物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

用于惯性约束核聚变激光驱动器的激光二极管抽运 Nd, Y:CaF₂ 激光放大器的实验研究 唐熊忻 邱基斯 樊仲维 王昊成 刘悦亮 刘昊 苏良碧

Experimental study of diode-pumped Nd, Y:CaF₂ amplifier for inertial confinement fusion laser driver

Tang Xiong-Xin Qiu Ji-Si Fan Zhong-Wei Wang Hao-Cheng Liu Yue-Liang Liu Hao Su Liang-Bi

引用信息 Citation: Acta Physica Sinica, 65, 204206 (2016) DOI: 10.7498/aps.65.204206 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.204206 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I20

您可能感兴趣的其他文章 Articles you may be interested in

基于光参量变频与放大的高灵敏红外成像技术

Sensitive detection of ultra-weak infrared image using parametric frequency up-conversion and amplification

物理学报.2016, 65(1): 014209 http://dx.doi.org/10.7498/aps.65.014209

基于 MgO:APLN 的 1.57µm/3.84µm 连续波内腔多光参量振荡器研究 Continuous-wave 1.57 µm/3.84 µm intra-cavity multiple optical parametric oscillator based on MgO:APLN 物理学报.2015, 64(22): 224215 http://dx.doi.org/10.7498/aps.64.224215

基于 MgO:QPLN 的多光参量振荡器电场调谐特性理论与实验研究 Electric field tuning characteristic of multiple optical parametric oscillator based on MgO:QPLN 物理学报.2015,64(16):164208 http://dx.doi.org/10.7498/aps.64.164208

高效率内腔式2μm简并光学参量振荡器 High-efficiency intracavity 2 µm degenerate optical parametric oscillator 物理学报.2015, 64(8): 084207 http://dx.doi.org/10.7498/aps.64.084207

激光熔覆铜锰合金选择性脱合金制备纳米多孔涂层的研究

Fabrication of nanoporous metal by selective electrochemical dealloying from laser cladding Cu-Mn alloys 物理学报.2012, 61(9): 094211 http://dx.doi.org/10.7498/aps.61.094211

用于惯性约束核聚变激光驱动器的激光二极管 抽运Nd, Y:CaF₂激光放大器的实验研究^{*}

唐熊忻¹⁾²⁾³⁾ 邱基斯^{1)2)3)†} 樊仲维^{1)2)‡} 王昊成¹⁾²⁾ 刘悦亮¹⁾ 刘昊¹⁾²⁾ 苏良碧⁴⁾⁵⁾

(中国科学院光电研究院,北京 100094)
(国家半导体泵浦激光工程技术研究中心,北京 100094)
(中科和光(天津)应用激光技术研究所有限公司,天津 300304)
(中国科学院上海硅酸盐研究所人工晶体研究中心,上海 201899)
(中国科学院透明光功能无机材料重点实验室,上海 201899)
(2016年5月6日收到;2016年7月31日收到修改稿)

对 Nd, Y:CaF₂ 晶体作为激光放大器的增益介质进行了报道.研制了一台采用激光二极管面阵五向水平侧面抽运 ϕ 5 mm × 70 mm Nd, Y:CaF₂ 的激光放大器,对其进行了实验研究.测量了 Nd, Y:CaF₂ 晶体的吸收谱、发射谱、以及放大器的荧光分布.在相同的抽运功率下,测量了 Nd, Y:CaF₂ 与 Nd:Glass 放大器分别工作在 10 Hz 和 1 Hz 重复频率时的小信号增益,在抽运功率为9.63 kW时, Nd, Y:CaF₂ 放大器的小信号增益达 6.12,为 Nd:Glass 的 1.5 倍.与 Nd:Glass 相比, Nd, Y:CaF₂ 晶体的重复工作频率不仅大大提高,而且增益性能也更强.测量了种子光和经 Nd, Y:CaF₂ 放大器后的光谱,能量放大前后光谱几乎无变化.

关键词: 激光放大器, 侧面抽运, 小信号增益, Nd, Y:CaF₂ PACS: 42.70.Hj, 42.65.Yj, 42.55.Xi, 42.60.Lh

DOI: 10.7498/aps.65.204206

1引言

当前惯性约束核聚变激光驱动装置 (ICF laser drivers) 采用 Nd 掺杂玻璃作为增益介质,由于玻璃 热导率低,限制了激光系统的重复频率工作能力. 在面向惯性聚变能源方面,要求激光驱动器重复 频率不低于 10 Hz 运行,现有 Nd 掺杂的激光玻璃 等无法满足聚变能源激光驱动器对重复频率的要 求^[1-3].因此,科研工作者一直在寻找能够替代钕 玻璃实现重频运转的增益介质材料. CaF₂ 具有较 高的热导率 (9.7 W/mK) 和较低的非线性折射率 系数 (0.43×10⁻¹³/esu)^[4],而且生长工艺成熟^[5,6], Nd: CaF₂ 是一种非常有潜力实现重频运行、大功 率激光输出的晶体.但是单掺的 Nd: CaF₂ 晶体具 有很强的浓度淬灭效应,在生长过程中,当把 Nd³⁺ 离子掺入 CaF₂ 晶体中时,晶体会产生团簇效应,阻 止激光发射^[7,8].实验表明,当 Nd³⁺掺杂浓度达 到 0.05% 时就会形成明显的团簇效应.为了打破 这种消极的团簇效应,往掺杂的 CaF₂ 晶体中加入 Y³⁺离子,可以打破团簇结构,提高晶体的发光量 子效率,降低浓度淬灭效应^[9].加入 Y³⁺离子后的 Nd, Y:CaF₂ 晶体与之前相比,各方面的性能有了 很大的提高.例如:分凝吸收大,能掺入较高浓度

^{*} 国家重大科研仪器设备研制专项(批准号: ZDYZ2013-2)、科技部创新人才推进计划重点领域创新团队(批准号: 2014RA4051)和 中国科学院青年创新促进会资助的课题.

[†]通信作者. E-mail: keith0311@163.com

[‡]通信作者. E-mail: fanzhongwei@aoe.ac.cn

^{© 2016} 中国物理学会 Chinese Physical Society

的 Nd³⁺离子;具有较宽的抽运吸收带,有利于激 光二极管抽运,而且不需要严格的温度控制;荧光 谱线变宽,有利于超短脉冲的实现;激光性能受温 度影响小,在温度升高时依旧能保持较高的能量转 换效率.

围绕Nd, Y:CaF₂晶体已经开展了一系列的研 究. 2013年, Su等^[10] 报道了Nd, Y共掺的CaF₂ 晶体的光谱特性, 与掺钕玻璃相比, Y³⁺离子的加 入增加了发射谱线的宽度. 2014年, Qin等^[11] 采 用Nd, Y共掺的CaF₂晶体, 在重复频率100 MHz 时, 得到了脉宽103 fs, 输出功率89 mW的超短激 光脉冲. 2015年, Zhu等^[12] 采用Nd, Y共掺的无 序CaF₂晶体研制了一台被动锁模飞秒激光器, 在 重复频率85 MHz时, 得到了脉宽为264 fs, 能量 为180 mW的激光输出. 同年, Zhang等^[13] 采用 0.5%Nd, 10%Y:CaF₂和0.6% Nd, 10%Y:CaF₂ 晶 体研制出斜效率分别为30%和27%的高效激光器, 最大输出功率为901 mW.

然而,采用Nd,Y:CaF2晶体研制的激光放大器及其相关特性未见报道.本文研制了一台采用激光二极管阵列侧面抽运,口径为 ϕ 5 mm的棒状Nd,Y:CaF2放大器.测量了Nd,Y:CaF2晶体在室温下的吸收谱、发射谱及放大器荧光分布.在相同的抽运功率下,测量了Nd,Y:CaF2与Nd:Glass放大器分别工作在10和1 Hz重复频率时的小信号增益.在抽运功率为9.63 kW时,Nd,Y:CaF2放大器的小信号增益达6.12,为Nd:Glass的1.5倍.分别测量了种子光和经Nd,Y:CaF2放大器后的光谱,能量放大前后光谱几乎没有发生变化.

2 实验结果与分析

棒状Nd, Y:CaF₂放大器结构如图1所示, 采 用激光二极管面阵五向水平(Bar方向平行于Nd, Y:CaF₂棒)侧面抽运,每个激光二极管面阵包括15 个Bar条,单Bar最大输出功率300W,快轴发散角 $35^{\circ} \pm 2^{\circ}$ (半高全宽,FWHM),慢轴发散角 $8^{\circ} \pm 2^{\circ}$ (FWHM).所用的0.5%Nd,5%Y:CaF₂由中国科学 院上海硅酸盐研究所制备,尺寸为 ϕ 5 mm×70 mm, 有效抽运长度为50 mm.

0.5%Nd, 5%Y:CaF2 晶体在室温下的吸收谱 如图2所示,具有较宽的吸收带宽,其吸收主峰 在796 nm处,与商业化激光二极管的波长相匹 配,可实现高效率的激光输出.室温下0.5%Nd, 5%Y:CaF2 晶体在1032—1078 nm波段的发射谱 如图3所示,两个发射峰处于1049 nm和1055 nm 附近.

用 Zemax 光学设计软件建立了激光二极管面 阵五向对称侧面抽运棒状 Nd, Y:CaF₂ 的模型, 激 光棒的尺寸为 ϕ 5 mm × 70 mm, 激光二极管阵列的 发光面到激光棒表面的距离为5 mm 时, 抽运功率 为9.63 kW, 模拟了 Nd, Y:CaF₂ 截面的抽运光强分 布, 如图 4 所示, 可见抽运光强分布均匀. 同时, 实 测了 Nd, Y:CaF₂ 放大器的荧光分布, 如图 5 所示, 可见放大器中的抽运光强分布均匀, 所测的抽运光 强分布形态与图 4 的模拟计算结果较为符合. 由于 Nd, Y:CaF₂ 晶体棒表面被打毛发生散射和抽运光 在漫反射腔内多次反射的原因, 实测的抽运光分布 比实际计算的更均匀.

图1 五向对称侧面抽运的棒状 Nd, Y:CaF₂ 放大器结构图 Fig. 1. Structure of the Nd, Y:CaF₂ amplifier.

204206-2

图 2 0.5%Nd, 5%Y:CaF₂ 晶体在室温下的吸收谱 Fig. 2. Room-temperature absorption spectrum of the 0.5%Nd, 5%Y:CaF₂ crystal.

图 3 室 温 下 0.5%Nd, 5%Y:CaF₂ 晶 体 在 1032— 1078 nm 波段的发射谱

Fig. 3. Room-temperature emission spectrum of the 0.5%Nd, 5%Y:CaF₂ crystal(over the spectral range 1032—1078 nm).

图 4 (网刊彩色) 激光棒横截面抽运光分布图 (a) 二维; (b) 三维

Fig. 4. (color online) Laser rod cross-section pumped-light distribution map: (a) Two-dimensional; (b) three-dimensional.

图 5 (网刊彩色) Nd, Y:CaF₂ 放大器的荧光分布 Fig. 5. (color online) Fluorescence distribution of Nd, Y: CaF₂ amplifier.

将重复频率 10 Hz, 波长 1053 nm, 脉宽 5 ns, 能 量 50 mJ, 口径为 ϕ 3 mm 的脉冲光源作为小信号种 子光, 测试 Nd, Y:CaF₂ 放大器的小信号增益. 抽运 脉冲宽度为 440 μ s, 抽运功率从 2.32—9.64 kW, 间 隔 0.52 kW 记录能量输出值. 同时, 对 Nd, Y:CaF₂ 放大器的小信号增益进行理论计算, 小信号增益可

$$G_{0} = \exp\left(g_{0}l\right) = \exp\left(\frac{\eta_{\rm st}\eta_{\rm s}\eta_{\rm q}\eta_{\rm a-eff}\eta_{\rm t}P_{\rm p}t_{\rm p}}{E_{\rm s}A}\right),$$

式中, $P_{\rm p}$ 为抽运源峰值功率, $t_{\rm p}$ 为抽运脉宽. 传输效率 $\eta_{\rm t}$ = 90%, 该值为侧面抽运结构的经验估算值. 有效吸收效率 $\eta_{\rm a-eff}$ = 56.4%, 该值为激光 通光区域内的796 nm光吸收效率, 即增益介质吸 收效率乘以模式匹配效率. 量子效率 $\eta_{\rm q}$ = 94%, 该值为Nd, Y:CaF₂的材料属性. 斯托克斯效率 $\eta_{\rm s}$ = 75.6%, 该值为抽运光波长与激光波长之比 796 nm/1053 nm. 储能效率为

$$\gamma_{\rm st} = \frac{1 - \exp\left(-t_{\rm p}/\tau_{\rm f}\right)}{t_{\rm p}/\tau_{\rm f}}$$

式中 $t_{\rm p} = 440 \ \mu s$ 为脉宽, $\tau_{\rm f} = 350 \ \mu s$ 为Nd, Y:CaF₂荧光寿命, $\eta_{\rm st} = 56.9\%$. Nd, Y:CaF₂晶 体的受激发射截面为 $5.17 \times 10^{-20} \ {\rm cm}^2$, 荧光寿命 为 $350 \ \mu s$. 图6分别给出了实测和理论计算的小信 号增益倍数与抽运功率的关系图. 当抽运功率为 9.63 kW时, 实测的Nd, Y:CaF2 放大器的增益倍数 为6.12.

在重复频率1 Hz时,相同的抽运功率下,测量 了 Nd:Glass(N31) 放大器的小信号增益,其与 Nd,

图 6 抽运功率对 Nd, Y:CaF₂ 放大器增益倍数的影响 Fig. 6. Small signal gain of Nd, Y:CaF₂ changing with different pumped power

图 7 Nd, Y:CaF₂和 Nd:Glass 放大器的小信号增益实 测值对比

Fig. 7. Experimental value of small signal gain for Nd, $Y:CaF_2$ and Nd:Glass amplifier.

Fig. 8. Spectra of the input and output laser pulses for the Nd, Y:CaF₂ amplifier.

Y:CaF₂的对比图如图7所示. 由图7可知, Nd, Y:CaF₂的小信号增益倍数高于Nd:Glass, 当抽运 功率为9.63 kW时, Nd, Y:CaF₂放大器的小信号增 益倍数实测值为Nd:Glass的1.5倍.

分别测量了种子光和经Nd, Y:CaF₂放大器后的光谱, 如图8所示, 可见放大前后光谱几乎没有发生变化.

3 结 论

本文对激光二极管阵列侧面抽运的棒状Nd, Y:CaF2放大器进行了数值模拟和实验研究.研制 了一台口径为 φ5 mm 的棒状Nd, Y:CaF2放大器, 放大器的荧光分布均匀.在相同的抽运功率下,测 量了Nd, Y: CaF2与Nd:Glass放大器分别工作在 10和1 Hz 重复频率时的小信号增益,在抽运功率 为9.63 kW时, Nd, Y:CaF2放大器的小信号增益达 6.12,为Nd:Glass的1.5倍.由于Nd, Y:CaF2的热 导率、受激发射截面等参数高于Nd:Glass,因此其 重复频率工作能力和增益性能都明显提高.同时, 分别测量了种子光和经Nd, Y:CaF2放大器后的光 谱,能量放大前后光谱几乎没有发生变化.

参考文献

- Kuzmin A A, Khazanov E A, Shaykin A A 2011 Opt. Lett. 19 14223
- [2] Peng Y J, Wang J F, Zhang Z X, Huang D J, Fan W, Li X C 2014 Chin. Opt. Lett. 12 41402
- [3] Krupke W F, Shinn M D, Marion J E, Caird J A, Stokowski S E 1986 J. Opt. Soc. Am. B 3 102
- [4] Zhang J T, Zhu J F, Wang J L, Wei Z Y, Su L B, Xu J 2016 Acta Photon. Sin. 45 114001 (in Chinese) [张菊婷, 朱江峰, 王军利, 魏志义, 苏良碧, 徐军 2016 光子学报 45 114001]
- [5] Su L B, Yang W Q, Dong Y J, Zhou S M, Zhou G Q, Xu J 2003 J. Synth. Cryst. 32 476 (in Chinese) [苏良碧, 杨卫桥, 董永军, 周圣明, 周国清, 徐军 2003 人工晶体学报 32 476]
- [6] Mirela N 2000 J. Cryst. Growth 218 62
- [7] Stephen A P, John A C, Chase L L, Smith L K, Nielsen N D, William F K 1991 J. Opt. Soc. Am. B. 8 726
- [8] Fernandez J, Oleaga A, Azkargorta J, Iparraguirre I, Balda R, Voda M, Kaminskii A A 1999 Opt. Mater. 13
 9
- [9] Doualan J L, Su L B, Brasse G, Benayad A, Menard V, Zhan Y Y, Braud A, Camy P, Xu J, Moncorge 2013 J. Opt. Soc. Am. B 30 3018

- [10] Su L B, Wang Q G, Li H J, Brasse G, Camy P, Doualan J L, Braud A, Moncorge R, Zhan Y Y, Zheng L H, Qian X B, Xu J 2013 Laser Phys. Lett. 10 035804
- [11] Qin Z P, Xie G Q, Ma J, Ge W Y, Yuan P, Qian L J, Su L B, Jiang D P, Ma F K, Zhang Q, Cao Y X, Xu J 2014 Opt. Lett. **39** 1737
- [12] Zhu J F, Zhang L J, Gao Z Y, Wang J L, Wang Z H, Su L B, Zheng L H, Wang J Y, Xu J, Wei Z Y 2015 Laser Phys. Lett. 12 035801
- [13] Zhang Q, Su L B, Jiang D P, Ma F K, Qin Z P, Xie G Q, Zheng J G, Deng Q H, Zheng W G, Qian L J, Xu J 2015 Chin. Opt. Lett. 13 71402

Experimental study of diode-pumped Nd, Y:CaF₂ amplifier for inertial confinement fusion laser driver^{*}

Tang Xiong-Xin¹⁾²⁾³⁾ Qiu Ji-Si^{1)2)3)†} Fan Zhong-Wei^{1)2)‡} Wang Hao-Cheng¹⁾²⁾

Liu Yue-Liang¹⁾ Liu Hao¹⁾²⁾ Su Liang-Bi⁴⁾⁵⁾

1) (Academy of Opto-Electronics, Chinese Academy of Sciences, Beijing 100094, China)

2) (National Engineering Research Center for DPSSL, Beijing 100094, China)

3) (Zhongkeheguang Applied Laser Technology Institute Company, Ltd. Tianjin 300304, China)

4) (Synthetic Single Crystal Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences,

Shanghai 201899, China)

5) (Key Laboratory of Transparent and Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of

Sciences, Shanghai 201899, China)

(Received 6 May 2016; revised manuscript received 31 July 2016)

Abstract

In a conventional laser-driven inertial confinement fusion (ICF), Nd-doped phosphate glass is used as a gain medium. However, the repetition frequency operation of such a laser system is restricted by the low thermal conductivity of the phosphate glass. To attain a high ICF performance, the laser driver must be able to operate at a repetition frequency of no less than 10 Hz. Typically, an Nd-doped laser glass operates at a repetition frequency well below 10 Hz. In this paper, an Nd, Y:CaF₂ crystal is taken as a gain medium for the laser amplifier, and experiments are carried out to demonstrate the capability of Nd, Y:CaF₂ crystal to act as a gain medium for ICF laser driver. A laser-diode plane-array five-direction horizontal-side-pumped Nd, Y:CaF₂ laser amplifier ϕ 5 mm × 70 mm is developed and an experimental study is carried out. The absorption spectrum and emission spectrum of Nd, Y:CaF₂ crystal and the fluorescence distribution of the amplifier are measured. The Nd:CaF₂ co-doped with Y³⁺ ions results in a broad absorption band, which makes the laser diode pumping more efficient. The strongest excitation band peak is centered around 796 nm. The small signal gains of Nd, Y:CaF₂ and Nd:Glass working respectively at repetition frequencies of 10 and 1 Hz under the same pump power are measured. The small signal gain of Nd, Y:CaF₂ amplifier reaches 6.12 under a pump power of 9.63 kW, which is 1.5 times that of Nd:Glass amplifier. The measurements of the spectrum of the seed beam and the spectrum from Nd, Y:CaF₂ amplifier show that the signals have no change before and after being amplified. Most likely the Nd, Y:CaF₂ crystal is a promising laser material for repetitive ICF laser drivers.

Keywords: laser amplifier, sidepumped, small signal gain, Nd, Y:CaF₂ **PACS:** 42.70.Hj, 42.65.Yj, 42.55.Xi, 42.60.Lh **DOI:** 10.7498/aps.65.204206

* Project supported by the Special Fund for Research on National Major Research Instruments and Facilities of the National Natural Science Fundation of China (Grant No. ZDYZ2013-2), the Innovative Talent Promotion Plans for Innovation Team in Priority Fields, China (Grant No. 2014RA4051), and the Youth Innovation Promotion Association, Chinese Academy of Sciences.

[†] Corresponding author. E-mail: keith0311@163.com

[‡] Corresponding author. E-mail: fanzhongwei@aoe.ac.cn