物理学报 Acta Physica Sinica

Institute of Physics, CAS

非真空传输的高效交叉偏振滤波设计与产生

李荣凤 薛兴泰 赵研英 耿易星 卢海洋 颜学庆 陈佳洱

High efficiency cross-polarized wave filter for non-vacuum transmission

Li Rong-Feng Xue Xing-Tai Zhao Yan-Ying Geng Yi-Xing Lu Hai-Yang Yan Xue-Qing Chen Jia-Er

引用信息 Citation: Acta Physica Sinica, 66, 150601 (2017) DOI: 10.7498/aps.66.150601 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.150601 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I15

您可能感兴趣的其他文章 Articles you may be interested in

基于合成波长法的飞秒激光外差干涉测距方法

Synthetic-wavelength based absolute distance measurement using heterodyne interferometry of a femtosecond laser

物理学报.2016, 65(14): 140601 http://dx.doi.org/10.7498/aps.65.140601

不同入射脉冲强度线性啁啾对 BaF2 晶体交叉偏振波输出特性影响的数值模拟研究 Investigation on the influences of linear chirp with different input pulse intensities on BaF₂ cross-polarized wave generation 物理学报.2015, 64(2): 020602 http://dx.doi.org/10.7498/aps.64.020602

基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量

Cross-phase modulation typed frequency resolved optical gating measurement for ultra-short pulses using a single mode fiber

物理学报.2014, 63(24): 240601 http://dx.doi.org/10.7498/aps.63.240601

飞秒激光烧蚀金属靶的冲击温度

Shock temperature of femtosecond laser ablation of solid target 物理学报.2013, 62(21): 210601 http://dx.doi.org/10.7498/aps.62.210601

飞秒激光烧蚀固体靶的冲击压强

Shock pressure in femtosecond laser ablation of solid target http://dx.doi.org/10.7498/aps.62.170601 物理学报.2013, 62(17): 170601

非真空传输的高效交叉偏振滤波设计与产生*

李荣凤 薛兴泰 赵研英 耿易星 卢海洋 颜学庆 陈佳洱

(北京大学物理学院,核物理与核技术国家重点实验室,北京 100871)

(2017年5月12日收到; 2017年5月21日收到修改稿)

采用常规透镜设计了适用于非真空环境中交叉偏振波 (XPW)产生的双透镜聚焦系统,在相对较短的距离实现了长焦透镜聚焦的效果,并测量了聚焦后的激光脉冲,发现其没有显著的非线性相位积累,保证了激光光束质量.在非真空中采用双 BaF2 晶体得到了 XPW 系统转换效率 22%,光谱 1.78 倍展宽的净化脉冲输出,双透镜组合聚焦形式使得双 BaF2 晶体间距在 13—22 cm 内可保证 20% 以上的 XPW 转换效率,双晶体间距的调节冗余度提高了两个量级,极大地降低了双晶转换效率对晶体间距的依赖.这种正负透镜组合聚焦的光路设计在非真空中实现了高效稳定的 XPW 输出,为后续的放大应用提供了高对比度、宽光谱的高质量种子源.

关键词:双透镜组,交叉偏振滤波,非真空,转化效率 PACS: 06.60.Jn, 42.65.-k, 42.65.Re

DOI: 10.7498/aps.66.150601

1引言

交叉偏振波 (cross-polarized wave, XPW) 是 一种线偏振激光经过非线性晶体时, 功率在达到 一定阈值后引起偏振特性改变的三阶非线性效 应^[1,2], 该特性作为强场激光背景和预脉冲的滤波 器得到重要应用.激光中的预脉冲或者放大自发 辐射等背景由于达不到产生 XPW 的阈值, 偏振特 性不改变, 主脉冲功率密度高, 在非线性晶体中通 过 XPW 效应改变偏振, 利用偏振元件将偏振不同 的光分离开实现背景和预脉冲的滤波, 从而提高激 光对比度^[3,4]. XPW 滤波相对结构简单, 转化效率 高, 对比度提升较为显著, 可以超过4个量级, 而且 实现频域光谱展宽的效果, 因此被广泛的应用于高 对比强场飞秒激光系统中^[5–8].

XPW滤波常采用三阶非线性系数较高的 BaF2晶体作为非线性晶体,为了获得较高的转 换效率,通常要求激光功率密度达到10¹² W/cm² 以上. 目前XPW滤波常用于双啁啾脉冲放大 (chirped-pulse amplification, CPA)系统中来提高 激光对比度,利用第一级CPA系统产生的百微 焦量级飞秒激光作为基波,通过以BaF2作为非 线性晶体的XPW滤波器对激光净化提高对比度 后,再进入第二级CPA中获得高对比度的高能激 光^[9-11].目前通过单晶XPW滤波器,可获得超 过10%的转换效率^[12];利用双晶XPW滤波器获 得超过20%转换效率,并将激光对比度提高4个量 级^[13-15].

百微焦量级的激光用于 XPW 滤波器中,为了 使激光功率密度达到 XPW 产生所需的阈值,通常 需要对激光进行聚焦.目前的研究基本都是用焦距 在米量级及以下的聚焦系统对光进行聚焦^[16-18], 这样的短焦聚焦一般在焦点处的功率密度高于 XPW 较高转换效率要求的10¹² W/cm²,此时将 XPW 晶体放在离焦的位置.因此利用单透镜聚焦 条件下,要获得较高的 XPW 效率通常晶体并非工 作在聚焦焦点处,此时焦点处的功率密度过高导致 在非真空中传输会积累大量的非线性相位^[19],这

* 国家自然科学基金(批准号: 11504009)和国家重大科学仪器设备开发专项(专项号: 2012YQ030142)资助的课题.

© 2017 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: zhaoyanying@pku.edu.cn

将恶化激光光束质量,因此需要将光束焦点放置在 真空中,这不仅增加了系统复杂程度,而且由于功 率密度过高也增加了晶体损坏的风险.同时采用短 焦聚焦系统的双晶 XPW系统中,转化效率对双晶 间距依赖非常高,一般在毫米量级保持较高的转化 效率^[9,20],这极大地降低了系统的灵活性.采用焦 距十米量级的长焦透镜聚焦可使晶体工作在焦点 位置,但此时长焦透镜的使用将增加系统的繁琐程 度,降低系统稳定性.同时,长焦透镜加工困难必 然增加系统的成本,因此在实际应用中较少采用长 焦透镜聚焦的 XPW 滤波.

针对 XPW 滤波不易在非真空中便捷稳定传 输的问题,本文设计了紧凑型的、能够在非真空 实现高效稳定 XPW 输出的双透镜聚焦光路,结果 兼备了短焦透镜光路简洁以及长焦透镜焦点光强 适中特点,利用双透镜组合对激光聚焦,组合焦距 ~2.2 m,焦斑大小约700 μm,焦点处峰值功率密度 ~10¹² W/cm².测试了该聚焦光路在传输所使用 的120 μJ,35 fs的激光时不会在非真空中引入额外 的非线性积分,利用双 BaF₂ 晶体得到 XPW 最高 输出~26.5 μJ,系统效率高达 22%.在双晶系统中 大尺寸聚焦焦斑的采用,使双晶间距在10 cm 范围 内均可获得超过 20% 的转换效率,提高了 XPW 系 统对双晶间距的调节冗余度.

2 聚焦系统设计

我们采用光束直径 10 mm, 脉宽 35 fs, 单脉冲 能量 120 μ J, 中心波长为 800 nm 的飞秒激光作为 XPW 的入射基波.为了获得高 XPW 转换效率, 需 要激光功率密度~10¹² W/cm², 根据入射激光条 件, 需要聚焦焦斑的半高全宽 *d*~700 μ m, 若采用 单透镜聚焦系统需要透镜焦距 *f*~7 m.为了在焦 点处达到同样的聚焦功率密度, 我们根据高斯光束 的 *ABCD* 矩阵传输理论, 采用常规焦距的正负透 镜, 设计了合适的双透镜组合, 使我们的激光能在 非真空中传输的同时, 实现 XPW 较高效率的输出.

图 1 是焦距为7 m 的透镜以及三组不同双透镜 组合对激光聚焦后光束的传输情况,其中a,b,c, d分别表示透镜组合中透镜在聚焦光路中的位置. 这里 a, b 组合表示 $F_1 = 500$ mm, $F_2 = -150$ mm 的透镜组,间距~350 mm, 红色曲线为该透镜组 对激光的聚焦传输; a, c组合表示 $F_1 = 750$ mm, $F_2 = -200 \text{ mm}$ 透镜组,间距~600 mm,绿色曲线 为该透镜组对激光的聚焦传输; a, d组合表示 $F_1 =$ 1000 mm, $F_2 = -250$ mm 透镜组, 间距~800 mm, 黄色曲线为该透镜组对激光的聚焦传输. 图中橙色 曲线为F = 7 m透镜对激光聚焦后的光束传输情 况. 三组透镜组合对激光聚焦后的焦点距离 a 透镜 位置~2.2 m, 焦点光斑大小~700 μ m, F = 7 m的 透镜焦点处光斑大小~700 µm. 可见, 三组常用透 镜组合对激光聚焦后焦点处光斑特性与焦距为7m 透镜聚焦焦点处光斑特性基本一致. 因此利用常用 透镜组合对激光聚焦兼有短焦透镜焦距短、光路紧 凑和长焦透镜聚焦焦斑大、焦深长的特点.利用上 述三种双透镜组合对激光聚焦均可获得焦点处功 率密度~10¹² W/cm², 满足 XPW 高效率转换所需 要的光强以及非真空中稳定传输的要求.

图 1 (网刊彩色)不同聚焦透镜组合及单透镜聚焦下的光 束传输

Fig. 1. (color online) Dependence of the laser beam propagation on different focusing systems.

实验中采用 *F*₁ =750 mm, *F*₂ = -200 mm 组 合对激光聚焦,并利用文献 [21] 中的方法对在非真 空中经过聚焦后激光的非线性相位积累进行测量, 在激光压缩器中遮挡部分光谱从而在激光光谱中 形成凹陷调制,比较聚焦前后光谱中凹陷形状的变 化判断该聚焦后的光束是否具有非线性相位积累. 图 2 中红色曲线为聚焦前激光光谱,蓝色曲线为聚 焦后激光光谱,聚焦前后光谱凹陷深度和宽度没有 明显变化.由此可见激光经过该聚焦系统在非真空 中传输不会引入明显的非线性相位积累,光束质量 没有明显恶化.

图 2 (网刊彩色)激光聚焦前后的激光光谱,其中,红色曲 线表示双透镜组合聚焦前光谱,蓝色曲线表示聚焦后光谱 Fig. 2. (color online) The spectrum of fundamental beam (red curve) and the spectrum with dual lens focusing system (blue curve).

3 实验系统

实验采用kHz钛宝石再生放大激光,用于 XPW 滤波系统的激光单脉冲能量120 μJ, 脉宽 35 fs, 中心波长 800 nm, 光谱的半高全宽为 37 nm. 图3为XPW的实验装置图,入射垂直偏振激光经 起偏棱镜P1进一步提高激光偏振度后,透镜F1 和F2将激光脉冲聚焦到BaF2 1#和2#晶体上, 其中1#晶体放置在焦点处.产生的XPW信号 由透镜F3准直,经过第二块偏振正交的检偏棱 镜P2滤除垂直偏振基波,获得水平偏振的XPW 信号光输出. 其中系统采用的棱镜 P1, P2为消 光比优于 10^{-5} 的 α -BBO格兰激光棱镜,尺寸为 15 mm×15 mm×15 mm. 聚焦系统 $F_1 = 750$ mm, $F_2 = -200$ mm, 准直透镜 $F_3 = 2000$ mm, 焦点处 焦斑 740 μ m, 功率密度 ~ 0.8 × 10¹² W/cm², BaF₂ 1#,2#晶体尺寸均为10mm×10mm×2mm,沿 着[001] 轴方向切割, 表面未镀膜. 当没有 BaF2 晶 体时,此时系统输出88 µJ,考虑到光路中格兰激光 棱镜的有限尺寸及损耗,系统的传输效率为73%.

图 3 XPW 实验装置图, 其中, P1, P2 是一对正交放置 的格兰激光棱镜, F1, F2 是组合聚焦透镜, F3 为准直透镜 Fig. 3. Experimental set up of XPW with two BaF₂ crystals. P1 and P2 are the crossed-polarizers, F1, F2 are the dual lens focusing system, F3 is the collimating lens.

4 结果与讨论

XPW 输出效率主要取决于入射光的偏振方向 与 BaF₂ 晶体的 [100] 轴夹角 β. 实验中首先测试了 单晶 XPW 输出随 β 变化特性,如图 4 中红色点所 示,实际输出结果与利用文献 [22] 计算的红色理论 曲线符合较好.单晶 XPW 输出随 β 周期变化,周 期为 1/4π,此时单晶 XPW 最高输出功率 8 μJ,转 换效率 6.6%.由于激光峰值功率密度较低,因此单 晶 BaF₂转换效率低于 10%.图5 中红色曲线是单 晶 XPW 输出光谱,相对于输入光谱没有明显展宽. 可见较低的功率密度时激光可在非真空中稳定的 传输,同时降低了晶体损伤的风险,但是此时单晶 XPW 转换效率较低,输出光谱展宽不明显,不利于 后续激光的放大和压缩等应用.

双晶BaF2结构可有效改善转换效率以及光 谱展宽问题. 实验中将1#晶体置于转换效率最 高的状态,改变2#晶体[100]轴与入射光偏振方 向夹角β₂,此时输出特性如图4中黑色点所示, 实验结果与黑色理论曲线符合较好, 双晶组合 输出随β2周期变化,此时的输出周期由单晶的 $1/4\pi$ 变为 $\beta_2 = 1/2\pi$,最高输出功率26.5 µJ,最 高转换效率22%. 此时XPW的输出是两块晶体 分别产生XPW干涉相长的结果^[14],输出可表示 $为 (F_2(\beta_1, \beta_2))^2 = (\sin(4\beta_1) + \alpha \sin(4\beta_2))^2, 其 中$ $F_2(\beta_1,\beta_2)$ 为XPW效应输出的场强振幅, α 为2# 晶体与1#晶体输出振幅比值.这种干涉效果使输 出周期与单晶输出周期不同,并且输出强度上有极 大提高. 得益于双晶结构的相长干涉, 使得即使在 仅有0.8×10¹² W/cm²的功率密度下依然可以获 得高达22%的转换效率,接近其饱和效率[14],考虑 系统73%的传输效率,双晶XPW内部转换效率高 达30%, 输出26.5 µJ的高质量激光可以应用于后 续的放大. 图5中蓝色曲线是双晶输出光谱展宽, 半高全宽66 nm,入射激光半高全宽37 nm, XPW 将光谱展宽1.78倍,达到理论展宽极限^[9,23].比较 单晶和双晶光谱展宽,可见光谱展宽与转换效率呈 正相关,接近饱和转换效率的XPW将光谱展宽到 极致,这为后续放大、压缩等提供了高功率、宽带宽 的干净种子源.

图4 (网刊彩色) XPW 输出效率随 β 的变化,其中,红色 圆点表示实验测量的单块 BaF_2 晶体的输出效率,红色曲 线代表单晶体的输出效率随 β 变化的理论曲线;黑色点表 示双 BaF_2 晶体组合测量的输出效率,黑色曲线代表双晶 组合输出效率的理论曲线

Fig. 4. (color online) Evolution of the efficiency as a function of β . Black solid curve represents theoretical results of two crystals, which are good agreement with experimental observations (black solid dots), red circles represent a single BaF₂ crystals conversion efficiency measured in experiments, which are good agreement with red theoretical curve.

图5 (网刊彩色)单晶体与双晶体组合下 XPW 输出光谱 的展宽,其中,黑色曲线代表 XPW 的输入光谱,红色曲线 表示单块 BaF₂晶体时 XPW 的输出光谱,蓝色曲线代表 双晶组合时 XPW 的输出光谱

Fig. 5. (color online) XPW spectral evolution of a single crystal or a dual crystal system. Figure shows the initial spectra without XPW filter (black curve), with single crystal XPW filter (red curve) and with dual crystal system XPW filter (blue curve).

双晶 XPW 效应中,激光在第一块 BaF2 晶体 中产生克尔透镜效应,对激光进行再聚焦,改变激 光传输特性,因此双晶间距对 XPW 效率具有重要 影响.实验测量了该系统中双晶间距对输出效率 的影响,如图 6 所示.间距在13—22 cm时,转换效 率均能达到 20% 以上,在保持较高的 XPW 效率时, 相对于已有文献报道的毫米量级间距^[9,20],该系统 将双晶间距调节范围提高了2个量级.由于系统中 采用长焦效果聚焦,在第一块晶体上的功率密度相 对较低,其克尔透镜效应较弱,因此对后续激光传 输影响较弱,极大地增大了高转换效率下双晶间距 的范围,这为双晶 XPW 系统设计和应用提供了较 大空间.

图 6 双 BaF₂ 晶体间距对输出效率的影响 (黑色虚线是转化效率 20% 分界线)

Fig. 6. Experimental dependence of the XPW conversion efficiency on the two crystals separations. The dashed line is the boundary of 20% efficiency.

5 结 论

利用常规正负透镜组合设计双透镜聚焦系统, 实现了紧凑的长焦透镜聚焦效果,并实现了120 μJ, 35 fs激光在非真空中高质量传输.在此基础上利 用双晶BaF₂在非真空中达到了XPW系统转换效 率22%,晶体内部转换效率30%,光谱1.78倍展宽, 这为飞秒激光后续的放大应用提供了高对比度、宽 光谱的高质量种子源.双晶间距在13—22 cm可实 现20%以上的转换效率,极大降低了双晶转换效率 对晶体间距的依赖.这种非真空中高效XPW的设 计与产生,满足了极端强场激光与物质相互作用高 对比度的要求,同时降低了激光系统的繁冗度.

参考文献

- Petrov G I, Albert O, Etchepare J, Saltiel S M 2001 Opt. Lett. 26 355
- [2] Minkovski N, Saltiel S M, Petrov G I, Albert O, Etchepare J 2002 Opt. Lett. 27 2025
- [3] Jullien A, Albert O, Burgy F, Hamoniaux G, Rousseau J P, Chambaret J P, Augé-Rochereau F, Chériaux G, and Etchepare J 2005 Opt. Lett. 30 920

- [4] Jullien A, Rousseau J P, Mercier B, Antonucci L, Albert O, Chériaux G, Kourtev S, Minkovski N, Saltiel S M 2008 Opt. Lett. 33 2353
- [5] Antonucci L, Rousseau J P, Jullien A, Mercier B, Laude V, Cheriaux G 2009 Opt. Commun. 282 1374
- [6] Qin S, Wang Z H, Yang S S, Shen Z W, Dong Q L, Wei Z Y 2017 Chin. Phys. Lett. 34 024205
- [7] Xu Y, Leng Y X, Guo X Y, Zou X, Li Y Y, Lu X M, Wang C, Liu Y Q, Liang X Y, Li R X 2014 *Opt. Commun.* 313 175
- [8] Li Y Y, Guo X Y, Zou X, Xu Y, Leng Y X 2014 Opt. Laser Technol. 57 165
- [9] Cotel A, Jullien A, Forget N, Albert O, Chériaux G, Le Blanc C 2006 Appl. Phys. B 83 7
- [10] Chu Y X, Liang X Y, Yu L H, Xu Y, Xu L, Ma L, Lu X M, Liu Y Q, Leng Y X, Li R X, Xu Z Z 2013 *Opt. Express* 21 29231
- [11] Geng Y X, Li R F, Zhao Y Y, Wang D H, Lu H Y, Yan X Q 2017 Acta Phys. Sin. 66 040601 (in Chinese) [耿易 星, 李荣凤, 赵研英, 王大辉, 卢海洋, 颜学庆 2017 物理学 报 66 040601]
- [12] Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2005 J. Opt. Soc. Am. B 22 2635
- [13] Ramirez L P, Papadopoulos D, Hanna M, Pellegrina A, Friebel F, Georges P, Druon F 2013 J. Opt. Soc. Am. B 30 2607

- [14] Jullien A, Kourtev S, Albert O, Chériaux G, Etchepare J, Minkovski N, Saltiel S M 2006 Appl. Phys. B 84 409
- [15] Ricci A, Jullien A, Rousseau J P, Liu Y, Houard A, Ramirez P, Papadopoulos D, Pellegrina A, Georges P, Druon F, Forget N, Lopez-Martens R 2013 *Rev. Sci. Instrum.* 84 043106
- [16] Canova L, Kourtev S, Minkovski N, Lopez-Martens R, Albert O, Saltiel S M 2008 Opt. Lett. 33 2299
- [17] Liu C, Wang Z H, Li W C, Liu F, Wei Z Y 2010 Acta Phys. Sin. 59 7036 (in Chinese) [刘成, 王兆华, 李伟昌, 刘峰, 魏志义 2010 物理学报 59 7036]
- [18] Wang J Z, Huang Y S, Xu Y, Li Y Y, Lu X M, Leng Y X 2012 Acta Phys. Sin. 61 94214 (in Chinese) [王建州, 黄延穗, 许毅, 李妍妍, 陆效明, 冷雨欣 2012 物理学报 61 94214]
- [19] Konoplev O A, Meyerhofter D D 1998 IEEE J. Sel. Top. Quantum Electron. 4 459
- [20] Jullien A, Albert O, Chériaux G, Etchepare J, Kourtev S, Minkovski N, Saltiel S M 2006 Opt. Express 14 2760
- [21] Ricci A, Jullien A, Forget N, Crozatier V, Tournois P, Lopezmartens R 2012 Opt. Lett. 37 1196
- [22] Minkovski N, Petrov G I, Saltiel S M, Albert O, Etchepare J 2004 J. Opt. Soc. Am. B 21 160
- [23] Jullien A, Durfee C G, Trisorio A, Canova L, Rousseau J P, Mercier B, Antonucci L, Chériaux G, Albert O, Lopez-Martens R 2009 Appl. Phys. B 96 293

High efficiency cross-polarized wave filter for non-vacuum transmission^{*}

Li Rong-Feng Xue Xing-Tai Zhao Yan-Ying[†] Geng Yi-Xing Lu Hai-Yang Yan Xue-Qing Chen Jia-Er

(State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China) (Received 12 May 2017; revised manuscript received 21 May 2017)

Abstract

Development of high-peak power laser system encounters difficulties in producing the pulses with high temporal contrast. To increase the pulse temporal contrast ratio, a nonlinear filter based on crossed-polarized wave (XPW) generation is proposed. The XPW generation relies on a third-order nonlinear process occurring in a nonlinear medium, such as barium fluorite (BaF₂) crystal. The XPW process is quite straightforward: a linearly polarized laser pulse is focused on BaF₂ crystal positioned between two orthogonally polarizers, high power main pulses due to nonlinear polarization rotation can pass through the second polarizer, while low power unconverted pre- and post- pulses are filtered by the second polarizer. With the XPW technique, pulse contrast can be enhanced by several orders of magnitude. Furthermore, XPW spectrum can be broaden by a factor with respect to the initial spectrum. This efficient pulse cleaner presents many advantages and has proved to be a simple and reliable pulse filter operating in a double chirped pulse amplification system.

Most of previous XPW experiments utilize short focal systems or work off focus due to an intensity limit in the crystal (BaF₂). These drawbacks result in a lower conversion efficiency (lower than 10%) when using a single crystal. Dual crystal setup is capable of achieving efficiency more than 20%, yet the configuration restricts the crystal separation to a millimeter level. The use of long focus lens in the XPW device is capable of reaching higher efficiency, with BaF_2 crystal positioned in the focal plane. Hence for milljoule pulses, the setup distance increases to tens of meters, resulting in a complicated system and cumbersome configuration.

Considering these limitations, a compact, highly efficient and stable XPW generation using dual-lens system suitable for non-vacuum transmission is presented. The measured nonlinear accumulated phase shows little deterioration of pulse quality. With a compact dual lens system, we realize an excellent XPW conversion of above 22% (internal efficiency of 30%) with using double BaF₂ crystals, while a femtosecond laser pulse can experience a spectrum broadening up to a factor of 1.78. The dual-lens configuration overcomes the crystal separation limit, and conversion efficiency exceeds 20% for a crystal separation from 13 cm to 22 cm, which is conducible to flexibility and robustness. The stability for the setup to generate shorter pulses with very high contrast or compensate for spectral gain narrowing in the preamplifier is ensured due to the dual-lens focusing system.

Keywords: dual lens system, crossed-polarized wave, non-vacuum, conversion efficiencyPACS: 06.60.Jn, 42.65.-k, 42.65.ReDOI: 10.7498/aps.66.150601

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11504009) and the National Grand Instrument Project, China (Grant No. 2012YQ030142).

[†] Corresponding author. E-mail: zhaoyanying@pku.edu.cn