物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

Ni-X-ln(X = Mn, Fe 和 Co)合金的缺陷稳定性和磁性能的第一性原理研究 白静 王晓书 俎启睿 赵骧 左良

Defect stabilities and magnetic properties of Ni-X-In (X = Mn, Fe and Co) alloys: a first-principle study

Bai Jing Wang Xiao-Shu Zu Qi-Rui Zhao Xiang Zuo Liang

引用信息 Citation: Acta Physica Sinica, 65, 096103 (2016) DOI: 10.7498/aps.65.096103 在线阅读 View online: http://dx.doi.org/10.7498/aps.65.096103 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2016/V65/I9

您可能感兴趣的其他文章 Articles you may be interested in

点缺陷浓度对非化学计量比L12型结构的A13Sc弹性性能的影响

Effects of point defect concentrations on elastic properties of off-stoichiometric L1₂-type A1₃Sc 物理学报.2016, 65(7): 076101 http://dx.doi.org/10.7498/aps.65.076101

多元半导体光伏材料中晶格缺陷的计算预测

Computational prediction of lattice defects in multinary compound semiconductors as photovoltaic materials

物理学报.2015, 64(18): 186102 http://dx.doi.org/10.7498/aps.64.186102

H掺杂 α -Fe₂O₃的第一性原理研究

First-principles calculation for hydrogen-doped hematite 物理学报.2015,64(11):116301 http://dx.doi.org/10.7498/aps.64.116301

BaTiO₃/SrTiO₃(1:1)超晶格的晶格动力学、介电和压电性能的第一性原理研究 First-principles study of the lattice dynamics dielectric and piezoelectric response in BaTiO₃/SrTiO₃ (1:1) superlattice 物理学报.2014, 63(12): 126301 http://dx.doi.org/10.7498/aps.63.126301

Cu-Co共掺杂ZnO光电性质的第一性原理计算

First-principles calculations on the electronic and optical properties of ZnO codoped with Cu-Co 物理学报.2014, 63(4): 046301 http://dx.doi.org/10.7498/aps.63.046301

Ni-X-In(X = Mn, Fe和Co)合金的缺陷稳定性 和磁性能的第一性原理研究^{*}

白静^{1)2)3)†} 王晓书²⁾ 俎启睿²⁾ 赵骧¹⁾ 左良¹⁾

(东北大学,材料各向异性与织构教育部重点实验室,沈阳 100819)
 2)(东北大学秦皇岛分校资源与材料学院,秦皇岛 066004)
 3)(河北省电介质与电解质功能材料实验室,秦皇岛 066004)
 (2016年1月19日收到;2016年2月16日收到修改稿)

Ni-Mn-In 是一种新型的磁控形状记忆合金,它通过磁场诱导逆马氏体相变实现形状记忆效应.实验中常围绕化学计量比 Ni₂MnIn 合金进行成分调整,以获得适宜的马氏体相变温度与居里温度,在这个过程中必然 会产生多种点缺陷.本文使用量子力学计算软件包 VASP,在密度泛函理论的框架下通过第一原理计算,系 统地研究了非化学计量比 Ni-X-In(X = Mn, Fe 和 Co) 合金的缺陷形成能和磁性能.反位缺陷中, In 和 Ni 在 X 亚晶格的反位缺陷 (In_X和 Ni_X)的形成能最低, Ni 和 X 反位于 Y 的亚晶格 (Ni_Y和 X_Y)得到较高的形成 能.因此, In 原子可以稳定立方母相的结构,而 X 原子对母相结构稳定性的影响则相反;空位缺陷中最高的形 成能出现在 In 空位缺陷,再次肯定了 In 原子对稳定母相结构的作用.此外,详细研究了点缺陷周围原子的磁 性能以及电荷分布.本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要 意义.

关键词:磁控形状记忆合金,第一性原理计算,缺陷形成能,磁性能 PACS: 61.72.J-, 63.20.dk, 73.61.At, 67.80.dk DOI: 10.7498/aps.65.096103

1引言

近年来,由于对电子器件、机械装置高效能、 小型化及微型化需求的增大,要求传感材料具有 更大的响应应变、更高的能量密度和更快的响应 速度,因而设计与开发具有高功效的新型功能材 料以适应上述要求成为近年来形状记忆合金研制 的主攻方向.自从马氏体孪晶的变体重排可以引 起大的磁致应变被报道以来,铁磁形状记忆合金 (FSMAs)作为高性能传感器与驱动器材料受到了 广泛的关注^[1].在过去的十几年里,以Ni-Mn-Ga 合金为代表的铁磁形状记忆合金在其使用性能方 面积累了大量的知识,可以预见在相关器件中使 用此类Heusler 合金的可能性. 然而, Ni-Mn-Ga 合金的驱动输出应力不到5 MPa, 另外, Ni-Mn-Ga 合金固有的高脆性也极大地限制了此类合金的实际应用. 2006年, 日本东京大学Kainuma 等^[2]在《Nature》杂志的报道指出, 一种新型的磁致形状记忆合金 Ni-Mn-In-Co 的单晶也具有优异形状记忆功能和大输出功率特性, 在8 T磁场下可产生3%的磁致应变. Ni-Mn-In-Co 系磁控形状记忆合金的磁致伸缩量虽不如 Ni-Mn-Ga 系合金, 但其输出应力极大, 可达100 MPa, 表现出从铁磁奥氏体到反铁磁或顺磁马氏体的马氏体相变, 并伴随磁场诱导逆马氏体相变. 这些优异的性能使得其在作为磁驱动器等实际应用方面非常引人关注.

© 2016 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 51431005, 51301036)、国家高技术研究发展计划 (批准号: 2015AA034101)、中央高校基本科研业务费 专项资金 (批准号: N130523001) 和河北省自然科学基金 (批准号: E2013501089) 资助的课题.

[†]通信作者. E-mail: baij@neuq.edu.cn

Ni-Mn-In-Co系合金所具有的由磁场诱导的 马氏体逆相变与近乎完美的形状记忆效应相关联, 这被称为变磁形状记忆效应 (metamagnetic shape memory effect)^[2].除Ni-Mn-In-Co系合金外, 典型 的具有变磁形状记忆效应的合金还有 Ni-Mn-Sn-(Co)系^[3-5].

作为Ni-Mn-In-Co合金的基础, 三元Ni-Mn-In 合金具有和前者相同的变磁形状记忆效应^[6], 同 时还具有大的磁阻^[7,8], 可产生强烈的逆磁热效 应^[9,10]的熵变^[11]和巨霍尔效应^[12]. Krenke等^[13] 首先系统地研究了Ni-Mn-In的合金成分, 马氏体 相变温度与晶体结构之间的关系. Cai等^[14]研究 了原子无序对Ni₅₀Mn₃₆In₁₄合金的马氏体相变温 度的影响.

一些研究组使用第一原理计算的方法对化 学计量比的Ni₂MnIn合金的平衡晶格常数、L2₁ 母相的稳定性、声子谱、磁性和电子特性进行研 究^[15-19].通过向理想Heusler晶格中引入不同种 类的缺陷可以实现对非化学计量成分的模拟.因 此,对不同的点缺陷,例如反位缺陷、原子交换和空 位的系统研究,在理解合金的性能随合金成分和原 子有序度而变化时将会起到至关重要的作用.

之前,作者所在课题组应用第一原理计算的方 法计算了化学计量比的 Ni₂XIn(X = Mn, Fe, Co) 合金的晶体结构、磁性能和电子结构^[19],所获得 的计算结果与实验值符合得很好.因此,我们进一 步地研究了非化学计量比的 Ni₂XIn(X = Mn, Fe, Co) 变磁性形状记忆合金的相关性能.本文系统 地计算了 Ni-X-In (X = Mn, Fe, Co)合金中不同 类型点缺陷:交换原子、反位缺陷(一种类型的原 子占据另一种类型的格子)和空位的形成能,分析 了反位点缺陷引入到理想晶体中对合金微观磁性 的影响.主要内容分为三个部分,分别是 Ni-X-In (X = Mn, Fe 和Co)合金中点缺陷的第一性原理计 算模型和计算方法, Ni-X-In (X = Mn, Fe 和Co) 合金中引入不同类型点缺陷对合金稳定性的影响, 反位缺陷周围微观磁性能和电子结构的研究.

2 计算方法

利用量子力学计算软件包Vienna *ab-initio* simulation package (VASP)^[20-22],在密度泛函理 论的基础上进行第一原理计算. 离子和电子的

相互作用采用超软赝势 (ultra-soft pseudopotentials, US-PP) ^[23,24] 的方法描述. 交换相关能则利 用 Perdew 和 Wang (PW91) 所提出的广义梯度近 似方法处理 (generalized gradient approximation, GGA) ^[25]. 所涉及的组成元素的电子构型分别 为 Ni-3d⁸4s², Mn-3d⁶4s¹, Fe-3d⁷4s¹, Co-3d⁸4s¹ 和 In-5s²5p¹. 在USPP-GGA 近似中动能截断能取为 250 eV. k 点网孔用 Monkhorst-Pack 方法 ^[26] 产生, 选择 10 × 10 × 10 k 点.

本文中所有涉及的算例均考虑了电子的自旋 极化的作用. Ni, Mn, Fe, Co和In的Wigner-Seitz 半径分别为1.286, 1.323, 1.302, 1.302和1.677Å. 计算时,使用共轭梯度算法弛豫所有的晶体结构, 另外,单胞内的原子位置和单胞体积在弛豫的过程 中也均被优化. 计算完成之后,分析基态下总能量、 磁矩和优化后的晶体结构,缺陷形成能由以下公式 进行计算^[27,28]:

 $\Delta E_{\rm f} = E_{\rm def} - E_{\rm id} + n_{\rm Ni} \mu_{\rm Ni}^{0} + n_X \mu_X^0 + n_{\rm In} \mu_{\rm In}^0, (1)$ 式中, $\Delta E_{\rm f}$ 是缺陷形成能; $E_{\rm def}$ 和 $E_{\rm id}$ 分别为带有
缺陷的单胞和理想单胞的总能量; n_i 是从理想单
胞中移入或移出的原子 *i* 的数目; $\mu_{\rm Ni}^0, \mu_X^0$ 和 $\mu_{\rm In}^0$ (X = Fe, Mn或Co)分别代表纯物质时每个基态原
子的能量.

图 1 (a) 立方 Ni_2XIn 合金的晶体结构, X = Mn, Fe 和 Co; (b) 用于分析微观磁性的位于 (110) 面上的磁性特征 矩形

Fig. 1. (a) Geometric structure of cubic $L2_1 Ni_2 XIn$, X denotes Mn, Fe, Co and (b) the rectangular centered cell in the (110) plane used to analyze the magnetic properties.

图 1 (a) 为 Ni₂XIn(X = Mn, Fe, Co) L2₁ 结 构立方母相的几何构型, 空间群 $Fm\bar{3}m$, No. 225. Ni 原子占据 (8c) 位置: (0.25, 0.25, 0.25) 和 (0.75, 0.75, 0.75); X 原子占据 (4a) 位置: (0, 0, 0); In 原 子占据 (4b) 位置: (0.5, 0.5, 0.5). 为了研究带有缺 陷单胞中的磁性能, 本文在立方结构 (110) 面中截 取了一个矩形:选取(0,0,0)为原点,X原子位于(0,0,0)和(0.5,0.5,0),In原子位于(0,0,0.5)和(0.5,0.5,0.5),Ni原子位于面心(0.25,0.25,0.25),定义为磁性特征矩形,如图1(b)所示.这里用磁性特征矩形来描述不同类型点缺陷以及点缺陷周围原子的磁矩.

首先以Ni₂MnIn 合金为例测试了不同计算方 法的准确性. 离子和电子间的相互作用通过US-PP和全电子的广义梯度近似PAW两种方法进 行描述. 交换相关能使用GGA和局域密度近似 (LDA)进行描述. 然后我们可以通过四种方案进 行计算: USPP-GGA, USPP-LDA, PAW-GGA 和 PAW-LDA.

表 1 在立方奥氏体 Ni₂MnIn 合金中, 使用四种不同计算方 案优化所得的晶格常数以及其与实验值 ^[13] 之间的相对误差 Table 1. The optimized lattice parameter and the relative difference between the computational data with the experimental value ^[13] of four different schemes in cubic austenitic Ni₂MnIn.

计算方案	晶格常数/Å	相对误差/%
USPP-GGA	6.503	0.30
USPP-LDA	5.870	3.31
PAW-GGA	6.036	0.58
PAW-LDA	5.375	11.5
实验值	$6.071^{[13]}$	

通过上述四种方法优化了 Ni₂MnIn 合金立方 奥氏体相的晶格常数, 如表 1 所列, 实验值作为对 照也列于表 1. 从表 1 可以看出, GGA 比 LDA 的结 果要好得多. 迄今为止, GGA 是描述磁性材料的最 好方法. USPP-GGA 方案所得的计算结果与 *X* 射 线实验值符合得最好^[13]. 与实验值相比, 相对误差 仅为 0.3%. 因此我们选择 USPP-GGA 方法应用于 所有计算.

3 结果与讨论

3.1 缺陷稳定性

为了使马氏体转变温度 $T_{\rm M}$ 和居里温度 $T_{\rm C}$ 有利于实际应用,必须围绕化学计量比Ni₂XIn做成分调整^[19].在成分调整的过程中势必会产生各种各样的点缺陷,例如,含量较多组元的原子会占据含量较少组元的原子的位置(反位缺陷)、空位或者

相邻的原子互换位置(换位),计算缺陷形成能的目的就在于揭示母相中各种缺陷存在的稳定性.

表2所列为在Ni₂XIn (X = Mn, Fe, Co)体系 中,引入不同类型点缺陷的形成能的计算结果,缺 陷浓度为6.25%.因为计算结果是基于立方母相的, 所以正的缺陷形成能表示在成分调整的过程中,该 种类型的点缺陷将使母相变成亚稳结构,那么这种 合金成分具有强烈的马氏体转变倾向,对应的马氏 体转变温度也会升高.相反,负的缺陷形成能表明 这种类型的点缺陷可以稳定存在于最初的立方母 相结构中.我们在低的缺陷浓度(1.6%)的情况下 也观察到了相同的趋势.

正如表 2 所列, 在我们所研究的系列中, In 占据 X 原子的亚晶格格点 (In_X) 和 Ni 占据 X 的亚晶格格点 (In_X) 和 Qi 占据 X 的亚晶格格点 (Ni_X) 具有最低的缺陷形成能, 这表明在合金的合成过程中, 立方母相中最有可能形成这两种点缺陷.

一般来说,实验中常见富 Mn 贫 In 的 Ni-Mn-In 合金具有适于实际应用的马氏体转变温度和居里 温度,并具有磁场可驱动的马氏体逆相变,故成为 最常见的成分设计.而富 Mn 贫 In 的合金成分势必 会产生大量的 Mn 占 In 位的反位缺陷 (MnIn).从 表 2 中可以看出, MnIn 反位点缺陷具有相对低的缺 陷形成能,并且它可以在立方母相中稳定存在.

此外,在所有的反位缺陷中, In_{Ni}缺陷形成能 最高,这可能与In的原子半径与Ni的原子半径相 比过大,从而造成晶格严重畸变所致.另外两种反 位缺陷 X_{Ni}和Ni_{In}的形成能适中.

由表 2 还可以看出,最低的空位缺陷形成能出 现在 Ni 空位处;而最高的空位缺陷形成能出现在 In 空位处,这表明 In 原子的缺失将导致母相结构 失稳,这就肯定了 In 原子对于稳定母相起着决定性 的作用.除此之外,某些置换缺陷的形成也是能量 上占优的,可以降低奥氏体母相的总能,稳定奥氏 体.例如, Ni₂CoIn 合金中相邻 Ni 与 *X* 原子的置换.

在非化学计量比的 Ni₂MnIn 磁控形状记忆合 金中, 原子的长程有序度十分重要, 因为它可以同 时影响马氏体转变温度与居里温度^[6].此外, 原子 占位信息对于 Ni-Mn-In 合金的马氏体的调制结构 也是非常重要的.然而这类信息却很少在文献中发 现.因此, 为了进一步了解 Ni-Mn-In 基合金的马氏 体转变行为, 就必须了解 Ni-Mn-In 合金在成分调 整过程中原子占位的情况.

物理学报 Acta Phys. Sin. Vol. 65, No. 9 (2016) 096103

表 2	在 Ni ₂ XIn (X = Mn, Fe, Co) 合金中各种类型点缺陷的形成能 $\Delta E_{\rm f}$ (单位 eV)
Table 2.	Formation energies $\Delta E_{\rm f}$ (in eV) of point defects in Ni ₂ XIn (X = Mn, Fe, Co)

	换位		反位缺陷					空位					
	X-In	$\operatorname{Ni-}X$	Ni-In	Ni_X	$X_{\rm Ni}$	$\mathrm{Ni}_{\mathrm{In}}$	$\mathrm{In}_{\mathrm{Ni}}$	X_{In}	In_X	$V_{\rm N}$	i	V_X	$V_{\rm In}$
$\rm Ni_2MnIn$	0.36	0.90	1.29	0.40	1.07	0.64	1.53	0.07	0.41	0.5	9	1.51	1.77
$\rm Ni_2FeIn$	0.39	0.10	1.14	-0.13	0.15	0.39	1.46	0.49	-0.26	0.5	3	0.95	1.19
$\mathrm{Ni}_2\mathrm{CoIn}$	0.21	-0.26	0.74	-0.51	0.18	0.32	1.05	0.58	-0.54	0.2	9	0.55	0.73

在本文所研究的大多数情况中, 富余组分的 过量原子将会占据贫乏组分的位置,这被称为正 常的原子占位. 但是也不能排除其他的可能性. 在表2中,应注意In_{Ni}反位缺陷形成能非常高,而 Inx 反位缺陷则能量占优. 我们假设有直接和间 接两种方式可以在 In 富余 Ni 贫乏的 Ni-X-In 合金 中形成In占Ni位点缺陷.直接的方式是过量的In 原子直接占据 Ni 原子的亚晶格. 然而, In_{Ni} 点缺陷 的形成能非常高(见表2). 间接的方式是过量的In 原子占据X的阵点(见表2的 In_X), X原子移动到 Ni的空位上(X_{Ni}), 最终将形成缺陷对($In_X + X_{Ni}$). 从能量的角度考虑,后者缺陷对的形成能量上占 优. 我们通过第一原理计算验证了我们的猜想, 在 Ni₂MnIn 合金中, 如果不考虑缺陷之间的相互作用, 直接占位方式的系统总能量为-5.88 eV/atom, 而 (In_{Mn}+Mn_{Ni})的反位缺陷对的是-5.90 eV/atom. 因此,在In富余Ni贫乏的合金中,间接占位方式更

为普遍.

3.2 磁性能

这部分主要分析带有反位缺陷的单胞中的原子磁矩变化, Ni-Mn-In 合金中(110) 晶面上不同反位缺陷的磁性特征矩形如图 2 所示.

图 2 (a) 所示为化学计量比 Ni₂MnIn 的情况, Ni 和 Mn 的磁矩分别是 0.33 $\mu_{\rm B}$ 和 3.67 $\mu_{\rm B}$ ^[19].当 Ni 原子占据 In 的格点时,即形成了一个 Ni 占 In 位 的反位缺陷 Ni_{In},如图 2 (c) 所示.为了与图 2 (a) 中 Ni₂MnIn 理想结构中正常占位的 Ni 区别开,把 反位缺陷中多余的 Ni 称为过量 Ni.含有一个 Ni_{In} 点缺陷的合金中,八个正常 Ni 原子的磁矩分布在 0.38 $\mu_{\rm B}$ —0.41 $\mu_{\rm B}$ 之间.与化学计量比合金中 Ni 的 磁矩相比, Ni 原子的磁矩变化率为+15%—+24%. 过量 Ni 原子携带的磁矩较小,为0.28 $\mu_{\rm B}$,对应的 磁矩变化率为-15%.

图 2 Ni-Mn-In 合金中 (110) 晶面上不同反位缺陷的磁性特征矩形 (a) Ni₂MnIn; (b) Ni_{Mn}; (c) Ni_{In}; (d) Mn_{Ni}; (e) Mn_{In}; (f) In_{Ni}; (g) In_{Mn}

Fig. 2. The magnetic characteristic rectangle in the (110) plane of various antisite defects in Ni-Mn-In alloy: (a) Ideal Ni₂MnIn; (b) Ni_{Mn}; (c) Ni_{In}; (d) Mn_{Ni}; (e) Mn_{In}; (f) In_{Ni}; (g) In_{Mn}.

结构松弛之后,带有一个Ni_{In}反位缺陷的单 胞体积为211.90 Å³,与Ni₂MnIn(219.85 Å³)的体 积相比减小了3.62%.单胞中的原子位置也发生 了改变:八个正常Ni原子的位置向单胞中心(过 量Ni的位置)移动,使得单胞体积减小.从计算结 果来看,当一个In原子被Ni原子取代后,正常位 置上的Ni与最近邻的Mn的间距为2.55 Å,而不是 Ni₂MnIn中的2.61 Å.距离变小增强了Ni与Mn 3d 轨道电子之间的相互作用,因此,正常占位的Ni原 子磁矩增加.相反,过量Ni原子与最近邻的Mn的 间距是2.98 Å,远远大于2.61 Å,使得过量Ni原子 与Mn原子3d轨道电子之间的相互作用削弱.这就 是过量Ni原子磁矩减小的原因.

对于 In_{Ni} 这种情况,如图 2 (f) 所示,一个 In 原子反位在 Ni 的阵点上,Ni 原子磁矩的范围是 $0.26 \mu_B$ — $0.33 \mu_B$,小于等于 Ni₂MnIn 的情况 (0.33 μ_B),相应的变化率为-21—0%.在贫 Ni 合金中, Ni 原子与最近邻的 Mn 原子的间距由 2.61 Å 增加 到 2.63 Å,导致 Ni 原子与 Mn 原子 3d 轨道电子之间 的相互作用削弱,因此这种情况下的 Ni 原子磁矩 减小.

对于非化学计量比的Ni-Fe-In和Ni-Co-In合 金来说,引入反位缺陷对单胞中远离此点缺陷的 原子磁矩的影响基本上与Ni-Mn-In合金一致.这 里主要关注点缺陷和其周围原子的磁矩变化,并 用位于(110)面上的磁性特征矩形表示,如图3和 图4所示.

在 Ni-Fe-In 合金中, Fe_{Fe}, Fe_{Ni}和 Fe_{In} 中 Fe 的 原子磁矩分别为3.00 μ_B , 2.97 μ_B 和3.00 μ_B ; 对 Ni-Co-Ga 合金, Co_{Co}, Co_{Ni}和 Co_{In} 中 Co 的原子磁矩 分别为1.67 μ_B , 1.57 μ_B 和1.83 μ_B , 分别如图 3 (a), (d), (e) 和图 4 (a), (d), (e) 所示.显然, 对于所有的 情况,最近邻的 Fe 或 Co 的原子磁矩定向平行于彼 此, 就像在铁磁区域中一样.

另外, 当X(X = Mn, Fe, Co)原子占据 In 原 子的亚晶格阵点时, 形成 X_{In} 反位缺陷, 见图**3**(e) 和图**4**(e). 过量的X原子的原子磁矩大于 X_{Ni} 反 位缺陷中的过量X原子的磁矩. 这可能是因为铁 磁性的X原子替代了非磁性的 In 原子, 从而增强 了过量的X原子与周围8个Ni原子的3d轨道电子 之间的相互作用所致.

当Ni分别占据Ni, X和In的亚晶格位置时, 对Ni-Fe-Ga, Ni原子的原子磁矩分别为0.29 μ_B , 0.07 μ_B 和0.27 μ_B ; 对于Ni-Co-Ga来说, Ni原子 的原子磁矩分别为0.15 μ_B , 0.08 μ_B 和0.44 μ_B , 如 图3(a)—(c)和图4(a)—(c)所示. 当Ni原子占据 X(X = Fe, Co)的位置时,过量Ni原子的原子磁 矩接近于0.

在 In 的 反 位 缺 陷 中, $In_{Ni} 和 In_X$, 如 图 2, 图 3 和图 4 的 (f), (g) 所示, 过量的 In 原子磁矩几 乎全部为 0, 而且这些缺陷类型对周围的 Ni 和 X 原 子几乎没影响.

图 3 在 (110) 面上的磁特征矩形中表示 Ni-Fe-In 合金中各种反位缺陷的磁性变化 (a) 理想 Ni₂FeIn; (b) Ni_{Fe}; (c) Ni_{In}; (d) Fe_{Ni}; (e) Fe_{In}; (f) In_{Ni}; (g) In_{Fe}

Fig. 3. The magnetic characteristic rectangle in the (110) plane of various antisite defects in Ni-Fe-In alloy: (a) Ideal Ni₂FeIn; (b) Ni_{Fe}; (c) Ni_{In}; (d) Fe_{Ni}; (e) Fe_{In}; (f) In_{Ni}; (g) In_{Fe}.

096103-5

物理学报 Acta Phys. Sin. Vol. 65, No. 9 (2016) 096103

图 4 在 (110) 面上的磁特征矩形中表示 Ni-Co-In 合金中各种反位缺陷的磁性变化 (a) 理想 Ni₂CoIn; (b) Ni_{Co}; (c) Ni_{In}; (d) Co_{Ni}; (e) Co_{In}; (f) In_{Ni}; (g) In_{Co}

Fig. 4. The magnetic characteristic rectangular cell in the (110) plane of various antisite defects in Ni-Co-In alloy: (a) Ideal Ni₂CoIn; (b) Ni_{Co}; (c) Ni_{In}; (d) Co_{Ni}; (e) Co_{In}; (f) In_{Ni}; (g) In_{Co}.

为了研究非化学计量比Ni-X-In合金中的价 电子结构,我们首先研究了化学计量比Ni₂MnIn 合金的 0.025, 0.030, 0.035 e/Å³等值面处的电 荷密度,如图5所示. 从图5可以看出,主要的成 键行为出现在Ni和Mn 原子之间;此外,价电子的数目随着等值面数值的升高而减少.在等值面为0.035 e/Å³时没有观察到价电子,如图6(c) 所示.

图 5 (网刊彩色) Ni₂MnIn 合金不同等值面处的电荷密度 (a) 0.025 electron/Å³; (b) 0.030 electron/Å³; (c) 0.035 electron/Å³(金色代表得电子,蓝色代表失电子)

Fig. 5. (color online) Isosurface plots of the charge density at (a) 0.025 electron/Å³, (b) 0.030 electron/Å³,
(c) 0.035 electron/Å³ in Ni₂MnIn (gold color means electron gain, and blue electron loss).

图 6 (网刊彩色) Ni-X-In 合金中 X_{Ni} 反位缺陷在 0.035 electron/Å³ 等值面处的电荷密度 (a) X = Mn; (b) X = Fe; (c) X = Co

Fig. 6. (color online) Isosurface plots of the charge density at 0.035 electron/Å³ in X_{Ni} antisite defect in the Ni-X-In alloys: (a) X = Mn; (b) X = Fe; (c) X = Co.

图7 (网刊彩色) Ni-X-In 合金中 X_{In} 反位缺陷在 0.035 electron/Å³ 等值面处的电荷密度 (a) X = Mn; (b) X = Fe; (c) X = Co

Fig. 7. (color online) Isosurface plots of the charge density at 0.035 electron/Å³ in X_{In} antisite defect in the Ni-X-In alloys: (a) X = Mn; (b) X = Fe; (c) X = Co.

为了使对比的结果更清晰,我们选择了 0.035 electron/Å³等值面来表示含有 X_{Ni} 和 X_{In} (X = Mn, Fe, Co)反位缺陷的非化学计量比合 金的电荷密度,分别如图6和图7所示.从图6中 可以看出,当额外的X原子占据Ni的位置时,大部 分的价电子聚集在额外的X原子周围.另外,成键 的强度随X原子(X = Mn, Fe, Co) 序数的增加而 增强.

X_{In}反位缺陷与 X_{Ni}反位缺陷的情况完全不同,如图7所示.当富余的 X 原子占据 In 的格点时,电荷规则地分布在 Ni 和额外的 X 原子之间.另外,随着 X 原子序数的增加,价电子的数目也会增加,则额外的 Mn 和其周围的 Ni 原子的成键强度也会增强.

4 结 论

本文系统地研究了非化学计量比 Ni₂XIn 磁致 形状记忆合金 (X = Mn, Fe, Co) 中的各种点缺陷 (原子交换,反位缺陷,空位)的形成能、缺陷中原子 优先占位和点缺陷附近的原子磁矩变化. 主要结论 总结如下: 在反位缺陷中, In 和 Ni 在 X 亚晶格的 反位缺陷 ($In_X 和 Ni_X$)的形成能最低, Ni 和 X 反位 于 Y 的亚晶格 ($Ni_Y 和 X_Y$)得到较高的形成能. 因 此, In 原子可以稳定立方母相的结构, 而 X 原子对 母相结构稳定性的影响则相反; 空位缺陷中最高的 形成能出现在 In 空位缺陷, 再次肯定了 In 原子对 稳定母相结构的作用. 除此之外, 某些置换缺陷的 形成也是能量上占优的, 可以稳定奥氏体母相. 对 于非化学计量比 Ni₂XIn, 大多数情况下, 过量的原 子将直接占据贫乏原子的位置, 除 In 富余 Ni 贫乏 的情况: 过量的 In 原子占据 X 原子的位置, X 原 子则移向空余的Ni亚晶格位置. 富余的X原子占据Ni位时,大部分价电子聚集在额外的X原子周围;而当富余的X原子占据In的位置时,价电子有规律地分布在Ni和额外的X原子之间.本文的计算结果在指导实验中的成分设计和开发新型磁控形状记忆合金方面具有重要意义,同时也为未来研究其他新型磁控形状记忆合金的的点缺陷性质提供了理论参考.

参考文献

- Ullakko K, Huang J K, Kanter C, Kokorin V V, O'Handley R C 1996 Appl. Phys. Lett. 69 1966
- [2] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T, Ishida K 2006 *Nature* **439** 957
- [3] Zhang Y Z, Cao J M, Tan C L, Cao Y J, Cai W 2014 *Chin. Phys. B* 23 037504
- [4] Ma S C, Xuan H C, Zhang C L, Wang L Y, Cao Q Q,
 Wang D H, Du Y W 2010 Chin. Phys. B 19 117503
- [5] Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C
 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 物理学报 57 3780]
- [6] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507
- [7] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G
 H 2006 Appl. Phys. Lett. 89 162503
- [8] Pathak A K, Dubenko I, Pueblo C, Stadler S, Ali N 2010 Appl. Phys. Lett. 96 172503
- [9] Umetsu R Y, Ito W, Ito K, Koyama K, Fujita A, Oikawa K, Kanomata T, Kainuma R, Ishida K 2009 Scripta Mater. 60 25
- [10] Han Z D, Wang D H, Zhang C L, Tang S L, Gu B X, Du Y W 2006 Appl. Phys. Lett. 89 182507
- [11] Li B, Ren W J, Zhang Q, Lü X K, Liu X G, Meng H, Li J, Li D, Zhang Z D 2009 Appl. Phys. Lett. 95 172506
- [12] Dubenko I, Pathak A K, Stadler S, Ali N, Kovarskii Y, Prudnikov V N, Perov N S, Granovsky A B 2009 *Phys. Rev. B* 80 092408

- Krenke T, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2006 Phys. Rev. B 73 174413
- [14] Cai W, Feng Y, Sui J H, Gao Z Y, Dong G F 2008 Scripta Mater. 58 830
- [15] Godlevsky V V, Rabe K M 2001 Phys. Rev. B 63 134407
- [16] Zayak A T, Entel P, Rabe K M, Adeagbo W A, Acet M 2005 Phys. Rev. B 72 054113
- [17] Zayak A T, Adeagbo W A, Entel P, Rabe K M 2006 Appl. Phys. Lett. 88 111903
- [18] Entel P, Gruner M E, Adeagbo W A, Zayak A T 2008 Mat. Sci. Eng. A 481–482 258
- [19] Bai J, Xu N, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2012 J. Appl. Phys. 112 114901

- [20] Hafner J 2000 Acta Mater. 48 71
- [21] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
- [22] Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15
- [23] Vanderbilt D 1990 Phys. Rev. B 41 7892
- [24] Kresse G, Hafner J 1996 J. Phys.: Condens. Matter 6 8245
- [25] Perdew J P, Wang Y 1991 Phys. Rev. B 45 13244
- [26] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
- [27] Raulot J M, Domain C 2005 Phys. Rev. B 71 035203
- [28] Bai J, Raulot J M, Zhang Y D, Esling C, Zhao X, Zuo L 2010 J. Appl. Phys. 108 064904

Defect stabilities and magnetic properties of Ni-X-In (X = Mn, Fe and Co) alloys: a first-principle study^{*}

Bai $\operatorname{Jing}^{(1)(2)(3)}^{\dagger}$ Wang Xiao-Shu²⁾ Zu Qi-Rui²⁾ Zhao Xiang¹⁾ Zuo Liang¹⁾

 (Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 100819, China)

2) (School of Resources and Materials, Northeastern University at Qinhuangdao Branch, Qinhuangdao 066004, China)

3) (Hebei Provincial Laboratory for Dielectric and Electrolyte Functional Materials, Qinhuangdao 066004, China)

(Received 19 January 2016; revised manuscript received 16 February 2016)

Abstract

Ferromagnetic shape memory alloys (FSMAs) have received much attention as high performance sensor and actuator materials, since a large magnetic-field-induced strain by the rearrangement of twin variants in the martensitic phase was reported. Up to now, several FSMAs including Ni-Mn-Ga, Ni-Fe-Ga, Co-Ni-Ga, Ni-Mn-Al systems have been studied. Vast amount of knowledge accumulated at the properties of Ni-Mn-Ga Heusler alloys in the past decade can foresee the possibility of employing these alloys in device applications. However, the actuation output stress level of the Ni-Mn-Ga alloy is only less than 5 MPa, which represents a shortcoming of this alloy system. Recently, an unusual type of FSMAs Ni-Co-Mn-In Heusler alloy has been experimentally investigated. It shows magnetic-field-induced reverse martensitic transition (MFIRT), making it more attractive for practical application as magnetically driven actuator because it possesses a magnetostress level on the order of tens of MPa. An almost perfect shape memory effect. NiMnIn is the basic ternary alloy system of the NiMnInCo alloy, and possesses the same metamagnetic shape memory effect. Moreover, large magnetoresistance, large entropy change that generates giant reverse magnetocaloric effects (MCEs), giant Hall effect have been discovered in Ni-Mn-In alloys.

Composition adjustment must be carried out around stoichiometric Ni_2MnIn in order to obtain the appropriate martensitic transformation temperature and Curie temperature. Therefore, a variety of point defects would be generated

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51431005, 51301036), the National High Technology Research and Development Program of China (Grant No. 2015AA034101), the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. N130523001) and the Natural Science Foundation of Hebei Province, China (Grant No. E2013501089).

[†] Corresponding author. E-mail: baij@neuq.edu.cn

in this process. In this paper, the defect formation energy and magnetic properties of the off-stoichiometric Ni-X-In (X = Mn, Fe and Co) alloys are systematically investigated by the first-principle calculations within the framework of the density functional theory through using the Vienna *ab initio* software package. The In and Ni antisites at the site of the X sublattice (In_X and Ni_X) have the relatively low formation energies. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site (s) of the deficient one (s), except for In-rich Ni-deficient composition. In the latter case, the defect pair (In_X+X_{Ni}) is energetically more favorable. The formation energy of Ni vacancy is the lowest and that of In vacancy is the highest in the vacancy-type defects. It is confirmed that the In constituent is dominant for the stability of the parent phase.

The value of the Ni magnetic moment sensitively depends on the distance between Ni and X atoms. The smaller the distance, the larger the Ni magnetic moment will be. For the anti-site type point defect, when the extra X atom occupies a Ni site, most of the free electrons gather around the extra X atom; while the extra X occupies an In position, the charges are regularly distributed between Ni and extra-X atoms. Moreover, with the increase of the X atomic number, the number of the valence electrons increases, and the bonding strength between the extra X and its neighboring Ni is also enhanced. The results are particularly useful in guiding composition design and developing new type of magnetic shape memory alloy.

Keywords: magnetic shape memory alloys, first-principles calculations, defect formation energy, magnetic properties

PACS: 61.72.J-, 63.20.dk, 73.61.At, 67.80.dk

DOI: 10.7498/aps.65.096103