物理学报 Acta Physica Sinica

自由基分子 BeH 外电场特性 徐梅 令狐荣锋 支启军 杨向东 吴位巍

Properties of free radical BeH in external electric field

Xu Mei Linghu Rong-Feng Zhi Qi-Jun Yang Xiang-Dong Wu Wei-Wei

引用信息 Citation: Acta Physica Sinica, 65, 163102 (2016) DOI: 10.7498/aps.65.163102 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.163102 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I16

您可能感兴趣的其他文章 Articles you may be interested in

应变对两层半氢化氮化镓薄膜电磁学性质的调控机理研究

Strain field tuning the electronic and magnetic properties of semihydrogenated two-bilayer GaN nanosheets 物理学报.2016, 65(2): 023101 http://dx.doi.org/10.7498/aps.65.023101

分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响

Analyses of the influences of molecular vacancy defect on the geometrical structure, electronic structure and vibration characteristics of Hexogeon energetic material 物理学报.2015, 64(24): 243102 http://dx.doi.org/10.7498/aps.64.243102

Ne 原子与 HF 分子碰撞振转激发分波截面的研究

Study on ro-vibrational excitation cross sections of Ne-HF 物理学报.2013, 62(6): 063102 http://dx.doi.org/10.7498/aps.62.063102

He 原子与 N₂ 分子相互作用势的理论研究

Theoretical study on He-N₂ interaction potential 物理学报.2013, 62(1): 013103 http://dx.doi.org/10.7498/aps.62.013103

LiF 分子在外电场中的物理性质研究

Study on the physical properties of molecule LiF in external electric field 物理学报.2012, 61(9): 093102 http://dx.doi.org/10.7498/aps.61.093102

自由基分子BeH外电场特性*

徐梅¹) 令狐荣锋^{1)2)†} 支启军¹) 杨向东³) 吴位巍⁴)

(贵州师范大学物理与电子科学学院,贵阳 550001)
 (贵州师范学院物理与电子科学学院,贵阳 550018)
 (四川大学原子与分子物理研究所,成都 610065)
 (凯里学院物理与电子工程学院,凯里 556011)
 (2016年4月7日收到; 2016年6月8日收到修改稿)

本文采用量子力学从头算方法,运用密度泛函B3LYP方法在6-311G基组水平上对不同外加电场 (-0.02—0.02 a.u.)下自由基分子BeH基态的稳定电子结构进行了计算,研究了外电场对BeH分子键长、能 量、电荷分布、能级分布、能隙及红外光谱的影响规律.结果表明,随着H→Be方向外电场的增加,分子键长、 原子电荷值、偶极矩以及红外强度递减;而能量、能隙和振动频率递增.另外,随着反向电场(Be→H)的增加, 能量较大幅度升高.

关键词: BeH, 电子结构, 外电场, 物理特性 **PACS:** 31.15.ac, 31.15.es, 33.15.-e

1引言

分子在外场作用下的特性研究是一个新兴的 研究领域,而研究物质在外场作用下发生的物理化 学变化,对了解材料激发特性、老化机理等十分重 要.在外场作用下物质分子中会产生大量的高能量 的分子激发态和次级电子,能量较高的激发态和次 级电子会发生一系列物理化学变化,如化学键的断 裂、阈上电离、阈上解离、键软化、库仑爆炸、分子 在强场中的重新取向以及新激发态的生成等.分 子中将电子和原子核束缚在一起的库仑场强约为 10 V/cm,若场强与之相当或更强,则在这样的外 场作用下,有许多新现象发生.理论计算主要是研 究外场作用下原子分子的基态性质,如分子几何结 构、能量、偶极矩、极化率和超极化率、电子和质 子转移及非线性光学性质等^[1,2].近年来,双原子 分子外电场特性的研究时有报道^[3-5],例如,吴永

DOI: 10.7498/aps.65.163102

刚等^[6]研究了外电场下 CdSe 的基态性质和光谱特性; 李世雄等^[7]研究了 ZnSe 在外电场下的基态性质和激发特性; 徐红萍和尹跃洪^[8]研究了外电场下AgCl 分子的结构与性质等.

BeH分子是研究作为测试新方法的目标分子 BeH₂的基础^[9],而BeH₂材料具有氢浓度高(相对 固态氢化物),发热量大,对热中子的吸收截面小等 独特的核物理性质,是一种非常重要的火箭固体燃 料;同时BeH也是研究作为激光X射线靶的壳层材 料BeD₂体系的结构与性质的基础^[10,11].所以研究 BeH分子的势能函数和外电场特性,进而研究其材 料的物理化学特性,在能源、航天等领域有着非常 重要的意义.伍冬兰等^[12]研究了外电场对BeH 分 子结构和势能函数的影响,徐梅等^[13]研究了BeH, BeD,BeT 分子基态(X²Σ⁺)的结构与势能函数,在 本文中我们将进一步研究自由基分子BeH的外电 场特性.

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金(批准号: 11364007)、贵州省科技创新人才团队(批准号: 黔科合人才团队[2015]4015号)、贵州省普通高等学校 创新团队项目(批准号: 黔教合人才团队字[2014]35号))、贵州省科学技术基金(批准号: 黔科合J字[2013]2219号, 黔科合J字 [2013]2242号)和贵州省教育厅自然科学基金(批准号: 黔教合KY字[2012]051号)资助的课题.

[†]通信作者. E-mail: linghu@gznu.edu.cn

^{© 2016} 中国物理学会 Chinese Physical Society

本文首先采用量子力学从头算的几种方法, 优 化得到了BeH分子基态的稳定构型, 通过与实验值 的比较, 选取B3LYP/6-311G方法, 计算了BeH分 子基态的几何结构、分子占据轨道和空轨道的能 级分布、谐振频率和红外光谱强度在外加电场(沿 分子轴(H→Be连线)方向(-0.02—0.02 a.u.))作用 下随外加电场变化的规律, 由此讨论了外加电场对 BeH基态分子键长、能级、能量、谐振频率、红外光 谱强度以及偶极矩和离解能等的影响.

2 理论与方法

本文首先采用不同方法结合不同的基组,对 BeH分子进行结构优化计算.将计算结果与实验值

图 1 无外电场时的 BeH 分子基态稳定结构

Fig. 1. Stable structure of Ground state of BeH molecule without external electric field.

进行比较,筛选出较适合的方法及基组,按照 BeH 分子坐标(见图1),对BeH进行优化计算,在 Z轴方向即H→Be连线方向,加上不同的外电场 (-0.02-0.02 a.u.).通过计算结果,分析BeH分子 的几何构型、电荷分布、偶极矩、振动频率、轨道能 级分布以及红外强度等与外加电场强度的方向和 大小的关系.在计算过程中,分子的哈密顿量中加 入了 $\mu \times F$, μ 为分子的偶极矩矢量,F为外电场 矢量.

3 计算结果

3.1 无外加电场时BeH分子的几何构型

我们采用了QCISD(T)、CCSD(T)、B3PW91 和B3LYP等方法,在aug-cc-pVTZ和P6-311G等 基组水平上分别对BeH分子的基态($X^2\Sigma^+$)进行 结构计算,优化出的平衡核间距 R_e 和分子体系能 量列于表1中,并与实验值进行比较.由表1可以 看出其平衡间距 R_e 的计算结果与实验值^[14]符合 较好.

从表1中数据可以看出,用B3LYP/6-311G方法计算所得到的平衡核间距与实验值最接近,所以,我们选用B3LYP/6-311G方法对BeH分子在外加电场作用下的分子结构进行优化计算.

	表1	不同方法优化 BeH 分子基态的结构	
Table 1.	Optimizing structures	of the ground state of BeH molecule by differen	nt methods.

方法	QCISD(T)	CCSD(T)	B3PW91/6-311G	B3LYP/6-311G	实验值 ^[14]
$R_{ m e}/{ m nm}$	0.13541	0.13533	0.13524	0.13454	0.13426
E/Hartree	-15.19648	-15.19530	-15.24912	-15.26273	

注: 1 Hartree = 110.5×10^{-21} J.

3.2 不同外加电场作用下BeH分子各项 物理特性的计算结果

3.2.1 外加电场对BeH分子键长和能量的 影响

当在Z轴(H \rightarrow Be连线)方向加以不同电场 (-0.020—0.020 a.u.)时,采用B3LYP/6-311G方法 对BeH分子进行结构优化,得到稳定分子结 构. 计算结果表明,在不同外电场下(-0.0200.020 a.u.), BeH分子的基态仍然是 $X^2\Sigma^+$, 它的能量和键长见表 2.

从表2中数据可以看出, BeH分子键长随着正向电场F的增大而减小;随着反向电场的增大而增大,变化规律见图2.BeH分子的总能量随反向电场F的逐渐增大而逐渐减小;正向电场较小时总能量随F的增加而增加;但当F继续增加,总能量反而减小,变化规律见图3.偶极矩随电场F的增大而几乎呈直线减小,变化规律见图4.

表 2 不同外加电场下 BeH 分子基态的键长、能量和偶极矩 Table 2. Bond length, energy and dipole moment of the ground state of BeH molecule under different applied electric field.

$F/\mathrm{a.u.}$	-0.020	-0.015	-0.010	-0.005	0.0	0.005	0.10	0.015	0.020
$R_{\rm e}/{\rm nm}$	0.13870	0.13733	0.13620	0.13529	0.13454	0.13405	0.13359	0.13328	0.13314
$E/\mathrm{Hartree}$	-15.2623181	-15.2625418	-15.2626627	-15.2627176	-15.2627316	-15.2627251	-15.262708	-15.2626907	-15.2626809
$\mu/{\rm Debye}$	1.0099	0.7727	0.5355	0.2974	0.0577	-0.1844	-0.4300	-0.6804	-0.9372

注: 1 Debye = 3.33564×10^{-30} C · m.

Fig. 2. Variation of bond length of BeH molecule within external electric field.

Fig. 3. Variation of total energy of BeH molecule within external electric field.

3.2.2 外加电场对BeH分子电荷分布的 影响

采取上述同样的方法,计算得到的BeH分子在 不同外电场(-0.02—0.02 a.u.)作用下的电荷分布, 结果见表3.

从表3中数据看出,由于BeH分子本身不带电荷,所以Be原子带正电荷,H原子带负电荷,且Be 原子与H原子所带电荷是等量异号的.Be原子周 围的正电荷密度随着正向电场的增大而逐渐减小, H原子的电负性随着正向电场的增大也逐渐减小, 也就是说,BeH分子中Be和H原子周围相应的电 荷密度都是随电场的增大而逐渐减小的.

表 3 外加电场对 BeH 分子电荷分布的影响 Table 3. Influence of external electric field on the charge distribution of BeH molecule.

$F/\mathrm{a.u.}$	-0.020	-0.015	-0.010	-0.005	0	0.005	0.10	0.015	0.020
Be	0.266325	0.237691	0.208457	0.178730	0.148639	0.118328	0.087969	0.057754	0.027902
Н	-0.266325	-0.237691	-0.208457	-0.178730	-0.148639	-0.118328	-0.087969	-0.057754	-0.027902

.)

3.2.3 外加电场对BeH分子轨道能级分布 的影响

运用同样的方法,还可以得到外电场作用下 BeH分子的最低空轨道能量 E_L ,最高占据轨道 能量 E_H 和能隙 E_G ,见表4,表中能隙 E_G 按下式 计算:

$$E_{\rm G} = (E_{\rm L} - E_{\rm H}) \times 27.2 \ ({\rm eV}).$$
 (1)

表 4 不同外加场下 BeH 分子最高占据轨道能量、最低空 轨道能量和能隙

$F/\mathrm{a.u.}$	$E_{\rm L}/{\rm a.u.}$	$E_{\mathrm{H}}/\mathrm{a.u.}$	$E_{\rm G}/{\rm eV}$
-0.020	-0.04666	-0.17878	3.593664
-0.015	-0.04774	-0.18355	3.694032
-0.010	-0.04910	-0.18897	3.804464
-0.005	-0.05071	-0.19497	3.923872
0	-0.05257	-0.20149	4.050624
0.005	-0.05468	-0.20849	4.183632
0.010	-0.05699	-0.21588	4.321808
0.015	-0.05953	-0.22364	4.463792
0.020	-0.06230	-0.23171	4.607952

Table 4. HUMO, LUMO and energy gap of BeH molecule in different external fields.

因 *E*_L 在数值上是与分子的电子亲和势相当 的, *E*_L 能级越低, 分子越容易得到电子. *E*_H 表征了 分子失去电子能力的强弱, *E*_H 越高, 分子越容易失 去电子. 而 *E*_G 反映了电子从占据轨道向空轨道发 生跃迁的能力, 表征了分子参与化学反应的能力. BeH 分子在外电场作用下的 *E*_L 和 *E*_H 随电场变化 规律见图 5. 可以看出, BeH分子的 *E*_L 和 *E*_H 均随外电场 强度的增大而逐渐减小, 且外电场对 *E*_H 的影响比 对 *E*_L 的影响大, *E*_H 比 *E*_L 减小得快, 从而导致 *E*_G 能隙随外电场强度的增大而逐渐增大, 且几乎呈线 性增大, 见图 6.

图5 BeH分子能级分布随外加电场的变化

Fig. 5. Variation of energy level distribution of BeH molecule within external electric field.

图 6 BeH 分子能隙随外加电场的变化

Fig. 6. Variation of the energy gap of BeH molecule within the applied electric field.

表 5 不同外加场下 BeH 分子的振动频率及 IR 强度 Table 5. Vibration frequency and IR intensity of BeH molecule under different external applied field.

$F/\mathrm{a.u.}$	-0.020	-0.015	-0.01	-0.005	0.0	0.005	0.01	0.015	0.020
f/cm^{-1}	1854.1101	1912.5526	1961.2181	2001.6276	2034.7424	2057.3117	2077.7302	2091.3370	2097.7830
IR/arb. units	146.3781	143.5698	141.1775	139.1584	137.4853	136.3371	135.2938	134.5965	134.2656

3.2.4 外加电场对BeH分子红外光谱的影响

在不同外加电场作用下,通过对BeH分子的 频率分析,可以得到在外电场作用下其红外光谱的 振动频率和强度,见表5.图7为以BeH分子的谐 振频率为横坐标,IR强度为纵坐标,所绘出的BeH 分子红外光谱的振动频率和强度随外电场的变化 规律.

可以看出, BeH分子的振动频率随着外加电场 的增大而增大, 且增大的幅度随外加电场的增大而 减小; 红外强度随着外加电场的增大逐渐减小, 且 减小的幅度也随外加电场的增大而减小.

图 7 BeH 分子振动频率及红外强度随外加电场的变化 Fig. 7. The variation of the vibration frequency and infrared intensity of BeH molecule within different electric field.

4 结 论

本文先计算出Be分子稳定构型,在此基础上 选择采用B3LYP/6-311G方法优化计算出在不同 外加电场作用下BeH分子的稳定构型.计算结果 表明,随着H→Be方向外电场的增加,分子键长、原 子电荷值、偶极矩以及红外强度递减;而能隙和振 动频率递增.随着正向外电场(H→Be)的增加,能 量缓慢升高,而随着反向电场(Be→H)的增加总能 量较大幅度升高.

参考文献

Zhu Z H, Yu H G 1997 Molecular Structure and Molecular Potential Function (Beijing: Science Press) (in Chinese) [朱正和, 俞华根 1997 分子结构与分子势能函数 (北京: 科学出版社)]

- [2] Zhu Z H 1996 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in Chinese) [朱正和 1996 原子 分子反应静力学 (北京: 科学出版社)]
- [3] Yan Y Z, Hu L B 2010 Chin. Phys. B 19 047203
- [4] Xu G L, Liu X F, Xie H X, Zhang X Z, Liu Y F 2010 *Chin. Phys. B* **19** 113101
- [5] Luo Y P, Tien L G, Tsai C H, Li M H, Li F Y 2011 *Chin. Phys. B* 20 017302
- [6] Wu Y G, Li S X, Hao J X, Xu M, Sun G Y, Linghu R F 2015 Acta Phys. Sin. 64 153102 (in Chinese) [吴永刚, 李世雄, 郝进欣, 徐梅, 孙光宇, 令狐荣锋 2015 物理学报 64 153102]
- [7] Li S X, Wu Y G, Linghu R F, Sun G Y, Zhang Z P, Qin S J 2015 Acta Phys. Sin. 64 043101 (in Chinese) [李世 雄, 吴永刚, 令狐荣锋, 孙光宇, 张正平, 秦水介 2015 物理 学报 64 043101]
- [8] Xu H P, Yin Y H 2016 Journal of Atomic And Molecular Physics 33 2 (in Chinese) [徐红萍, 尹跃洪 2016 原子 与分子物理学报 33 2]
- [9] Shayesteh A, Tereszchuk K, Bernath P F 2003 J. Chem. Phys. 118 3622
- [10] Bai G 2002 Laser and Development of Photoelectronis
 39 26 (in Chinese) [白光 2002 激光与光电子学进展 39 26]
- [11] Jiang W S, Wu K Y 2005 Sichuan Nom. Univ. (Natural Science) 28 469 (in Chinese) [江文世, 吴开映 2005 四川 师范大学学报 28 469]
- [12] Wu D L, Wu A J, Tan B, Wen Y F, Wan H J, R uan W, Xie A D 2016 Journal of Atomic And Molecular Physics
 33 27 (in Chinese) [伍冬兰, 吴爱金, 谭彬, 温玉峰, 万慧 军, 阮文, 谢安东 2016 原子与分子物理学报 33 27]
- [13] Xu M, Wang Y K, Linghu R F, Yang X D 2007 Acta Phys. Sin. 56 0769 (in Chinese) [徐梅, 汪荣凯, 令狐荣锋, 杨向东 2007 物理学报 56 0769]
- [14] Huber K P, Herzberg G 1979 Molecular Spectrum and Molecular Structure (IV) Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Company)

Properties of free radical BeH in external electric field*

Xu Mei¹⁾ Linghu Rong-Feng^{1)2)†} Zhi Qi-Jun¹⁾ Yang Xiang-Dong³⁾ Wu Wei-Wei⁴⁾

1) (School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001, China)

2) (School of Physics and Electronic Science, Guizhou Normal College, Guiyang 550018, China)

3) (Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China)

4) (School of Physics and Electronic Engineering, Kaili University, Kaili 556011, China)

(Received 7 April 2016; revised manuscript received 8 June 2016)

Abstract

In this paper, the QCISD(T), CCSD(T), B3PW91 and B3LYP methods and the basis sets of aug-cc-pVTZ, 6-311G are used to calculate the structure of the ground state of free radical BeH molecule. The equilibrium distance and the energy of the molecule are optimized. The calculated results are compared with the experimental data, and the B3LYP method with the basis sets 6-311G is found to be able to provide the results that are the closest to the experimental values. So, in this paper the density function B3LYP method and the basis sets 6-311G are chosen and used to optimize the geometric structures of the ground state of free radical molecule of BeH in electric fields ranging from -0.02 to 0.02 a.u. The effects of external electric field on bond distance, system energy, charge distribution, energy levels, dipole moment, HOMO-LUMO gap, and infrared spectrum are studied. The results show that the molecular bond distance, the total atomic charge, the dipole moment, and the IR intensity decrease gradually with the increase of the external electric field along the molecular axis H \rightarrow Be. At the same time, the total energy, the HOMO-LUMO gap, and the frequencies increase. The total energy increases sharply while the reverse electric field Be \rightarrow H increases.

Keywords: BeH free radical, external electric field, electronic structure, physical properties PACS: 31.15.ac, 31.15.es, 33.15.-e DOI: 10.7498/aps.65.163102

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11364007), the Guizhou Provincial Science and Technology Innovation Talent Team, China (Grant No. [2015]4015), the Innovation Team Foundation of the Education Department of Guizhou Province, China (Grant No. [2014]35), the Science-Technology Foundation of Guizhou Province, China (Grant Nos. J[2013]2219, J[2013]2242), and the Natural Science Foundation of Education Department of Guizhou Province, China (Grant No. KY [2012]051).

[†] Corresponding author. E-mail: linghu@gznu.edu.cn