rm sj+1} + u_j k_{\downarrow}^{\rm sj}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{\mathrm{i}(k_{\uparrow}^{\rm sj+1} - k_{\uparrow}^{\rm sj})y_j} & \frac{u_j k_{\downarrow}^{\rm sj} - k_{\downarrow}^{\rm sj+1}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{-\mathrm{i}(k_{\downarrow}^{\rm sj+1} + k_{\uparrow}^{\rm sj})y_j} \\ \\ \frac{u_j k_{\uparrow}^{\rm sj} - k_{\uparrow}^{\rm sj+1}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{\mathrm{i}(k_{\uparrow}^{\rm sj+1} + k_{\downarrow}^{\rm sj})y_j} & \frac{u_j k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{-\mathrm{i}(k_{\downarrow}^{\rm sj+1} - k_{\downarrow}^{\rm sj})y_j} \end{bmatrix} \\ T_{\rm PW\downarrow} = \begin{bmatrix} \frac{k_{\downarrow}^{\rm sj+1} + u_j k_{\uparrow}^{\rm sj}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{\mathrm{i}(k_{\downarrow}^{\rm sj+1} - k_{\downarrow}^{\rm sj})y_j} & \frac{u_j k_{\uparrow}^{\rm sj} - k_{\uparrow}^{\rm sj+1}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{-\mathrm{i}(k_{\uparrow}^{\rm sj+1} - k_{\downarrow}^{\rm sj})y_j} \\ \\ \frac{u_j k_{\downarrow}^{\rm sj} - k_{\downarrow}^{\rm sj+1}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{\mathrm{i}(k_{\downarrow}^{\rm sj+1} + k_{\uparrow}^{\rm sj})y_j} & \frac{u_j k_{\downarrow}^{\rm sj} - k_{\uparrow}^{\rm sj+1}}{u_j (k_{\uparrow}^{\rm sj} + k_{\downarrow}^{\rm sj})} \, \mathrm{e}^{-\mathrm{i}(k_{\uparrow}^{\rm sj+1} - k_{\downarrow}^{\rm sj})y_j} \end{bmatrix} \end{bmatrix}$$

- [3] Zheng Y L, Lu M C 2015 Acta Phys. Sin. 64 177501 (in Chinese) [郑勇林, 卢孟春 2015 物理学报 64 177501]
- [4] Wang H Z, Zheng S S, Chen C C 2015 Chin. Phys. Lett.
 32 107303
- [2] Moser J, Zenger M 2006 Appl. Phys. Lett. **89** 162106 [5] Ge

[1] Datta S, Das B 1990 Appl. Phys. Lett. 56 665

 $[5]\ {\rm Gong}\ {\rm S}$ J, Duan C G 2015 Acta Phys. Sin. ${\bf 64}$ 187103

(in Chinese) [龚士静, 段纯刚 2015 物理学报 64 187103]

- [6] Tang X Y, Lu J W 2015 Chin. Phys. Lett. 32 117302
 [7] Du J, Wang S X, Yuan A G 2010 Acta Phys. Sin. 59 2760 (in Chinese) [杜坚, 王素新, 袁爱国 2010 物理学报
- [8] Matsuyama T, Hu C M 2002 *Phys. Rev. B* **65** 155322
- [9] Mireles F, Kirczenow G 2002 Phys. Rev. B 66 214415
- [10] Schapers Th, Nitta J, Heersche H B 2001 Phys. Rev. B 64 125314
- [11] Autes G 2011 Phys. Rev. B 84 134404

59 2760]

- [12] Guo Y, Way B, Gu B L, Kawazoe Y 2001 Phys. Lett. A 291 453
- [13] Xie Z W, Li B Z 2002 Acta Phys. Sin. 51 399 (in Chinese) [谢征微, 李伯藏 2002 物理学报 51 399]
- [14] Jin L, Zhu L, Li L, Xie Z W 2009 Acta Phys. Sin. 58
 8577 (in Chinese) [金莲, 朱林, 李玲, 谢征微 2009 物理学报 58 8577]

- [15] Yuen W P 1993 Phys. Rev. B 48 17316
- [16] Burnet J H, Cheong H M, Paul W 2013 Phys. Rev. B 48 7940
- [17] Maranowski K D, Gossard A C 2000 J. Appl. Phys. 77 2746
- [18] Niculescu E C, Burileanu L 2003 Mod. Phys. Lett. B 17 1253
- [19] Gusev G M, Quivy A A 2003 Phys. Rev. B 67 155313
- [20] Hashimzade F M, Hasanov Kh A 2006 Phys. Rev. B 73 235349
- [21] Liu D, Zhang H M, Jia X M 2011 Acta Phys. Sin. 60 017506 (in Chinese) [刘德, 张红梅, 贾秀敏 2011 物理学报 60 017506]
- [22] Chen X, Lu X J 2011 Phys. Rev. B 83 195409
- [23] Herling G H, Rustgi M L 1992 J. Appl. Phys. 71 796
- [24] Qi X H, Kong X J, Liu J J 1998 Phys. Rev. B 58 10578
- [25] Landauer R 1957 IBM J. Res. Dev. 1 223

Study on tunneling magnetoresistance effects in parabolic well magnetic tunneling junction with double barriers^{*}

Huang Zheng^{1)2)†} Long Chao-Yun²⁾ Zhou Xun³⁾ Xu Ming⁴⁾

1) (Electrical Engineering College, Guizhou Institute of Technology, Guiyang 550003, China)

2) (Key Laboratory for Photoelectric Technology and Application, Guizhou University, Guiyang 550025, China)

3) (School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China)

4) (College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610066, China)

(Received 18 April 2016; revised manuscript received 27 May 2016)

Abstract

In this paper, we construct a ferromagnet/semiconductor/ferromagnet parabolic well magnetic tunneling junction with double barriers as research object by inserting another semiconductor as a barrier between ferromagnetic and semiconductor potential wells. On the basis of the quantum coherent transport theory and transfer matrix method, we investigate the spin polarized electron transport and the tunnel magnetic resistance (TMR) in parabolic well magnetic tunneling junction with double barriers. We derive the analytical expressions of transmission probability, tunnel magnetic resistance and spin polarization from the new magnetic tunneling junction mode. The significant quantum size, Rashba spin orbit interaction, the angle effect and the thickness of the double barriers layer are discussed simultaneously. The results indicate that the tunnel magnetic resistance shows periodic variation as the width of the parabolic-well at different angles. The TMR is monotonically decreasing when the angle θ varying from 0 to π , which reflects the structure of the spin valve effect. Meanwhile, results also show that the spin polarization and the tunnel magnetic resistance oscillate with the same period for different barriers thickness. The phase difference appears after inserting the barriers. With increasing the barriers width, phase difference becomes large. The amplitude and peak to alley ratio of the spin polarization and the tunnel magnetic resistance are increase with the barrier width increases. Furthermore, the spin polarization make quasiperiodic oscillation that the oscillation amplitudes become large, the period and peak to alley ratio are decrease as the Rashba spin-orbit coupling strength increases. It appears the spin flip phenomenon as increasing the thickness of the barriers. The TMR shows the typical properties of resonant tunneling with the increasing of the spin orbit coupling strength. In order to better reveal the role of the symmetry double tunnel barriers in the parabolic well structure, we calculate TMR against the thickness of the double barriers. It is found that the existence of the double tunnel barriers increase the TMR and the spin polarization significantly, which shows that the large TMR value can be obtained with the suitable layer thickness of the double barriers layer and the Rashba spin-orbital coupling coefficients. These characteristics are helpful to promote the development and application of new magnetic tunnel junctions.

Keywords: spin-orbit coupling, magnetic tunneling junction, tunneling magnetoresistancePACS: 73.20.At, 75.70.Cn, 72.25.-bDOI: 10.7498/aps.65.157301

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11465006, 11565009), the Guizhou Province Science and Technology Fund of China (Grant No. J[2014]2078), Guizhou Provincial Department of Education Outstanding Scientific and Technological Innovation Talent Incentive Plan, China (Grant No. KY[2015]489), and the High Level Talent Research Fund Project of Guizhou Institute of Technology, China (Grant No. XJGC20150401).

[†] Corresponding author. E-mail: huangz888@163.com