物理学报 Acta Physica Sinica

直流电晕充电下环氧树脂表面电位衰减特性的研究

茹佳胜 闭道敏 张翀 李盛涛 邢照亮 李国倡

Research on surface potential decay characteristics of epoxy resin charged by direct current corona

Ru Jia-Sheng Min Dao-Min Zhang Chong Li Sheng-Tao Xing Zhao-Liang Li Guo-Chang

引用信息 Citation: Acta Physica Sinica, 65, 047701 (2016) DOI: 10.7498/aps.65.047701 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.047701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I4

您可能感兴趣的其他文章 Articles you may be interested in

超薄宽带平面聚焦超表面及其在高增益天线中的应用

Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna

物理学报.2016, 65(2): 027701 http://dx.doi.org/10.7498/aps.65.027701

弛豫铁电体的键能与配位数模型

Bond energy and coordination number model for relaxor ferroelectrics 物理学报.2013, 62(1): 017701 http://dx.doi.org/10.7498/aps.62.017701

弛豫铁电体介电可调性的研究

Research on dielectric tunability of relaxor ferroelectrics 物理学报.2012, 61(21): 217701 http://dx.doi.org/10.7498/aps.61.217701

简化共沉淀法制备 CaCu₃Ti₄O₁₂ 陶瓷及其介电性能研究

Dielectric properties of CaCu₃Ti₄O₁₂ ceramics prepared by a simplified coprecipitation method 物理学报.2012, 61(20): 207701 http://dx.doi.org/10.7498/aps.61.207701

氧含量对CaCu₃Ti₄O₁₂巨介电常数和介电过程的影响

Effect of oxygen content on giant dielectric constant and dielectric process in CaCu₃Ti₄O₁₂ 物理学报.2012, 61(19): 197702 http://dx.doi.org/10.7498/aps.61.197702

直流电晕充电下环氧树脂表面电位衰减 特性的研究*

茹佳胜¹⁾ 闭道敏¹⁾ 张翀²⁾ 李盛涛^{1)†} 邢照亮²⁾ 李国倡¹⁾

1) (西安交通大学, 电力设备电气绝缘国家重点实验室, 西安 710049)

2) (国网智能电网研究院,北京 102209)

(2015年6月25日收到;2015年12月9日收到修改稿)

介质材料表面电荷的积累和衰减行为是制约众多高压直流电力设备研制的关键因素, 薄片状介质试样的 表面电荷密度与表面电位近似呈线性关系,因此常通过表面电位衰减行为研究表面电荷的衰减特性.基于电 晕充电、表面电荷沉积和脱陷、介质体内单极性电荷输运等3个物理过程,建立表面电位动态响应的物理模型. 通过计算环氧树脂的表面电位衰减行为,得到栅极电压、相对介电常数和体电导率等对其表面电位衰减特性 的影响. 栅极电压越高, 表面电位的衰减速度越快; 环氧树脂材料参数典型值(相对介电常数3.93, 体电导率 10⁻¹⁴ S·m⁻¹)下, 归一化表面电位的衰减速率随时间变化的曲线可拟合为分段幂函数, 其中, 分段幂函数的 特征时间、指数系数与栅极电压分别呈幂函数和线性变化关系.相对介电常数越大,表面电位的衰减速度越 慢;环氧树脂相对介电常数典型范围(3-4)内,表面电位衰减时间常数由1720s增大到2540s,两者呈线性关 系. 体电导率越大,表面电位的衰减速度越快;环氧树脂体电导率典型范围(10⁻¹⁵—10⁻¹³ S·m⁻¹)内.表面 电位衰减时间常数由24760 s 减小到260 s, 两者呈幂函数变化关系.

关键词:环氧树脂,表面电荷,直流电晕充电,表面电位衰减 **PACS:** 77.22.-d, 77.84.-s, 77.84.Jd, 72.20.-i **DOI:** 10.7498/aps.65.047701

1 引 言

聚合物介质因其优异的电气、热和力学等性能 广泛地应用于电力设备中. 随着特高压直流输电技 术的快速发展,电力系统对高压直流电力设备的需 求日益迫切. 直流电压下介质材料表面电荷的积 累和衰减行为已成为制约气体绝缘开关等众多高 压直流电力设备研制的关键因素^[1].研究表明^[2,3], 积累在固-气交界面的表面电荷在很长时间内都无 法消散,不仅使材料表面电场严重畸变,还会造成 沿面闪络电压的大幅下降,甚至引起沿面击穿,导 致设备事故.此外,空间环境下带电粒子与航天器 表面介质相互作用引起的表面带电效应, 会干扰航 天器设备的正常运行甚至导致航天器失效, 也是当

前的研究热点^[4,5].

对薄片状介质试样,表面电位与表面电荷密 度近似呈线性关系,因此,一般通过表面电位衰减 (surface potential decay, SPD) 行为研究表面电荷 的衰减特性^[6-8]. Mizutani等^[9]采用不同极性的 电压等对低密度聚乙烯薄膜试样进行研究,发现 正电晕充电时表面电位的衰减速度更慢. Neves 和 Martins [10] 采用针-板电极分别在空气和 SF₆ 气体 中研究环氧树脂 (epoxy resin, EP)、聚乙烯等材料 的SPD行为,结果表明,表面电荷在空气中的消散 能力要远大于在SF6气体中.人们还研究了表面 氟化[11]、伽马线辐射[8]和纳米添加剂等[11,12]处理 方法对直流电晕充电下环氧绝缘材料SPD行为的 影响.

* 国家自然科学基金(批准号: 11275146)和国家自然科学基金重点项目(批准号: 51337008)资助的课题.

© 2016 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: sli@mail.xjtu.edu.cn

研究介质材料表面电位的衰减机理具有重要的理论意义和实用价值. 空气中,表面电位的衰减 行为主要通过电荷注入和体内输运^[13,14]、表面传导^[15,16]、气体中和等^[15–17]途径发生. 空气湿度比 较低时,可以忽略表面传导和气体中和等对SPD 的影响^[18,19],此外,栅控直流电晕充电下介质表面 的法向电场要比切向电场大得多,因此,本文主要 研究电荷注入和体内输运过程对SPD的作用机理.

国内外学者对电荷注入和体内输运的 SPD 理 论进行了大量研究. Sonnonstine 和 Perlman^[13] 借 助载流子迁移率等推导了 SPD 曲线的分段函数, 且与试验测量结果相符合. von Berlepsch^[20]将体 陷阱引入到电荷输运过程中,并由 SPD测量结果 提取了有效迁移率、陷阱浓度、陷阱深度等材料参 数. Chen^[21]结合空间电荷测量结果,进一步完善 了电荷输运模型,并较好地解释了 SPD 曲线的交 叉现象.

目前,多数研究借助微观物理模型描述电荷注 入和体内输运的SPD机理,主要包括电荷在介质 内部的迁移、入陷、脱陷、复合等.本文基于单极性 电荷输运过程,采用体电导率从宏观上表征外电场 作用下电荷在介质内部的迁移、入陷、脱陷等输运 过程.此外,本文引入了电晕充电物理过程,形成 了包括电晕充电、表面电荷沉积和脱陷、介质体内 电荷输运等在内的表面电位动态响应物理模型.模 型仅借助相对介电常数、体电导率等基本材料参数, 计算 EP 材料的 SPD 行为,并讨论了栅极电压、相 对介电常数和体电导率等对 SPD 过程的影响,对 实际工程计算和设计具有一定指导意义.

2 介质表面电位动态响应物理模型

在介质表面电位动态响应的研究工作中,通常 利用电晕充电^[22]、电子束辐射^[23,24]等方法向介质 材料注入电荷.本文以栅控负直流电晕充电方法为 例,建立基于单极性电荷输运的理论模型,研究介 质材料表面电位动态变化的物理过程.

图 1 为栅控负直流电晕充电下介质材料表面 电位动态响应的示意图.图1(a)为电晕充电过程; 图 1 (b)为表面电荷沉积、脱陷及介质体内电荷输运 过程,其中,x = 0处为介质材料充电表面即表面电 荷沉积层,x=L处为接地电极,L为介质厚度,单 位是 m. 图1(a)中,在栅极的箝位作用下,针电极电晕 放电产生的带电离子横向均匀迁移^[22,25]到介质表 面,被表面陷阱俘获并与介质材料间发生电荷转 移;介质材料表面积聚电荷,建立起电势并逐渐达 到饱和.另一方面,表面陷阱电荷通过热激发脱陷 并注入到介质体内,在自建电场的作用下,通过导 带向接地电极迁移,致使表面电荷及表面电位衰 减,如图1(b)所示.

图1 栅控负直流电晕充电下介质表面电位动态响应示意 图 (a)电晕充电过程;(b)表面电荷沉积、脱陷及介质体 内电荷输运过程

Fig. 1. Schematic of dynamic response of surface potential by grid-controlled negative direct current corona charging: (a) Corona charging; (b) surface charge deposition, detrapping and space charge transport.

2.1 电晕充电过程

带电离子穿过栅极后,在栅极附近积聚形成空间电荷.一方面,这些空间电荷削弱栅极处的电场强度 *E*_g,阻碍离子流的进入;另一方面,这些空间电荷在电场作用下向介质表面迁移,形成带电离子流密度 *j*_s.在栅极-介质表面间,带电离子流密度为一常数而与位置无关,且可以用泊松方程和离子流方程^[26,27] 描述.推导得到

$$\left(E_{\rm g}^2 + \frac{2j_{\rm s}d}{\mu_{\rm a}\varepsilon_0\varepsilon_{\rm r}}\right)^{3/2} - E_{\rm g}^3 = \frac{3j_{\rm s}(U_{\rm g} - U_{\rm s})}{\mu_{\rm a}\varepsilon_0\varepsilon_{\rm r}},\qquad(1)$$

式中, ε_0 为真空介电常数, 单位是 $F \cdot m^{-1}$; ε_r 为空气的相对介电常数, 其值为 1; U_g 为栅极电压, U_s 为介质材料的表面电位, 单位是 V; μ_a 为负电晕放电产生的带电离子(主要是 CO^{3-} 离子^[8,28])在空气

中的迁移率, 其值为 $1.14 \times 10^{-4} \text{ m}^2 \cdot \text{V}^{-1} \cdot \text{s}^{-1}$ [27]; *d* 为栅极-介质距离, 设定为 $1 \times 10^{-2} \text{ m}$.

随着栅极附近空间电荷的不断积聚,带电离子 流密度 *j*_s 逐渐增大,栅极处电场强度 *E*_g 逐渐减小. 当 *E*_g 减小到0时, *j*_s 不再增大而达到饱和.直至离 子在介质材料表面被俘获而消耗, *E*_g 才略微偏离 零值,并在带电离子补充进来后再次恢复为零.

数值计算中, 忽略电晕充电初始阶段的瞬态电 流. 将 $E_g = 0$ 代入(1)式得到动态平衡时电晕充电 电流密度为

$$j_{\rm s} = \frac{9}{8} \frac{\varepsilon_{\rm r} \varepsilon_0 \mu_{\rm a} (U_{\rm g} - U_{\rm s})^2}{d^3}.$$
 (2)

由(2)式可以看到,该充电电流具有空间电荷限制 电流的形式^[22].

电晕充电过程中,随着表面电荷的积聚,表面 电位随之增大,充电电流逐渐减小.当表面电位*U*。 达到栅极电压*U*g时,电晕充电电流与介质表面电 荷注入体内的泄漏电流平衡,表面电荷和表面电位 达到饱和.

2.2 表面电荷沉积和脱陷过程

电晕充电过程中,由于电晕场对带电离子激发 十分有限的束能^[25],电荷仅能沉积于介质材料表 面与近表面,并被表面陷阱所俘获.

陷阱电荷可能通过热激发脱陷,并注入到介质体内.考虑普尔-弗兰凯尔效应^[27]在电荷脱陷过程的影响作用,表面陷阱电荷的脱陷概率 *P*_{de}可表示为

$$P_{\rm de} = v_{\rm ATE} \exp\left[-\left(\varphi_{\rm s} - \sqrt{\frac{e^3 E_{\rm s}}{\pi \varepsilon_0 \varepsilon_{\rm r}}}\right) / (k_{\rm B} T)\right],\tag{3}$$

其中,

$$v_{\rm ATE} = k_{\rm B}T/h, \tag{4}$$

 v_{ATE} 为陷阱电荷的试图逃逸频率,单位是 s^{-1} ; k_B 为玻尔兹曼常数,单位是 $J \cdot K^{-1}$; h为普朗克常数,单位是 $J \cdot s$; T为介质温度,单位是K; φ_s 为表面陷阱深度,单位是eV; E_s 为介质材料表面处的电场强度,单位是 $V \cdot m^{-1}$.

2.3 介质体内电荷输运过程

本文建立的表面电位动态响应物理模型基于 单极性电荷输运过程,忽略了接地电极向介质内部 的少量异极性电荷注入. 在介质材料内部, 电荷向 接地电极的输运过程可以通过电流传导方程、泊松 方程和电荷连续性方程^[22-24] 描述:

$$f_{\rm e}(x,t) = \gamma E(x,t), \qquad (5)$$

$$\frac{\partial E(x,t)}{\partial x} = \frac{q(x,t)}{\varepsilon_0 \varepsilon_r},\tag{6}$$

$$\frac{\partial q(x,t)}{\partial t} + \frac{\partial j_{\rm e}(x,t)}{\partial x} = 0, \tag{7}$$

其中,

$$\gamma = \frac{\gamma_0(T)}{3} \left[2 + \cosh\left(\frac{\beta_{\rm F}\sqrt{E(x,t)}}{2k_{\rm B}T}\right) \right], \qquad (8)$$

$$\beta_{\rm F} = \sqrt{\frac{e^3}{\pi\varepsilon_0\varepsilon_{\rm r}}}.\tag{9}$$

这里, *x* 为介质深度, 单位是m; *t* 为时间, 单位是 s; γ 为介质材料的 Poole-Frenkel 电导率^[29], 主要 受温度和电场强度影响, 单位是 S·m⁻¹; 无外电场 作用时, 介质在温度*T* 的体电导率为 $\gamma_0(T)$, 单位 是 S·m⁻¹; *e* 为电子电量, 单位是 C; $j_e(x, t)$ 为电流 密度, 单位是 A·m⁻²; q(x, t) 为电荷密度, 单位是 C·m⁻³; E(x, t) 为电场强度, 单位是 V·m⁻¹.

3 计算方法及参数

本文基于迎风差分格式离散求解电荷连续性 方程,基于有限边界元法求解泊松方程.计算过 程中,设定电晕充电时间为10 s.取EP试样的厚 度L为5×10⁻⁴ m,并划分出200个单元(空间步 长2.5×10⁻⁶ m);考虑Courant-Friedrichs-Lewy条 件^[30],定义时间步长为5×10⁻³ s.本文对温度变 化特性不做讨论,取室温环境(300 K).

表1列出了EP主要参数的数值.表面陷阱深度由文献[31]给出;相对介电常数、体积电导率等分别参考了文献[32,33]的结果.

表1 模拟计算中的主要参数

Table 1. The values of the parameters used in the simulating calculation.

参数	符号	数值
表面陷阱深度/eV	$arphi_{ m s}$	0.96
相对介电常数	$\varepsilon_{ m r}$	3.93
体电导率/S·m ⁻¹	γ_0	10^{-14}

4 计算结果与讨论

4.1 模型和算法验证

计算室温时不同栅极电压下 EP 试样的表面电 位动态特性,结果表明, EP 试样在数秒内即可充电 饱和,因此,可以认为表面电荷在充电过程中没有 进入到介质内部.

为验证本文理论模型及算法的有效性, 将栅极电压 $U_{\rm g}$ 在-1—-3 kV时的SPD曲线与文献 [13, 22]的分析结果 (分析时取衰减初始时刻的表面电位 $U_{\rm s0}$ 为-1—-3 kV, EP体内的电子迁移率 3.38×10^{-13} m²·V⁻¹·s⁻¹ [³⁴])比较, 如图 2 所示.可以看到, 本文的数值计算结果与文献的分析结果具有很好的一致性.

图 2 不同初始表面电位下 EP 的 SPD 数值计算结果与 文献分析结果的比较

Fig. 2. Comparisons of numerical and analytical SPDs of corona charged EP with various initial surface potential.

4.2 栅极电压对 SPD 的影响

Ieda 等^[35] 发现,初始表面电位较大时,其衰减 速度更快,甚至产生SPD 曲线的交叉.此后,很多 学者提出了不同的理论来解释该现象.前文已经 指出,电晕充电饱和的介质表面电位(即衰减初始 时刻的介质表面电位) U_{s0} 与栅极电压值相同.实 际上,栅极电压对SPD 过程的影响其本质是U_{s0} 对 SPD 过程的影响.

不同栅极电压下EP的归一化SPD曲线如 图3所示.栅极电压较高时,充电饱和后的表面 电位*U*_{s0}较大,并在介质表面和内部建立起更强的 电场,进而加快了表面电荷脱陷和体内电荷输运的 过程,因此,表面电位的衰减速度也就更快. 图 4 给出了 EP 材料参数的典型值(表1)下, 栅极电压 $U_{g} = -1$ kV 时归一化表面电位的衰减速 率 $-dU_{s}/(U_{s0}dt)$ 随时间变化的曲线,可以看到,在 双对数坐标下,该曲线可用分段线性函数表示.

图 3 (网刊彩色) 不同栅压下 EP 的归一化 SPD 曲线 Fig. 3. (color online) Simulated normalized SPDs of corona charged EP with various grid voltage.

图 4 归一化表面电位的衰减速率计算结果及其拟合曲线 Fig. 4. Numerical results and fitting curve of normalized surface potential decay.

经曲线拟合,
$$-dU_{s}/(U_{s0}dt)$$
可表示为

$$-\frac{dU_{s}(t)}{U_{s0}dt} = \begin{cases} M_{1}t^{-(1-\alpha_{1})}, & t < t_{T}, \\ M_{2}t^{-(1+\alpha_{2})}, & t > t_{T}, \end{cases}$$
(10)

式中, $t_{\rm T}$ 为拟合曲线的特征时间, 单位是 s; $M_j(j = 1, 2)$ 为比例系数; α_j 为指数系数. 这些参数都 与材料本身有关, 且随栅极电压变化, 如图 5 和 图 6 所示.

特征时间 $t_{\rm T}$ 随栅极电压的增大呈幂函数规律 减小,指数系数 α_1 , α_2 分别与栅极电压呈线性减小 和增大. 文献 [20] 研究了高密度聚乙烯薄膜的 SPD 过程,并由试验结果提取了 $t_{\rm T}$, α_j 等各项参数随初 始表面电场强度 $E_{\rm s0}(E_{\rm s0} = U_{\rm s0}/L)$ 的变化关系,其 函数形式与本文计算结果一致.

图 5 衰减参数 t_T 随栅极电压的变化

Fig. 6. Relationship between the parameter α_j and the grid voltage.

4.3 相对介电常数对SPD的影响

表面电荷在介质内部建立起电场时,介质内部 产生极化,并在介质表面出现与自由电荷极性相反 的束缚电荷.表面电荷的动态变化引起其自建电场 的变化,进而引起表面束缚电荷密度的变化.表面 束缚电荷与自由电荷的相互作用,影响表面电位的 衰减.相对介电常数是描述介质极化的宏观参量, 因此,相对介电常数对SPD行为具有一定影响.

整理(5)--(7)式得到

$$\frac{\partial}{\partial x} \left(\frac{\partial D(x,t)}{\partial t} + \gamma E(x,t) \right) = 0, \qquad (11)$$

其中

$$D(x,t) = \varepsilon_0 \varepsilon_r E(x,t).$$
(12)

(11) 式中, 位移电流密度项 *∂D*/*∂t* 反映了相对介电 常数对 SPD 的作用.

EP的相对介电常数通常在3—4范围内^[36]. 图7为不同相对介电常数时EP的归一化SPD曲 线.为描述表面电位的衰减速度,定义表面电位衰减到1/e初始表面电位所用的时间为SPD时间常数 $\tau_{\rm s}$.图8给出了EP的SPD时间常数随相对介电常数的变化,当相对介电常数由3增加到4时,SPD时间常数由1720 s增大到2540 s,两者间呈线性关系.

图 7 (网刊彩色) 不同相对介电常数时 EP 的归一化 SPD 曲线

Fig. 7. (color online) Simulated normalized SPDs of corona charged EP with various relative permittivity.

图 8 EP 的 SPD 时间常数随相对介电常数的变化 Fig. 8. Relationship between SPD time constant of corona charged EP and the relative permittivity.

文献 [37] 推导指出,在考虑介质本征电导的 SPD 理论中,介质体内电场强度 *E*_x 的一般形式为

$$E_x = H(x, E_x) \exp\left[-t \left/ \left(\frac{\varepsilon_0 \varepsilon_r}{\gamma_0}\right) \right], \qquad (13)$$

式中, $H(x, E_x)$ 是关于介质深度 x 和电场强度 E_x 的复杂函数.由(13)式可以看到,材料特性对介质 内部电场强度 E_x 的衰减速度的影响可以大致用时 间常数 $\tau = \varepsilon_0 \varepsilon_r / \gamma_0$ 来表征.在任一时刻,电场强度 E_x 与介质表面电位 U_s 满足

$$U_{\rm s} = \int_0^x E_x \,\mathrm{d}x.\tag{14}$$

因此,介质试样的相对介电常数 ε_r 越小,即时间常数 τ 越小,介质表面电位 U_s 的衰减速度就越快,且时间常数 τ 与相对介电常数 ε_r 呈线性变化关系.该推论与本文的数值计算结果相一致.

此外,采用等效电路的方法分析介质试样的 SPD过程,可以得到相似的结论.将介质试样等效 为电阻电容并联模型,电阻和电容的值分别用 *R* 和 *C* 表示

$$C = \frac{\varepsilon_0 \varepsilon_r S}{L},\tag{15}$$

$$R = \frac{L}{\gamma_0 S},\tag{16}$$

式中, S为介质试样的表面积, 单位是 m². t = 0(衰 减初始时刻)时, 并联模型两端的电压设定为介质 试样的初始表面电位 U_{s0} . 此后, 可将介质试样的 SPD 过程近似等效为一阶 RC 电路的零输入响应, 介质试样的表面电位和表面电荷分别用并联模型 两端的电压和电容电荷量来表征. 根据电路的相关 理论, 在一阶 RC 电路的零输入响应中, 电压、电荷 量按照同样的指数规律衰减, 它们衰减的快慢取决 于电路的时间常数 $\tau = RC$. 相应地, 介质试样的 相对介电常数越小, 即电容值C和时间常数 τ 越小, 其表面电位的衰减速度就越快, 且时间常数 $\tau = \epsilon_r$ 呈线性的变化关系.

4.4 体电导率对 SPD 的影响

介质体内的电荷输运过程是 SPD 的重要机理. 目前,多数研究借助于微观物理模型描述这一过程,主要包括电荷在介质内部的迁移、入陷、脱陷等;如果考虑接地电极向介质内部的少量异极性电荷注入,还需要引入自由、陷阱电子和空穴间的复合.本文建立的表面电位动态响应物理模型基于单极性电荷输运过程,忽略接地电极向介质内部的少量异极性电荷注入,并采用体电导率γ从宏观上表征外电场作用下电荷在介质内部的迁移、入陷、脱陷等输运过程.

(11) 式中, 传导电流密度项γE反映了电荷输 运对 SPD 的作用.

假设在SPD过程中,介质体内的电场强度与 表面电位满足

$$E(x,t) = U_{\rm s}(t)/L, \qquad (17)$$

由(11)式可得

$$\gamma = \left| \frac{\varepsilon_0 \varepsilon_r}{U_s} \frac{\mathrm{d}U_s}{\mathrm{d}t} \right|. \tag{18}$$

(18) 式提供了表征介质空间电荷输运特性的一种 方法. 文献 [38, 39] 分别测量了介质材料的 SPD 曲线,并经 (18) 式计算表明,其空间电荷输运过程 服从 Poole-Frenkel 规律.因此,如 (5)—(9) 式所示, 本文采用了 Poole-Frenkel 体电导率.

EP体电导率通常在 10^{-15} — 10^{-13} S·m⁻¹范 围^[36].图9为不同体电导率时,EP的归一化SPD 曲线.图10为EP的SPD时间常数随体电导率的 变化,服从幂函数规律.SPD过程随体电导率的 增大迅速加快,可以看到,当EP的体电导率由 1×10^{-15} S·m⁻¹增大到 1×10^{-13} S·m⁻¹时,SPD 时间常数由 24760 s减小到 260 s, SPD 过程加快了 近 20倍.

图 9 (网刊彩色)不同体电导率时 EP 的归一化 SPD 曲线

Fig. 9. (color online) Simulated normalized SPDs of corona charged EP with various bulk conductivity.

同样地,分别通过(13),(14)式和等效电路方 法对介质试样的SPD过程进行分析可以得到,介 质试样的体电导率 γ_0 越大,即时间常数 τ 越小,介 质表面电位 U_s 的衰减速度就越快,且时间常数 τ 与 体电导率 γ_0 呈幂函数变化关系,这一推论与本文 数值计算结果相一致. 事实上, 由 (11) 式可以看到, 较大的体电导率 γ_0 将在介质体内引发更大的传导 电流密度和更快的电荷输运过程, 因此, SPD 过程 就越快.

文献 [40] 指出常规电导率测量方法不完全适 合于空间带电环境,并提出了一种辐射条件下测 量介质电导率的新方法,即将介质置于电子辐照 下使其达到充电平衡状态后,停止辐照并监测介 质表面的电位变化,确定 SPD时间常数 τ_s ,并利用 $\tau_s = \varepsilon_0 \varepsilon_r / \gamma_0$ 关系式获得介质电导率.然而,本文的 数值计算结果表明,虽然 SPD时间常数 τ_s 与相对 介电常数 ε_r 呈线性关系,与体电导率 γ_0 呈幂函数 关系,但是并不满足 $\tau_s = \varepsilon_0 \varepsilon_r / \gamma_0$,而是呈现出更为 复杂的形式

$$\tau_{\rm s} = \frac{a + b\varepsilon_0 \varepsilon_{\rm r}}{\gamma_0^n},\tag{19}$$

式中, a, b和n均为参数. 结合图8和图10的拟 合曲线参数可以得到, 在EP材料参数的典型 范围($\varepsilon_r = 3$ —4, $\gamma_0 = 10^{-15}$ — 10^{-13} S·m⁻¹)内, $a = -7.57 \times 10^{-12}$, b = 0.93, n = 0.998. 考虑到参 数a, b和n可能随材料、充电方式等的不同而有所 变化,因此,借助SPD试验测量材料体电导率的方 法还需要做进一步的深入研究.

5 结 论

基于电晕充电、表面电荷沉积和脱陷、介质体 内的单极性电荷输运等3个物理过程,本文建立了 表面电位动态响应的物理模型,计算和讨论了EP 的SPD行为,对实际工程计算和设计具有很好的 指导意义,得到如下结论.

1) 栅极电压越高, 表面电位的衰减速度越快. 在 EP 材料参数的典型值(表1)下, 归一化表面电 位的衰减速率随时间变化的曲线可以拟合为分段 幂函数, 其中, 分段幂函数的特征时间随栅极电压 的增大呈幂函数规律减小, 指数系数与栅极电压呈 线性变化关系.

2)相对介电常数越大,表面电位的衰减速度越 慢. EP相对介电常数典型范围(3—4)内,SPD时 间常数由1720s增大到2540s,两者呈线性关系.

3)体电导率越大,表面电位的衰减速度越快. EP体电导率典型范围(10⁻¹⁵—10⁻¹³ S·m⁻¹)内, SPD时间常数由24760 s减小到260 s, SPD过程加快了近20倍,两者呈幂函数变化关系.

参考文献

- Lorenzi A D, Grando L, Pesce A, Bettini P, Specogna R 2009 IEEE Trans. Dielectr. Electr. Insulat. 16 77
- [2] Liu Y Q, An Z L, Cang J, Zhang Y W, Zheng F H 2012
 Acta Phys. Sin. 61 158201 (in Chinese) [刘亚强, 安振连,
 仓俊, 张冶文, 郑飞虎 2012 物理学报 61 158201]
- [3] Sato S, Zaengl W S, Knecht A 1987 IEEE Trans. Electr. Insulat. EI-22 333
- [4] Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64
 086801 (in Chinese) [李维勤, 郝杰, 张海波 2015 物理学报
 64 086801]
- [5] Feng G B, Wang F, Hu T C, Cao M 2015 Chin. Phys. B 24 117901
- [6] Hosono T, Kato K, Morita A, Okubo H 2007 IEEE Trans. Dielectr. Electr. Insulat. 14 627
- [7] Hoang A T, Serdyuk Y V, Gubanski S M 2014 International Conference on High Voltage Engineering and Application Poznan, September 8–11, 2014 p1
- [8] Gao Y, Du B X 2012 *High Voltage Eng.* 38 824 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 824]
- [9] Mizutani T, Taniguchi Y, Ishioka M 2002 Conference Proceedings of 11th International Symposium on Electrets Melbourne, Australia, October 1–3, 2002 p15
- [10] Neves A, Martins H J A 1996 Conference Record of International Symposium on Electrical Insulation Montreal, Canada, June 16–19, 1996 p782
- [11] Li A, Du B X, Xu H, Li Z L, Xiao M, Han T 2015 *High Voltage Eng.* 41 410 (in Chinese) [李昂, 杜伯学, 徐航, 李 忠磊, 肖萌, 韩涛 2015 高电压技术 41 410]
- [12] Du B X, Xiao M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 529
- [13] Sonnonstine T J, Perlman M M 1975 J. Appl. Phys. 46 3975
- [14] Chen G, Xu Z, Zhang L W 2007 Meas. Sci. Technol. 18 1453
- [15] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 941
- [16] Kindersberger J, Lederle C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 949
- [17] Perrin C, Griseri V, Laurent C 2008 IEEE Trans. Dielectr. Electr. Insulat. 15 958
- [18] Xu Z Q, Zhang L W, Chen G 2007 J. Phys. D: Appl. Phys. 40 7085
- [19] Ziari Z, Sahli S, Bellel A 2010 M. J. Conden. Matter 12 223
- [20] von Berlepsch H 1985 J. Phys. D: Appl. Phys. 18 1155
- [21] Chen G 2010 J. Phys. D: Appl. Phys. 43 055405
- [22] Min D M, Li S T 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1627
- [23] Min D M, Cho M G, Li S T, Khan A R 2012 IEEE Trans. Dielectr. Electr. Insulat. 19 2206
- [24] Min D M 2013 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [闵道敏 2013 博士学位论文 (西安: 西安交通大学)]
- [25] Xia Z F 2001 *Electret* (Beijing: Science Press) pp74-78
 (in Chinese) [夏钟福 2001 驻极体 (北京: 科学出版社) 第 74—78页]

- [26] Ji Y M, Zhang B, He J L 2014 *High Voltage Eng.* 40
 1768 (in Chinese) [季一鸣, 张波, 何金良 2014 高电压技术
 40 1768]
- [27] Jin W F 1995 Dielect. Phys. (Beijing: China Machine Press) pp97-117 (in Chinese) [金维芳 1995 电介质物理学 (北京: 机械工业出版社) 第 97---117 页]
- [28] Zhang J W 2012 Ph. D. Dissertation (Tianjin: Tianjin University) (in Chinese) [张纪伟 2012 博士学位论文 (天 津: 天津大学)]
- [29] Li G C, Min D M, Li S T, Zheng X Q, Ru J S 2014 Acta Phys. Sin. 63 209401 (in Chinese) [李国倡, 闵道敏, 李盛 涛, 郑晓泉, 茹佳胜 2014 物理学报 63 209401]
- [30] Cockburn B, Shu C W 1989 Math. Comput. 52 411
- [31] Gao Y, Li Y, Cui J D, Du B X 2012 Trans. China Electrotech. Soc. 27 264 (in Chinese) [高宇, 李莹, 崔劲达, 杜伯学 2012 电工技术学报 27 264]
- [32] Yin G L 2012 Ph. D. Dissertation (Xi'an: Xi'an Jiaotong University) (in Chinese) [尹桂来 2012 博士学位论文

(西安: 西安交通大学)]

- [33] Zhou Y X, Wu P X, Cheng Z Y, Ingram J, Jeelani S 2008 Express Polym. Lett. 2 40
- [34] Gao Y, Du B X 2012 Conference Record of the 2012 IEEE International Symposium on Electrical Insulation San Juan, PR, June 10–13, 2012 p531
- [35] Ieda M, Sawa G, Shinohara U 1967 Jpn. J. Appl. Phys.
 6 793
- [36] Wu N P 1990 Electrical Materials Science (Beijing: China Machine Press) p78 (in Chinese) [吴南屏 1990 电工材料学 (北京: 机械工业出版社) 第78页]
- [37] Wintle H J 1970 J. Appl. Phys. 41 4004
- [38] Gao Y, Du B X 2012 *High Voltage Eng.* 38 2097 (in Chinese) [高宇, 杜伯学 2012 高电压技术 38 2097]
- [39] Hoang A T, Serdyuk Y V, Gubanski S M 2014 IEEE Trans. Dielectr. Electr. Insulat. 21 1291
- [40] Frederickson A R, Dennison J R 2003 IEEE Trans. Nucl. Sci. 50 2284

Research on surface potential decay characteristics of epoxy resin charged by direct current corona^{*}

Ru Jia-Sheng¹) Min Dao-Min¹) Zhang Chong²) Li Sheng-Tao¹[†] Xing Zhao-Liang²) Li Guo-Chang¹

1) (State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China)

2) (State Grid Smart Grid Research Institute, Beijing 102209, China)

(Received 25 June 2015; revised manuscript received 9 December 2015)

Abstract

Surface charge accumulation and decay behaviors of dielectric materials are the key factors restricting the development of high voltage direct current power equipment. For flat samples, the density of surface charges deposited by corona can be regarded as a linear change with the surface potential. For this reason, the behavior of surface charge decay can be directly related to that of surface potential. According to the corona charging process, the surface charge deposition and detrapping process, as well as the charge transport process in the bulk, we may establish a physical model of dynamic response to the surface potential. Influences of grid voltage, relative permittivity, and bulk conductivity on the surface potential decay process can be obtained through calculating the surface potential decay behaviors of epoxy resin. The higher the grid voltage, the faster the surface potential decays. At the typical parameter value of epoxy resin (relative permittivity 3.93, bulk conductivity 10^{-14} S·m⁻¹), the normalized decay rate can be fitted by two straight lines in a log-log plot; moreover, the calculated results show a linear variation of power factors with the grid voltage, while the power function shows a relationship between the characteristic time and the grid voltage. The bigger the relative permittivity, the slower the surface potential decays. In the typical parameter area of epoxy resin (relative permittivity 3-4), the surface potential decay time constant increases from 1720 s to 2540 s, showing a linear variation. Also the bigger the bulk conductivity, the faster the surface potential decays. In the typical parameter area of epoxy resin (bulk conductivity 10^{-15} - 10^{-13} S·m⁻¹), the surface potential decay time constant decreases from 24760 s to 260 s, showing a power function relationship.

Keywords: epoxy resin, surface charge, direct current corona charging, surface potential decay

PACS: 77.22.-d, 77.84.-s, 77.84.Jd, 72.20.-i

DOI: 10.7498/aps.65.047701

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11275146) and the Key Program of the National Natural Science Foundation of China (Grant No. 51337008).

 $[\]dagger$ Corresponding author. E-mail:
 ${\bf sli@mail.xjtu.edu.cn}$