# 物理学报 Acta Physica Sinica



#### 非晶态合金与氢相互作用的研究进展

林怀俊 朱云峰 刘雅娜 李李泉 朱敏

Research progress of interactions between amorphous alloys and hydrogen

Lin Huai-Jun Zhu Yun-Feng Liu Ya-Na Li Li-Quan Zhu Min

引用信息 Citation: Acta Physica Sinica, 66, 176105 (2017) DOI: 10.7498/aps.66.176105 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.176105 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I17

您可能感兴趣的其他文章 Articles you may be interested in

## 非晶合金的高通量制备与表征

Combinatorial fabrication and high-throughput characterization of metallic glasses 物理学报.2017, 66(17): 176106 http://dx.doi.org/10.7498/aps.66.176106

#### 小角X射线散射表征非晶合金纳米尺度结构非均匀

Characterization of nanoscale structural heterogeneity in an amorphous alloy by synchrotronsmall angle X-ray scattering 物理学报.2017, 66(17): 176109 http://dx.doi.org/10.7498/aps.66.176103

基于分数阶微分流变模型的非晶合金黏弹性行为及流变本构参数研究

Research on viscoelastic behavior and rheological constitutive parameters of metallic glasses based on fractional-differential rheological model

物理学报.2016, 65(4): 046101 http://dx.doi.org/10.7498/aps.65.046101

#### 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究

Investigation on the viscoelastic behavior of an Fe-base bulk amorphous alloys based on the fractional order rheological model

物理学报.2015, 64(13): 136101 http://dx.doi.org/10.7498/aps.64.136101

铜-钼源漏电极对非晶氧化铟镓锌薄膜晶体管性能的改善

Improved performance of the amorphous indium-gallium-zinc oxide thin film transistor with Cu-Mo source/drain electrode

物理学报.2015, 64(12): 126103 http://dx.doi.org/10.7498/aps.64.126103

专辑: 非晶物理研究进展

# 非晶态合金与氢相互作用的研究进展<sup>\*</sup>

林怀俊<sup>1)†</sup> 朱云峰<sup>2)‡</sup> 刘雅娜<sup>2)</sup> 李李泉<sup>2)</sup> 朱敏<sup>3)‡</sup>

(暨南大学,先进耐磨蚀及功能材料研究院,广州 510632)
 2)(南京工业大学材料科学与工程学院,南京 210009)
 3)(华南理工大学材料科学与工程学院,广州 510640)
 (2017年5月2日收到;2017年6月8日收到修改稿)

非晶态合金在力学性能、耐磨耐蚀性、磁性等方面比传统晶态合金具有显著优势,是一类有优良应用前景 的新型结构与功能材料.非晶态合金与氢相互作用可以产生很多有趣的物理化学现象和应用.本文从物理基 础和材料应用两个方面评述非晶态合金和氢相互作用的研究进展,在物理基础研究方面,从氢在非晶态合金 中的存在状态出发,讨论氢在非晶态合金中的溶解、分布、占位和扩散等相关物理问题,进而分析氢对非晶态 合金的热稳定性、磁性、内耗、氢脆等的影响.在材料应用研究方面,对非晶态储氢合金、非晶态合金氢功能膜、 吸氢改善非晶态合金的塑性和玻璃形成能力、氢致非晶化、利用非晶态合金制备纳米储氢材料等方面的研究 进展进行评述.最后总结并展望有关非晶态合金与氢相互作用的研究和应用.

关键词: 非晶态合金, 氢, 储氢, 氢致相变 PACS: 61.43.Dq, 81.05.Kf

#### **DOI:** 10.7498/aps.66.176105

## 1引言

1960年,加州理工学院的Duwez教授等<sup>[1]</sup>在 研究晶体结构和化合价完全不同的两个元素能否 形成固溶体时,偶然发现了Au-Si非晶态合金,从 那时起,这种非平衡亚稳态材料就受到越来越多科 学家和工程师的关注.经过半个多世纪的发展,非 晶态合金在国防、航天航空、变压器、催化剂、微纳 米器件、首饰、高档电子产品等高科技与时尚领域 备受青睐<sup>[2-5]</sup>.相比自然界普遍存在的晶态合金, 非晶态合金在强度、耐蚀性、软磁等方面有着显著 的优势<sup>[4,6]</sup>,比如:Co基非晶态合金的强度可高达 6.0 GPa;铁基非晶态合金变压器铁芯的铁损比传 统的硅钢、坡莫合金降低60%—70%;非晶态合金 可如玻璃一样吹制成表面光泽的合金球,加工成各 种精密器件.

自从非晶态合金发明以来,其与氢的相互作 用引领了一系列重要的基础研究和材料应用的发 展, 非晶态合金中的氢 (Hydrogen in amorphous allovs)受到越来越多物理、化学和材料等领域科技人 员的关注<sup>[7-10]</sup>.氢和材料中缺陷(空位、位错和界 面等)的相互作用对工程材料的应用有着重要意义, 非晶态合金的结构在一定程度上可以当作晶体中 的缺陷结构,因此研究氢在非晶态合金中的物理化 学行为可以帮助我们理解氢与缺陷的相互作用[7]. 将氢作为探针,利用中子散射、核磁共振等手段,可 以研究非晶态合金的微观结构和本质<sup>[11]</sup>.非晶态 合金吸氢过程中产生的应力应变小,不易发生粉 化<sup>[12]</sup>, 故吸放氢循环稳定性高, 同时非晶态合金中 还存在很多松散原子团簇和自由体积,可能提供潜 在的氢占位, 是一类有应用前景的储氢材料<sup>[13,14]</sup>. 非晶态合金膜的氢渗透性强、生产成本低、化学成 分可调控性高,是能够代替Pd基合金氡渗透膜的

<sup>\*</sup> 国家自然科学基金 (批准号: 51601090, 51571112, 51471087, 51621001) 资助的课题.

<sup>†</sup>通信作者. E-mail: hjlin@jnu.edu.cn

<sup>‡</sup>通信作者. E-mail: yfzhu@njtech.edu.cn; memzhu@scut.edu.cn

<sup>© 2017</sup> 中国物理学会 Chinese Physical Society

新一代氢提纯材料<sup>[15-18]</sup>.利用非晶态合金的氢致 变色和氢致变阻特性,可以制备新型的智能玻璃和 氢传感器<sup>[19-22]</sup>.吸氢处理还可以提高非晶态合金 的力学性能和玻璃形成能力等<sup>[23-25]</sup>.图1总结了 迄今为止有关非晶态合金和氢相互作用的主要研 究和应用.

本文从物理基础和材料应用两个方面总结有 关非晶态合金和氢相互作用的研究进展.在物理基 础方面,从非晶态合金中氢的溶解度、分布、占位和 扩散等出发,分析吸氢对非晶态合金的热稳定性、 磁性、内耗、氢脆等特性的影响;在材料应用研究方 面,主要从非晶态储氢合金、非晶态合金氢功能膜、 氢致非晶化、氢合金化提高非晶态合金的塑性和玻 璃形成能力等方面进行综述.





## 2 非晶态合金与氢相互作用的物理 基础

## 2.1 非晶态合金的吸氢方式

非晶态合金的吸氢方式主要有气态吸氢和电 化学吸氢两种,此外还有熔体吸氢、氢气氛下反应 球磨等方法. 气态吸氢 (gaseous hydrogenation) 是 将材料置于氢气氛中,通过调节氢气压、温度和时 间等参数进行吸氢,利用氢气压力的变化计算吸放 氢量,此方法也称为体积法或者 Sievert 法, 是实验 室测试储氢性能的常用手段,为了防止非晶态合 金发生晶化,温度要尽量低于非晶态合金的晶化 温度. 电化学吸氢 (electrochemical hydrogenation) 通常在室温进行,将材料置于碱液(如KOH)中,利 用充放电对非晶态合金进行吸放氢,是块体非晶态 合金吸氢的常用方法. 熔体吸氢 (melt hydrogenation)是在金属熔炼的过程中引入氢气气氛(通常为  $Ar \pi H_2$ 混合气), 此过程中氢可以被溶解到熔融金 属中,最后采用铜模吸铸、喷铸或甩带等方法制备 非晶态合金的过程中,部分溶入的氢固溶在非晶 态合金中<sup>[26]</sup>. 反应球磨吸氢 (reactive ball milling hydrogenation), 球磨法是制备非晶态合金粉末的 常用手段<sup>[27]</sup>,通过在氢气氛下进行球磨制备非晶 态合金粉末,可使部分氢固溶入非晶态合金中.反 应球磨法的设备和工艺简单,适合大规模制备.

#### 2.2 氢在非晶态合金中的占位与迁移

#### 2.2.1 非晶态合金中氢的溶解度和分布

非晶态合金中氢的溶解度和分布是一个重要的科学研究课题,特别对于非晶态储氢材料的开发有重要的指导价值.此外,对于研究氢与材料中缺陷的相互作用、利用氢作为探针来研究非晶态合金的原子结构、氢渗透膜材料的开发等也有重要意义.Kirchheim<sup>[7]</sup>对非晶态Pd<sub>77.5</sub>Cu<sub>6</sub>Si<sub>16.5</sub>和Ni<sub>49.9</sub>Pd<sub>31.8</sub>P<sub>18.3</sub>合金进行电化学吸氢,研究氢在非晶态合金中的溶解度和分布,发现非晶态合金中占据某特定能级的氢占位的密度呈高斯分布,如图2所示.氢占位的数目*n*(*G*)满足如下关系:

$$n(G) = \frac{\mathrm{d}N}{\mathrm{d}G} = \frac{1}{\sigma\sqrt{\pi}} \exp\left[-\left(\frac{G-G^0}{\sigma}\right)^2\right],\quad(1)$$

其中 dN 是处于能量为G、区间为dG 内的可能氢占 位的数目; G<sup>o</sup> 是与标准状态相关的能量平均值; σ 是高斯函数的宽度.由于每个能量对应数量有限的 氢占位,氢在非晶态合金中满足费米-狄拉克分布:

$$o(G) = \frac{n(G)}{1 + \exp\left(\frac{G - \mu}{RT}\right)},\tag{2}$$

其中µ是氢的费米能(化学势).与计算金属中电子 浓度的方法相似,非晶态合金中的氢浓度 c 可以通



$$c = \int_{-x}^{x} o(G) dG$$
  
= 
$$\int_{-x}^{x} \frac{n(G)}{1 + \exp\left(\frac{G - \mu}{RT}\right)} dG.$$
 (3)





图 2 (a) 非晶态合金中氢的潜在轨迹, 从参考状态的溶 解需要自由焓 G; (b) 自由焓分布 n(G), 平衡位点 e 的氢 占位 o(G) 服从费米-迪拉克统计<sup>[7]</sup>

Fig. 2. (a) Potential trace for hydrogen in an amorphous metal, where dissolution from a reference state requires the free enthalpy G; (b) the distribution n(G) of the free enthalpy, the occupation o(G) of the equilibrium sites e is governed by Fermi-Dirac statistics <sup>[7]</sup>.



图 3 典型晶态和非晶态合金的吸氢 PCI 曲线 Fig. 3. Typical hydrogenation PCI curves of crystalline and amorphous alloys.

氢进入非晶态合金后会优先占据低能级的占 位,随着吸氢量的增加,氢逐渐占据非晶态合金中 较高能量的占位,非晶态合金对氢的诱捕能力逐渐 降低. PCI (pressure composition isotherm)性能是 材料储氢性能的重要特性,通过PCI曲线可获得材 料的氢溶解度(或储氢量)、吸放氢平台压力、焓变 和熵变等参数.图3对比了典型晶态和非晶态合金 的PCI曲线,对于晶态单相合金,在吸氢过程首先 形成固溶体α相,随后形成氢化物β相,存在(α+β) 两相共存区,根据吉布斯相率可知,两相共存区在 PCI曲线上表现为平台.相对而言,非晶态合金通 常在整个吸氢过程中只生成非晶态固溶体α相而 不形成晶态氢化物β相,随着吸氢过程推移,氢在 非晶态合金中的溶解度逐渐增加,PCI曲线类似斜 直线.

## 2.2.2 非晶态合金中氢的占位

非晶态合金中氢的占位对其物理性质有着重 要的影响. 氢占位的数量、尺寸、类型和稳定性等 对于氢在非晶态合金中的存在状态至关重要,与 非晶态合金的储氢性能、氢渗透特性、氢脆等特 性也关系密切. Harris 等<sup>[28]</sup>分析了 Ni-Zr, Pd-Ti 和NiTi等非晶态合金体系在实验上测试得到的吸 氢量,认为二元过渡金属基非晶态合金 $A_{1-x}B_x$ 是 同构的,氢占据了非晶态合金中的准四面体空位  $A_{4-n}B_n$  (*n* = 4,3,2,…), 吸氢量满足以下关系:  $1.9\binom{4}{n}X^n(1-x)^{4-n}$ , 其中 $\binom{4}{n} = 4!/n!(4-n)!$ , 最 大的吸氢量与温度、化学成分无关,非晶态合金 的吸氢和晶态合金具有同一性,主要取决于非晶 态合金中氢占位的类型、尺寸和数量. Fires 等<sup>[29]</sup> 利用穆斯堡尔谱 (Mössbauer spectroscopy) 和X射 线光电子能谱(X-ray photoelectron spectroscopy, XPS)研究了Zr<sub>76</sub>Fe<sub>24</sub>非晶态合金中氢的占位,发 现氢在Zr<sub>76</sub>Fe<sub>24</sub>非晶态合金中的优先占位类似于 氢在晶态ZrH2中的占位,对比吸氢五周后的样品 与刚吸氢的样品的穆斯堡尔谱,发现它们几乎完全 一致,说明氢在Zr<sub>76</sub>Fe<sub>24</sub> 非晶态合金中的宏观扩散 很慢,占位很稳定.

中子散射是研究材料中氢占位的重要手段,这 是因为氢 (<sup>1</sup>H)的中子相干散射长度为 –0.3742 × 10<sup>-14</sup> m,并有十分明显的非相干散射,而氘 (D或 <sup>2</sup>H)的中子相干长度则为 0.6674 × 10<sup>-14</sup> m,非相 干散射很弱.因此,可以对材料进行完全或部分氘 化,利用中子散射精确地确定 D 原子的位置.Itoh 等 <sup>[30]</sup>利用中子散射比较研究了晶态和非晶态的 TbFe<sub>2</sub>D<sub>x</sub> 的短程原子结构,研究表明晶态 TbFe<sub>2</sub>合 金和非晶态 TbFe<sub>2</sub>D<sub>x</sub> (x = 3.0, 2.0)氢化物的金属 原子结构具有显著的差别.图 4为通过中子散射得 到的晶态 TbFe<sub>2</sub>D<sub>3.8</sub>、非晶态 TbFe<sub>2</sub>D<sub>x</sub> 的径向分布 函数 (radial distribution function, *RDF*(*r*)),以及 非晶态 TbFe<sub>2</sub>D<sub>3</sub> 的原子结构图 <sup>[31]</sup>.如图所示,晶 态的 TbFe<sub>2</sub>D<sub>3.8</sub> 的前三个峰分别属于 Fe-D, Tb-D 和 D-D 原子对, 但是对于非晶态的 TbFe<sub>2</sub>D<sub>x</sub>, 除了 Tb-D 和 D-D 原子对, 还存在金属-金属相互关系. 表 1 为通过 RDF(r) 计算得到的晶态 TbFe<sub>2</sub>D<sub>3.8</sub> 和非晶态 TbFe<sub>2</sub>D<sub>x</sub> 的最近邻原子配位数和原子

> 1000 (a) c-TbFe<sub>2</sub>D<sub>3.8</sub> 900 800 1-4T D-D 700600 RDF(r)a-TbFe<sub>2</sub>D<sub>3.0</sub> Ъ 5000 400 300 £ a-TbFe<sub>2</sub>D<sub>2.0</sub> Tb-D 200100 0 0.10.50 0.30.4r/nm

间距,结合以上分析可知,D原子占据了晶态 TbFe<sub>2</sub>D<sub>3.8</sub>中的 (2Fe+2Tb) 四面体间隙,而在非 晶态TbFe<sub>2</sub>D<sub>x</sub>中,D原子占据 (4Tb),(3Tb+1Fe) 和 (2Fe+2Tb) 三种四面体间隙,这表明某些非晶态 合金的氢占位类型和数量比晶态合金更多.



图 4 (a) 通过中子散射得到的晶态 TbFe<sub>2</sub>D<sub>3.8</sub>、非晶态 TbFe<sub>2</sub>D<sub>x</sub> (x = 3.0, 2.0) 的径向分布函数 RDF(r); (b) 非 晶态 TbFe<sub>2</sub>D<sub>3</sub> 的原子结构图 <sup>[31]</sup>

Fig. 4. (a) Radial distribution functions, RDF(r) derived from neutron diffraction for *c*-TbFe<sub>2</sub>D<sub>3.8</sub> and *a*-TbFe<sub>2</sub>D<sub>x</sub> (x = 3.0, 2.0); (b) section from a configuration for *a*-TbFe<sub>2</sub>D<sub>3.0</sub> <sup>[31]</sup>.

表 1 晶态 TbFe<sub>2</sub>D<sub>3.8</sub>、非晶态 TbFe<sub>2</sub>D<sub>x</sub> (x = 3.0, 2.0) 的最近邻原子配位数  $N_{i-j}$  和原子间距  $r_1$ <sup>[31]</sup> Table 1. Nearest neighbor coordination number  $N_{i-j}$ , and interatomic distances  $r_1$ , in *c*-TbFe<sub>2</sub>D<sub>3.8</sub> and *a*-TbFe<sub>2</sub>D<sub>x</sub> (x = 0.3, 0.2)<sup>[31]</sup>.

|                                      | D-Fe                       |       | D-Tb                       |       | N   N /stoms                          |
|--------------------------------------|----------------------------|-------|----------------------------|-------|---------------------------------------|
|                                      | $N_{\rm D-Fe}/{\rm atoms}$ | $r_1$ | $N_{\rm D-Tb}/{\rm atoms}$ | $r_1$ | $10_{\rm P-Fe} + 10_{\rm P-Tb}/atoms$ |
| c-TbFe <sub>2</sub> D <sub>3.8</sub> | 2.05                       | 0.172 | 2.01                       | 0.221 | 4.06                                  |
| a-TbFe <sub>2</sub> D <sub>3.0</sub> | 0.98                       | 0.173 | 3.03                       | 0.223 | 4.01                                  |
| a-TbFe <sub>2</sub> D <sub>2.0</sub> | 0.62                       | 0.172 | 3.33                       | 0.223 | 3.95                                  |

## 2.2.3 非晶态合金中氢的扩散

材料中氢的扩散对材料的储氢动力学性能、氢 提纯膜的效率、氢致变色智能的玻璃敏感系数等有 着至关重要的影响.氢在晶态材料中的扩散系数*D* 一般满足Arrhenius关系<sup>[32]</sup>:

$$D = D_0 \exp\left(-\frac{\Delta u}{K_{\rm B}T}\right),\tag{4}$$

其中 $\Delta u$ 为扩散激活能.而对于非晶态合金,通过Arrhenius公式拟合的氢扩散系数总会出现偏

差, Eliaz 等<sup>[33]</sup>认为出现偏差的原因在于温度对 非晶态合金中的短程有序原子 (short-range order, SRO) 的影响, 通过修正温度对最近邻原子和次近 邻原子配位数的影响, 计算得到的扩散激活能与实 验观测的结果吻合.

晶态合金中的氢扩散系数 D 主要受温度影响, 在小温度范围内,氢扩散系数的变化很小,并且与 氢浓度无关<sup>[36]</sup>,但是氢在非晶态合金中的扩散系 数却与氢溶解度有十分密切的关系,图5(a)为非 晶态和晶态 Pd<sub>83</sub>Si<sub>17</sub> 合金的扩散系数随着氢溶解 度增加的变化<sup>[8,34]</sup>,在氢溶解度很低(*H/M* < 0.1) 的情况下,随着氢溶解度增加,晶态 Pd<sub>83</sub>Si<sub>17</sub> 合金 的氢扩散系数几乎不发生变化,但非晶态合金中 氢的扩散系数却随着氢浓度的增加而呈指数递增. 此外,非晶态合金的氢扩散系数还受温度影响,如 图5(b)所示,氢扩散系数随温度增加而升高,在低 温下,非晶态合金的氢扩散系数随着氢浓度增大而 升高的速率比在高温下更快.

Kirchheim<sup>[35]</sup>研究了氢在Pd<sub>77.5</sub>Si<sub>16.5</sub>Cu<sub>6</sub>非 晶态合金中的扩散,假定氢在非晶态合金中的 占位密度满足高斯分布(方程(1)),在氢浓度 $c \ll 1$  的情况下,氢扩散系数 D<sub>H</sub>随着氢浓度 c 的变化满 足如下关系式:

$$D_{\rm H} = \frac{D^0 \sigma \sqrt{\pi}}{RT} \exp(erf^{-1}|2c-1|)^2 \\ \times \exp\left(\frac{\sigma erf^{-1}|2c-1|}{RT}\right), \tag{5}$$

其中 D<sup>0</sup> 是氢在只含有 G<sup>0</sup>能级占位的材料中的扩散系数, σ是高斯函数的宽度.通过计算得到的 Pd<sub>77.5</sub>Si<sub>16.5</sub>Cu<sub>6</sub> 非晶态合金中氢的扩散系数随着 氢浓度的变化与实验观测相符合 (图5(c)).由此可见,氢优先占据非晶态合金中低能级的占位,随着 氢浓度继续增加,非晶态合金对氢的诱捕能力逐渐 降低,氢扩散系数逐渐提高.



图 5 氢扩散系数随着氢浓度的变化 (a) 晶态和非晶态 Pd<sub>83</sub>Si<sub>17</sub> 合金在 292 K 的对比; (b) 非晶态 Pd<sub>80</sub>Si<sub>20</sub> 合金在不同温度下的对比; (c) 在 295 K 实验测得和计算得到的 Pd<sub>77.5</sub>Si<sub>16.5</sub>Cu<sub>6</sub> 非晶态合金 <sup>[8,34,35]</sup>

Fig. 5. H-diffusion coefficient as a function of H-concentration in: (a) Amorphous and crystalline  $Pd_{83}Si_{17}$  alloys at 292 K; (b) amorphous  $Pd_{80}Si_{20}$  alloy at various temperatures; (c) experimental and calculated data for amorphous  $Pd_{77.5}Si_{16.5}Cu_6$  alloy at 295 K [8,34,35].

## 2.3 氢对非晶态合金物理性质的影响

#### 2.3.1 氢对非晶态合金热稳定性的影响

氢与不同元素的亲和力、混合焓、结合能等差 别很大,因此吸氢对不同非晶态合金(体系)热稳 定性影响的差别也很大.根据文献报道,对于有 些体系,吸氢可以降低非晶态合金(体系)的热稳 定性,比如Cu<sub>50</sub>Ti<sub>40</sub>Al<sub>10</sub><sup>[37]</sup>,Zr<sub>76</sub>Fe<sub>24</sub><sup>[29]</sup>,Zr-Cu-Ni-Al<sup>[38]</sup>和TiCu等<sup>[39]</sup>,这主要是由于Zr和Ti等 元素和氢的亲和力强,吸氢会在非晶态合金基 体上诱发相分离和晶化,以致生成ZrH<sub>2</sub>,TiH<sub>2</sub>等 氢化物,形成纳米晶+非晶复合结构,导致非晶 态合金的热稳定性降低.对于另外一些体系,吸 氢也可提高非晶态合金(体系)的热稳定性,比如 Mg<sub>67</sub>Ni<sub>28</sub>Pd<sub>5</sub><sup>[40]</sup>, Mg<sub>62</sub>Ni<sub>33</sub>Ca<sub>5</sub><sup>[41]</sup>, Zr-Ti-Cu-Ni-Be<sup>[42]</sup>和Mg-Ce-Ni<sup>[14]</sup>等.对于Mg<sub>67</sub>Ni<sub>28</sub>Pd<sub>5</sub>非晶态合金,其晶化过程的第一阶段由Mg<sub>2</sub>Ni组成,吸氢之后,Pd和氢的亲和力最强,故氢优先和Pd原子结合,在晶化过程中,首先晶化生成Mg<sub>2</sub>Ni,随后氢从Pd中脱离与Mg<sub>2</sub>Ni结合形成Mg<sub>2</sub>NiH<sub>4</sub>,因而晶化完成温度提高了65 K. Mg<sub>62</sub>Ni<sub>33</sub>Ca<sub>5</sub>和Mg-Ce-Ni 非晶体系也是类似的机理.而对Mg<sub>76</sub>Ni<sub>19</sub>Y<sub>5</sub><sup>[43]</sup>,Fe<sub>70</sub>B<sub>14</sub>Si<sub>7</sub>和Fe<sub>60</sub>Co<sub>25</sub>B<sub>15</sub><sup>[44]</sup>等非晶态合金而言,吸氢对其热稳定性的影响不大.对此现象的微观机理仍不是很清楚,差示扫描(DSC)实验显示,吸氢会显著降低晶化热,可能是由于吸氢改变了非晶态合金的晶化路径.

除了体系不同造成的影响不同,随着吸氢温 度和氢浓度的变化,氢对非晶态合金热稳定性的 影响也不同. Li等<sup>[45]</sup>报道了吸氢对 $Zr_{60}Al_{10}Ni_{30}$ 非晶态合金热稳定性的影响,发现吸氢温度对 非晶态合金的热稳定性有着重要的影响,吸氢后  $Zr_{60}Al_{10}Ni_{30}$ 非晶态合金的晶化温度 $T_x$ 从约750 K 降低至700 K以下,晶化温度随着吸氢温度的升高 而有所提高. 在较低的氢浓度条件下,吸氢会提高  $Zr_{60}Al_{10}Ni_{30}$ 非晶态合金的热稳定性,但是随着氢 浓度提高,氢会促进非晶态合金发生晶化,特别是  $ZrH_2$ 氢化物的生成会显著地降低 $Zr_{60}Al_{10}Ni_{30}$ 非 晶态合金的热稳定性.

#### 2.3.2 氢对非晶态合金内耗的影响

吸氢会导致非晶态合金产生内耗峰(或称为 非晶态氢峰),利用氢在非晶态合金中运动所反 映出来的宏观内耗性质的变化规律,可以间接理 解非晶态合金的微观原子结构<sup>[46,47]</sup>. Hasegawa 等<sup>[48,49]</sup>研究了添加Si, Ge和Pd对不同吸氢程度 的非晶态Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>合金内耗峰的影响,结 果表明,对于纯非晶态合金,在吸氢量低于20 at.% 的条件下,随着吸氢量的增加非晶态合金的内 耗Q<sup>-1</sup>逐渐增加, 非晶态(Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>)<sub>98</sub>Si<sub>2</sub> 合金和(Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>)<sub>99</sub>Ge<sub>2</sub>合金的内耗峰远 高于非晶态 Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub> 合金, 吸氢 14.4 at.% 的非晶态(Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>)<sub>98</sub>Si<sub>2</sub>合金的内耗高达 4× 10<sup>-2</sup>, Si的引入会导致非晶态合金中应变各 向异性的改变. 值得一提的是, 与吸氢后的非晶态 Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>合金相比,添加Pd与添加Si的结 果截然不同,如图6(a)所示,随着吸氢量增加,添 加Si的合金内耗逐渐增加,而添加Pd的合金则先 增加后降低.由此可见,添加Si和Pd会降低导致 非晶态合金内耗的氢占位能垒,特别是当Pd含量 在低于几at.%的情况下,添加Pd会在非晶态合金 中诱导出能量低于原来占位的新占位分布,而Pd 含量继续增加则会引导另一种新的占位,后一种新 占位并不影响原始非晶态Ti<sub>34</sub>Zr<sub>11</sub>Cu<sub>47</sub>Ni<sub>8</sub>合金中 的氢占位分布.

#### 2.3.3 氢对非晶态合金磁性的影响

吸氢可以改变非晶态合金的磁学性能, Coey 等<sup>[50-52]</sup>研究了吸氢对Fe 基Fe-Y 非晶态合金磁性 的影响, 对Fe-Y 非晶态合金利用电化学吸氢的方 式使氢与金属的摩尔比达到3左右.磁性测试结果 表明吸氢前的 Fe-Y 非晶态合金为散铁磁性, 其自



图 6 非晶态  $Ti_{34}Zr_{11}Cu_{47}Ni_8$  合金及添加 Si 和 Pd 后的 (a) 内耗和 (b) 氢占位密度与其占位能量的关系曲线,  $maxE_H$  为氢占位最高能量 <sup>[48]</sup>

Fig. 6. (a) Internal friction peak as a function of hydrogen content and (b) hydrogen site distribution curve as a function of the hydrogen site energy normalized by the lowest site energy of  $Ti_{34}Zr_{11}Cu_{47}Ni_8$ -Pd hydrogenated glassy alloys <sup>[48]</sup>.

旋冻结温度低于 100 K, 而吸氢之后合金变成软铁 磁性, 居里温度达到 400—500 K, 吸氢处理使 Fe-Y 非晶态合金的铁磁矩由  $1.96\mu_B$  增大至  $2.24\mu_B$ . 而 富 Fe 的 Fe<sub>x</sub>Zr<sub>100-x</sub> 非晶态合金为弱巡游电子铁磁 性, 吸氢后趋于转变为软铁磁性. 吸氢处理对于 Fe<sub>40</sub>Ni<sub>39</sub>Mo<sub>4</sub>B<sub>18</sub> 非晶态合金的磁矩没有明显影响, 但磁各向异性有所改变, 软磁特性降低.

氢致非晶化 (Hydrogen-induced amorphourization, HIA) 也会显著改变合金的磁性. Aoki 等<sup>[53]</sup>研究了氢致非晶化对 Laves 相 GdFe<sub>2</sub> 合金磁 性的影响,对于晶态 GdFe<sub>2</sub> 合金,在423 K下可吸 氢生成晶态 GdFe<sub>2</sub>H<sub>4.4</sub>,在423—523 K吸氢不发 生歧化反应而是生成非晶态 GdFe<sub>2</sub>H<sub>3.6</sub>. 另外,也 可以通过甩带法制备非晶态 GdFe<sub>2</sub> 再吸氢生成非 晶态 GdFe<sub>2</sub>H<sub>3.6</sub>. 晶态 GdFe<sub>2</sub> 合金的居里温度为 818 K, 而晶态 GdFe<sub>2</sub>H<sub>4.4</sub> 的居里温度则剧烈地降 低至 107 K, 氢致非晶化制备的非晶态 GdFe<sub>2</sub>H<sub>3.6</sub> 的居里温度为 443 K, 通过氢致非晶化和非晶态合 金吸氢两种途径获得的非晶态氢化物均在 300 K 附近达到最大磁化强度.

## 2.4 非晶态合金的氢脆

氢脆是金属材料失效的一个重要原因,主要是 由于氢分子在金属材料中发生聚集造成应力集中, 最终导致材料的脆化甚至开裂<sup>[54]</sup>,氢脆也是非晶 态合金失效和破坏的重要原因<sup>[55]</sup>. Javalakshmi 和 Fleury<sup>[56]</sup>利用甩带法制备Zr基、Ni 基和Ti 基非 晶态合金条带,通过电化学吸氢的方式进行不同程 度的吸氢处理.由于Zr和Ti元素与氢有较强的亲 和力,非晶态合金的吸氢动力学性能及最大吸氢 量随着Zr和Ti元素含量的增加而有所提升.对不 同吸氢程度的非晶态合金在室温下进行弯曲和拉 伸测试,考察材料的断裂应变随着吸氢量增加的 变化趋势,得到氢浓度与晶格体积膨胀的关系,如 图7所示,有助于预测氢致非晶态合金的韧性-脆 性转变. 最先进入非晶态合金的氢优先占据能量较 低的稳定位置,这些占位主要由与氢亲和力较高的 元素组成(如Zr, Ti). 随着吸氢量进一步增加, 当 材料中的氢浓度Hconc 超过临界氢浓度Hcrit时,继 续进入材料的氢开始占据较为不稳定的位置,这些 占位的组成元素与氢的亲和力较弱,故此部分的氢 处于不稳定的状态,导致材料很容易发生氢脆,另 外, 当晶格体积膨胀率  $\Delta d/d \ge 1.2$ 时, 金属原子间 的吸引力显著弱化,此时也容易发生严重的氢脆.





Fig. 7. Proposed map of hydrogen concentration versus dilatation as an aid to predict the ductile-to-brittle transition in amorphous alloys <sup>[56]</sup>.

3 非晶态合金与氢相互作用相关的 材料和应用

## 3.1 非晶态储氢合金

#### 3.1.1 非晶态储氢合金的研究背景

氢能被认为是有可能替代传统化石燃料的清 洁能源,实现氢能源应用的发展目标,解决储氢材 料和技术是我们面临的一大挑战[57]. 储氢合金由 于具有高安全性、高储氢密度、良好可逆性等优势 而被认为是解决氢能存储的一个重要途径[58].对 储氢合金的研究主要起源于20世纪70年代的能源 危机, 典型的代表有荷兰菲利普实验室发明的 AB5 型 LaNi<sub>5</sub> 合金<sup>[59]</sup>. 早期的储氢合金, 如 LaNi<sub>5</sub><sup>[59]</sup>, TiFe等<sup>[60]</sup>,可以在室温附近吸放氢,吸放氢动力学 性能较快,但储氢容量通常小于2.5 wt.%,且在吸 放氢过程经常发生粉化,因此研究人员开始关注非 晶态合金的储氢性能. 这主要是基于以下几方面 的考虑: 1) 非晶态合金在吸放氢过程产生的应力 应变较小,因此吸放氢循环稳定性较晶态合金有 优势[12]; 2) 非晶态合金中存在很多类似晶体材料 的"缺陷",因而可能提供更多的氢占位而具有更高 的储氢量; 3) 非晶态原子存在多种玻璃态的转变, 这种转变能够为氢占位提供更多潜在的可能性; 4) 有些合金体系的玻璃形成范围很宽,有利于材料 化学成分的设计,因此储氢性能有较大的可调控 性. 表2列举了一些典型的非晶态合金及其晶态合 金的储氢量对比,由表可见,非晶态合金的储氢量 可能高于也可能低于其晶态合金.关于非晶态储 氢合金的研究可大致分为两个阶段:一是1970年代

表 2 一些典型的非晶态合金及其晶态合金的储氢量对比 Table 2. Hydrogen storage properties of several amorphous and crystalline alloys.

| 成分                 |     | 储氢量/<br>wt.% | 备注            | 文献    |
|--------------------|-----|--------------|---------------|-------|
| TiCu               | 非晶态 | 1.2          | 150—200 °C,   | [61]  |
|                    | 晶态  | 0.9          | 气态吸氢          |       |
| LICNI:             | 非晶态 | 0.5          | 与太咽与          | [62]  |
| IIINI              | 晶态  | 0.4          | 「心吹全」         |       |
| ThEast             | 非晶态 | 1.1          | 通过氢致非晶化       | [30]  |
| 1 bre <sub>2</sub> | 晶态  | 1.4          | 制备非晶态氢化物      |       |
| Mr. C. N           | 非晶态 | 5.0          | 150 °C, 80 h, | [1 4] |
| Mg80Ce10N110       | 晶态  | 4.7          | 气态吸氢          | [14]  |

至1990年代,这个时期主要以Zr基、Ti基等过渡 金属基非晶态合金为研究对象;二是1990年代至 今,主要的研究对象为Mg基非晶态储氢合金.

## 3.1.2 过渡金属基非晶态储氢合金(1970年代 —1990年代)

20世纪80年代,甩带法(melt spinning)的发 明极大地促进了非晶态合金的发展,随后Zr基、Ti 基、Pd基等过渡金属基非晶态合金逐渐得到开发, 并被证明具有一定的储氢能力.Mealand等<sup>[61]</sup>比 较研究了晶态和非晶态的TiCu合金和ZrCu合金 的储氢性能,结果表明非晶态的TiCu合金吸氢得 到非晶态的氢化物TiCuH<sub>1.35</sub>,相比较晶态合金吸 氢后形成的TiCuH,吸氢量提高了35%.类似的现 象在Pd-Si非晶态合金体系也存在,这证明了非晶 态合金在储氢性能较晶态合金的潜在优势.但同时 也有很多研究指出非晶态合金的储氢容量并不一 定高于其晶态合金,如Hf-Ni,Zr-Ni等非晶态合金 体系的储氢量就低于其晶态合金<sup>[63]</sup>.

Ciureanu 等<sup>[64]</sup>研究了非晶态 Ni<sub>64</sub>Zr<sub>36</sub> 合金的 电化学储氢特性,结果表明氢原子占据非晶态 合金中的四面体间隙位置Zr4和NiZr3,在长时间 充放电循环后,循环伏安图中出现了几个新的 阳极极值,是由于占据低能四面体间隙位置的 氢原子被氧化的结果. 随着合金中的氢浓度从 2.65 at.% 增加至6.36 at.%, 合金中的氢扩散系数 从约 $2.2 \times 10^{-14} \text{ m}^2/\text{s}$ 逐渐增大至 $4.3 \times 10^{-14} \text{ m}^2/\text{s}$ , 结果与Kirchheim<sup>[8]</sup>提出的氢占位分布模型一 致. Li 等<sup>[45]</sup>研究了具有宽过冷液相区(约50°C) 的非晶态Zr60Al10Ni30合金的储氢性能,结果表 明非晶态Zr60Al10Ni30合金的吸氢量可以达到 H/M = 0.94—1.13. 随着吸氢量的增加,非晶 态合金中的低能占位逐渐被占满,继续吸附的氢原 子只能占据能量更高的间隙,导致金属原子趋于形 成更稳定的短程有序的ZrH<sub>2</sub>,在宏观上表现为非 晶态合金的热稳定性发生很大变化.

为了得到较高储氢量 (*H*/*M* > 0.5), 过渡金属 基非晶态储氢合金必须富含易吸氢的元素, 如Zr, Ti, Pd 等. 尽管如此, 过渡金属基非晶态储氢合金 的重量储氢密度通常低于2 wt.%, 无法满足高容量 储氢材料的要求. 另一方面, Zr, Ti等与氢结合力 强的元素的含量过高会导致脱氢的困难, 这对吸放 氢的循环性能也是一个很大的挑战, 因此将过渡金 属基非晶态合金作为储氢材料的研究热度逐渐降 温.值得关注的是,过渡金属基非晶态合金的晶化 温度高(400—700°C),Ta基非晶态合金的晶化温 度甚至接近1000°C,适合在高温条件下工作,所以 在氢渗透合金膜领域有广阔的应用前景.

## 3.1.3 Mg基非晶态储氢合金(1990年代 至今)

金属Mg的资源丰富,且其储氢密度高达 7.6 wt.%,因此被认为是一类具有巨大应用前景 的储氢材料[65]. 但是其储氢动力学较缓慢,且放 氢热力学性能过于稳定而无法在较低温度下脱 氢.因此,研究人员开始探讨 Mg基非晶态合金作 为储氢材料的可能. 20世纪90年代日本东北大学 的 Inoue 研究组利用甩带法制备了 Mg-RE-Ni (RE 为稀土元素)非晶态合金[66],极大地促进了镁基 非晶态储氢合金的研究<sup>[67-70]</sup>. Spassov等<sup>[67,68]</sup> 通过甩带法制备 Mg-RE-Ni (RE 为 Y, La 或 Mm 等 稀土元素)非晶态合金,并研究其电化学吸氢特 性,发现Mg75Ni20Mm5非晶态合金吸氢量可达到 约4 wt.%, 10 min 内可快速吸氢达到3 wt.%. Lei 等 [71] 研究了 Mg<sub>50</sub>Ni<sub>50-x-y</sub>M<sub>x</sub>N<sub>y</sub> (M, N 为Co, Al 或Si)非晶态合金的电化学储氢特性,结果表明Mg 基非晶态合金很容易活化, 电化学容量高, 非晶 态 Mg<sub>50</sub>Ni<sub>10</sub> 合金的储氢量达 500 mA·h/g, 约是晶 态合金的10倍. 但是Mg在碱性溶液中易被氧化, 循环性能较差,其容量的循环衰退达到每循环 (10-60) mA·h/g. Liu 等<sup>[72]</sup> 通过高能球磨制备  $Mg_x Ni_{100-x}$  (10 < x < 90) 晶态和非晶态合金, 结 果表明当30 < x < 60时, 球磨120h可以得到非 晶态合金,只有非晶态合金能够在室温下可逆吸 放氢, 当45 < x < 50时, 室温下的储氢容量约 350 mA·h/g. Huang 等<sup>[73]</sup> 报道了一种利用 Ag 负 载石墨烯包覆提高Mg-La-Ni 非晶态合金电化学储 氢性能的方法. 通过复合0.2 wt.%的Ag 负载石 墨烯,非晶态 Mg65Ni27La8 合金的放电容量可高达 814.8 mA·h/g, 50次循环后的容量保持率为75%. 可见表面修饰可以改善Mg基非晶态合金的抗氧化 性和抗腐蚀性,从而提高其电化学储氢循环稳定 性. 值得一提的是 Mg 基非晶态合金吸氢后通常会 发生晶化或部分晶化,调控晶化过程可以控制晶粒 尺寸,提高吸放氢动力学性能,但实际储氢的媒介 是MgH2或Mg2NiH4等氢化物.



图 8 (a), (b)  $Mg_{80}Ce_{10}Ni_{10}$  非晶态合金的原子结构图和双体分布函数 PDF, 插图是 RDF; (c), (d)  $Mg_{80}Ce_{10}Ni_{10}$  非晶态合金在吸氢前后的 STEM 图 <sup>[14]</sup>

Fig. 8. (a) Atomic structure and (b) PDF of the  $Mg_{80}Ce_{10}Ni_{10}$  amorphous alloy, the inset shows the RDF of the  $Mg_{80}Ce_{10}Ni_{10}$  amorphous alloy; HAADF-STEM images of  $Mg_{80}Ce_{10}Ni_{10}$  amorphous alloy (c) before and (d) after hydrogenation <sup>[14]</sup>.

Lin等<sup>[74]</sup>比较研究了晶态、纳米晶和非晶态 Mg-Ce-Ni合金的气态储氢性能,尽管它们在室温 下的吸氢量仅为0.2 wt.% 0.4 wt.%, 非晶态结构 对于储氢性能仍然具有明显的优势. 随着非晶态 合金中Mg含量的增加,吸氢量也呈现上升趋势, Mg90Ce5Ni5 非晶态合金的吸氢量是其晶态合金的 两倍. 与室温相比, Mg-Ce-Ni 非晶态合金在120 °C 可以吸氢达到5 wt.%,并高于同成分的晶态合 金<sup>[14]</sup>, XRD (X-ray diffraction) 和 XPS 结果表明随 着吸氢量的增加,非晶态合金逐渐转变为非晶态氢 化物,结合第一性原理计算模拟和HAADF-STEM (high angle annular dark field scanning transmission electron microscopy)揭示了非晶态合金氢化 形成的非晶态氢化物的原子结构变化.如图8(a) 和图8(b)所示,由于Ce-Ni原子的混合焓远低于 Ce-Mg原子和Mg-Ni原子的混合焓而发生强烈聚 集, Mg-Ce-Ni 非晶态合金形成富 Ce-Ni 原子团簇 和富Mg原子团簇两种非晶态结构. 吸氢后富Ce-Ni原子团簇增大,平均尺寸由3 nm 增至17.5 nm (图8(c)和图8(d)). 另外, 非晶态氢化物的脱氢温 度还随着合金化元素与氢的混合焓降低而降低. 由 于吸氢可能会导致非晶态合金发生相分离<sup>[75,76]</sup>, 这对于吸放氢的循环可逆性造成不利的影响, 如何 抑制吸氢过程中非晶态合金的相分离是一个重要 的研究课题. 另外, 值得一提的是某些超细纳米晶 合金(<1—5 nm)与非晶态合金的原子结构很难区 分<sup>[77]</sup>, 甚至在机械球磨过程中晶态和非晶态还可 以发生交替转变<sup>[78]</sup>, 因此如何判定纳米晶与非晶 态存在一定的争议.

## 3.2 非晶态合金氢功能膜

## 3.2.1 非晶态合金氢渗透膜

氢渗透膜是一种重要的氢气提纯材料,由于氢 在金属Pd中的扩散很快,传统的氢渗透金属膜主 要是Pd基合金<sup>[36]</sup>,后来研究人员又开发了晶态的 V基、Ni-Nb基等合金渗透膜<sup>[79]</sup>,以及非晶态合金 氢渗透膜.非晶态合金膜具有诸多优点而被认为是 可以取代Pd基合金的新一代氢提纯材料<sup>[18,79,80]</sup>: 1) 非晶态合金氢渗透膜一般用Zr, Ni, Nb, Cu, Al 等相对廉价的金属制备, 制备工艺成熟, 成本远低 于Pd基合金; 2) 非晶态合金膜的氢渗透性能较好, 已经接近Pd合金膜, 可以满足工业生产的需求; 3) 非晶结构可以在某种程度上抑制晶态氢化物的 形成, 因此有较好的抗氢脆性; 4) 由于主要由过渡 金属组成, 非晶态合金的晶化温度较高, 可以在较 高的温度条件下工作 (>400 °C<sup>[81]</sup>).

影响合金膜氢渗透性能的关键因素主要包括

氢渗透系数、氢扩散系数、氢溶解度和抗氢脆性等, 其中氢渗透率是最重要的一个参数,表3列举了一 些优异的非晶态合金膜的气态氢渗透率.由表3可 知,某些非晶态合金的氢渗透率可以与Pd合金媲 美,Ni-Nb基非晶态合金的氢渗透率与Pd 合金基 本上在同一数量级,非晶态Ni<sub>60</sub>Nb<sub>30</sub>Ta<sub>10</sub>合金的 氢渗透率甚至接近Pd<sub>60</sub>Cu<sub>40</sub>合金的两倍<sup>[82]</sup>.另 外,通过表面改性还可以进一步提高非晶态合金的 氢渗透特性<sup>[83]</sup>.

| Table 3. Gaseous hydrogen permeability of several excellent amorphous alloy membranes. |               |         |                                                                |                     |
|----------------------------------------------------------------------------------------|---------------|---------|----------------------------------------------------------------|---------------------|
| 膜化学成分/at.%                                                                             | 厚度/mm         | 工作温度/°C | 最高渗透率/mol·m <sup>-1</sup> ·s <sup>-1</sup> ·Pa <sup>-0.5</sup> | 参考文献                |
| $Zr_{65}A_{l7.5}Ni_{10}Cu_{12.5}Pd_5$                                                  | 0.047 - 0.052 | 380     | $1.4 \times 10^{-8}$                                           | [84]                |
| $\mathrm{Ni}_{60}\mathrm{Nb}_{30}\mathrm{Ta}_{10}$                                     | 0.070         | 400     | $4.13 \times 10^{-8}$                                          | [82]                |
| $(\rm Ni_{0.6}\rm Nb_{0.4})_{70}\rm Zr_{30}$                                           | 0.054         | 450     | $1.4 \times 10^{-8}$                                           | [80]                |
| $(\mathrm{Ni}_{0.6}\mathrm{Nb}_{0.3}\mathrm{Ta}_{0.1})_{70}\mathrm{Zr}_{30}$           | 0.065         | 400     | $9.8 \times 10^{-9}$                                           | [80]                |
|                                                                                        | 0.065         | 450     | $1.2 \times 10^{-8}$                                           |                     |
| $\mathrm{Ni}_{40}\mathrm{Nb}_{20}\mathrm{Ta}_{5}\mathrm{Zr}_{30}\mathrm{Co}_{5}$       | 0.03          | 400     | $1 \times 10^{-8}$                                             | [80]                |
| $\rm Ni_{40}Nb_{35}Zr_{20}Ta_5$                                                        | 0.030 - 0.035 | 400     | $1.15 \times 10^{-8}$                                          | [85]                |
| Fe-Ni-B-Co                                                                             | 0.025         | 400     | $5.3 \times 10^{-9}$                                           | [ <mark>86</mark> ] |
| $\mathrm{Pd}^{\#}$                                                                     | —             | 500     | $1.9 \times 10^{-8}$                                           | [87]                |
| $\mathrm{Pd}_{75}\mathrm{Ag}_{25}^{\#}$                                                | 0.198         | 400     | $1.8 \times 10^{-8}$                                           | [ <mark>88</mark> ] |
|                                                                                        |               | 450     | $2.0 \times 10^{-8}$                                           |                     |
| $\mathrm{Pd}_{60}\mathrm{Cu}_{40}^{\#}$                                                | 0.030         | 400     | $2.1~\times~10^{-8}$                                           | [84]                |

表3 一些优良的非晶态合金氢渗透膜的气态氢渗透特性

注: <sup>#</sup>Pd, Pd<sub>75</sub>Ag<sub>25</sub> 和 Pd<sub>60</sub>Cu<sub>40</sub> 为晶态金属.

#### 3.2.2 氢致变色非晶态合金膜

金属吸氢成为氢化物的过程是一种从导体转 变为半导体的物理过程,利用此特性可制备氢致变 色智能玻璃<sup>[19]</sup>. Zhao等<sup>[22]</sup>利用共溅射法制备非 晶态 MgNi<sub>0.03</sub>, MgNi<sub>0.09</sub>, MgNi<sub>0.21</sub>和 MgNi<sub>0.29</sub> 合 金薄膜. 随着 Ni 的比例由 0.03 上升至 0.29, 薄膜在 可见光范围内的最大透射率由 31%降低为 17.2%, 同时透射曲线的吸收边逐渐向红光方向移动,禁带 宽度变窄. MgNi<sub>0.09</sub> 的响应时间最短,加氢和脱氢 分别只需 26 s和 22 min,与非晶态 Mg薄膜的 110 s 和 85 min 相比,分别缩短了 76.4%和 74.1%. 薄膜 氢致光电转变过程的控速步骤由晶态时的氢原子 扩散过程变为非晶态时的氢化物反应过程,非晶 态 Mg-Ni 合金薄膜的响应时间约为晶态 Mg-Ni 合 金薄膜的十分之一, 表明非晶态薄膜的加氢动力 学性能远优于晶态薄膜.利用 Mg2Ni/Mg2NiH4转 变的氢致变色效应可以制备光敏传感器原件, Victoria等<sup>[21]</sup>通过磁控溅射的方法制备一系列 Mg-Ni-Zr 合金薄膜, 调控非晶态Ni-Zr 中间合金的含量 制备不同化学成分和结构的 Mg-Ni-Zr 合金, 改变 其与 Mg2NiH4 的相互作用, 进而改善其氢致变色 性能.图9的PTIs 曲线 (pressure-optical transmission isotherms) 表明通过非晶化可以大幅度提高 Mg-Ni-Zr 非晶态合金薄膜的光学敏感性, 这主要 是由于氢在非晶态合金中的扩散系数远高于晶态 合金, 同时非晶态合金在吸放氢过程不存在两相共 存而具有更高的敏感系数.



图 9 非晶态 Mg-Ni-Zr 合金体系的 PTIs 曲线 <sup>[21]</sup> Fig. 9. PTIs of selected amorphous and crystalline Mg-Ni-Zr compositions <sup>[21]</sup>.

## 3.2.3 非晶态合金氢传感器

利用吸、放氢过程中非晶态合金的电敏、光 敏感特性变化,非晶态合金还可以作为氢传感器 材料.非晶态合金作为氢传感器的重要优势在于 对氢的敏感性强,氢扩散快,且在吸放氢过程中不 容易生产晶态氢化物.Nakano等<sup>[89]</sup>报道了吸氢 对Mg90Pd10非晶态合金电阻的影响,发现随着吸 氢量的增加电阻增加,反之亦然.另外,作者还将 Mg90Pd10非晶态合金置于溶解氢的水环境中,研 究其在液体环境中的氢敏感性,发现置于氢溶解度 分别为0.555和1.170 ppm的水中300 s后,合金的 电阻分别提高至原来的1.152和1.476倍.这表明 Mg90Pd10 非晶态合金可以作为氢传感器材料,并 且适合在水溶液环境中工作.

## 3.3 氢对非晶态合金性能的积极影响

#### 3.3.1 氢提升非晶态合金的塑性

氢除了会使非晶态合金发生氢脆和破坏,氢也 可以对非晶态合金产生积极的影响.材料的吸氢 可看成是一种合金化的过程,氢作为合金化元素, 当氢含量处于一定合适的范围内可以提高非晶态 合金的塑性<sup>[24,90]</sup>.Dong等<sup>[24]</sup>在氢气氛(Ar+H<sub>2</sub> 混合气)下熔炼和吸铸Zr<sub>57</sub>Al<sub>10</sub>Cu<sub>15.4</sub>Ni<sub>12.6</sub>Nb<sub>5</sub> (Vit<sub>106</sub>)和Zr<sub>55</sub>Cu<sub>30</sub>Ni<sub>5</sub>Al<sub>10</sub>(Zr<sub>55</sub>)合金,结果表明 经过熔体吸氢处理之后的非晶态合金比起在纯Ar 气氛吸铸制备的合金在室温具有更高的塑性.如 图10所示,通过改变Ar+H<sub>2</sub>混合气中H<sub>2</sub>的比例从 5%逐渐增加到30%,两种非晶态合金的压缩塑性 得到不同程度的增强.在纯Ar气氛吸铸得到的非 晶态合金的塑性应变仅约1%,吸氢之后塑性应变 显著地增加至约10%.通过对断裂截面的分析可 知, 在纯Ar 气氛吸铸得到的非晶态合金在断口附 近只有少量的主剪切带, 剪切带的间距约300 μm, 而经过氢微合金化之后断口附近产生了大量的 主剪切带和次剪切带, 剪切带的间距也降低至约 50 μm. 通过DSC结果分析可知, 通过吸氢处理制 备的非晶态合金的自由体积有所增加, 可见适度 的氢合金化是提高非晶态合金塑性的一条有效的 途径.



图 10 不同气氛条件吸铸制备的 (a) Vit<sub>106</sub> 和 (b) Zr<sub>55</sub> 非晶态合金的压缩应力-应变曲线<sup>[24]</sup>

Fig. 10. Stress-strain curves of Vit<sub>106</sub> alloy (a) prepared under Ar+x%H<sub>2</sub> (x = 0-30) atmospheres, and Zr<sub>55</sub> alloy (b) prepared under Ar+x%H<sub>2</sub> (x = 0-30) atmospheres <sup>[24]</sup>.

## 3.3.2 氢提高非晶态合金的玻璃形成能力

吸氢还可以提高非晶态合金的玻璃形成能力 (glass forming ability, GFA),在实验上表现为临 界玻璃形成尺寸的增加,通过吸氢处理可以制备 更大尺寸的块体非晶态合金.Su等<sup>[26]</sup>发现通过适 量的吸氢可以提高Zr基非晶态合金的玻璃形成能 力,如表4所列,在Ar气氛吸铸的Zr<sub>55</sub>Cu<sub>30</sub>Ni<sub>5</sub>Al<sub>10</sub> 非晶态合金的临界尺寸为4 mm,随着Ar气氛中 H<sub>2</sub>含量的由5%增加20%,Zr<sub>55</sub>Cu<sub>30</sub>Ni<sub>5</sub>Al<sub>10</sub>非晶 态合金的临界尺寸 $d_c$ 逐渐增大至8 mm随后回落 至5 mm.另外,玻璃化转变温度 $T_g$ 也随着吸氢 而有所提高. Granata 等<sup>[91]</sup> 研究了氢微合金化 对Zr基非晶态合金玻璃形成能力的影响,比较 研究了Zr<sub>64</sub>Cu<sub>24</sub>Al<sub>12</sub>(Zr<sub>64</sub>)和Zr<sub>66</sub>Cu<sub>22</sub>Al<sub>12</sub>(Zr<sub>66</sub>) 两个非晶态合金在Ar气氛和95%Ar+5%H<sub>2</sub>混合 气氛的玻璃形成能力,随着在Ar气氛种添加5%的 H<sub>2</sub>, Zr<sub>64</sub>和Zr<sub>66</sub>非晶态合金的临界形成半径 $d_c$ 由 5.1 mm和2.8 mm分别增大至6.8 mm和4.9 mm. Zr和Pd等金属原子与氢有强的亲和力,引入氢可 以提高非晶态合金中无序原子的紧凑度,降低松散 原子团簇的密度,因此吸氢可以提高非晶态合金的 玻璃形成能力.

Mahjoub等<sup>[92]</sup>利用第一性原理计算分析氢微 合金化提高Zr<sub>64</sub>Cu<sub>22</sub>Al<sub>12</sub>非晶态合金玻璃形成能 力的微观机理,计算模拟了吸氢前后非晶态合金的 原子结构、电子结构、化学键和原子扩散等,发现 在熔点附近添加氢会降低合金中二十面体的数量, 进而导致玻璃形成能力的降低,但是氢的引入同时 也显著地降低了组成元素的移动扩散能力,总体而 言,动力学的放缓是主要的因素,因此综合的结果 使得合金玻璃形成能力提升.另外氢还能增强离子 性并促进局部结构中的异质性,降低非晶态合金中 无序原子的填充密度,最终导致非晶态合金的压缩 塑性的提升.吸氢处理是提升非晶态合金玻璃形成 能力的一条新型有效的途径,氢微合金化是设计金 属玻璃成分的一条有效途径<sup>[25]</sup>.

表 4 不同氢气氛下熔炼的  $Zr_{55}Cu_{30}Ni_5Al_{10}$  合金的氢 含量  $C_{\rm H}$ , 氧含量  $C_{\rm O}$  和临界截面尺寸  $d_{\rm c}$  <sup>[26]</sup>

Table 4. Hydrogen content  $C_{\rm H}$ , oxygen content  $C_{\rm O}$  and critical section sizes  $d_{\rm c}$  of  $\rm Zr_{55}Cu_{30}Ni_5Al_{10}$  amorphous alloys prepared under Ar + x%H<sub>2</sub> atmospheres <sup>[26]</sup>.

| $\operatorname{Ar} + x \% \operatorname{H}_2$ | 氢含量<br>C <sub>H</sub> /wppm | 氧含量 $C_{\rm O}/{\rm wppm}$ | 临界截面尺寸 $d_{ m c}/{ m mm}$ |
|-----------------------------------------------|-----------------------------|----------------------------|---------------------------|
| 0                                             | 20                          | 320                        | 4                         |
| 5%                                            | 170                         | 260                        | 6                         |
| 10%                                           | 210                         | 250                        | 8                         |
| 15%                                           | 260                         | 250                        | 7                         |
| 20%                                           | 330                         | 255                        | 5                         |

## 3.4 其 他

#### 3.4.1 氢致非晶化

20世纪80年代初,非晶态合金的制备工艺主 要有两种:快速冷却金属液体及沉积金属气体,这 两种工艺对于制备大块、大量非晶态合金存在很 大的局限性,加州理工学院的Johnson等<sup>[93]</sup>首先 发现通过对晶态合金进行吸氢处理可以得到非晶 态氢化物,也称为"氢致非晶化".研究表明晶态 的Zr<sub>3</sub>Rh合金在吸氢之后可以形成非晶态的氢化 物Zr<sub>3</sub>RhH<sub>5.5</sub>. 晶态Zr<sub>3</sub>Rh合金也可以通过快淬处 理转变为非晶态合金,随后进行吸氢处理也可以 得到非晶态的Zr<sub>3</sub>RhH<sub>5.5</sub>,两种途径制备的非晶态 Zr<sub>3</sub>RhH<sub>5.5</sub>的约化径向分布函数、密度和超导转 变温度等都几乎完全一致. 随后, Aoki等<sup>[94-97]</sup> 对氢致非晶化做了大量研究,他们发现具有C15 型Laves 相的 $RM_2$  (R为稀土元素, M为Fe, Co 等过渡金属元素)在400—500 K吸氢可以得到非 晶态的 $RM_2H_x$ . 氢致非晶化不只受到晶体结构 的影响,还受到原子半径比的影响,只有当Goldschmidt 原子半径比值  $r_A/r_B \ge 1.37$  时才能产生 氢致非晶化<sup>[96]</sup>. Zhang等<sup>[98]</sup>研究了添加Mg 对  $Sm_{2-x}Mg_{x}Ni_{4}$ 合金氢致非晶化的影响,发现当Mg 的添加量 x 为0, 0.25, 0.5 时可以发生氢致非晶化, Sm1.25Mg0.75Ni4合金可以可逆吸放氢而不发生氢 致非晶化,  $Sm_{2-x}Mg_xNi_4$ 合金体系发生氢致非晶 化的临界原子半径比r<sub>A</sub>/r<sub>B</sub> 略大于1.37.

## 3.4.2 利用非晶态合金作为前驱体制备纳米 复合储氢材料

利用非晶态合金作为前驱体,进行吸氢、氧化 等后处理是一条有效的制备纳米复合储氢材料的 途径. 研究表明利用非晶态合金作为前驱体容易得 到颗粒细小、分布均匀的纳米材料,能够缩短氢扩 散路径,原位生成活性催化相、提高催化特性,从而 大幅度提高储氢材料的吸放氢动力学性能<sup>[99-101]</sup>. Lin等<sup>[101]</sup>发现通过控制吸氢工艺的参数,如温度、 压力和时间等,可以调控Mg基纳米复合材料的储 氢性能,随着活化温度的降低、活化压力的增加,得 到的氢化物的晶粒尺寸显著细化,在10 MPa氢气 压和220°C下,经过3h的吸氢可以得到晶粒尺寸 低于10 nm的氢化物复合物,并且在随后的吸放氢 循环中,通过活化得到最细的复合物一直保持最小 的晶粒尺寸,这主要是由于弥散均匀细小的纳米 复合组织可以阻碍 Mg 基氢化物基体相在吸放氢 过程中的晶粒长大. 将非晶态 Mg-Ce-Ni 合金作为 前驱体,利用吸氢和氧化处理还可以在MgH2基体 上原位制备具有共生结构的CeH<sub>2.73</sub>/CeO<sub>2</sub> 纳米催 化相<sup>[102]</sup>. 如图11所示,首先对非晶态Mg-Ce-Ni 合金进行吸氢处理得到 $MgH_2-Mg_2NiH_4-CeH_{2.73}$ 氢化物复合物,随后在空气中进行可控的氧化 物得到 $MgH_2-Mg_2NiH_4-CeH_{2.73}/CeO_2$ 纳米复合 材料,显著地降低 $MgH_2$ 的脱氢温度.通过透射 电子显微镜 (TEM), HRTEM 和FFT (fast Fourier transform)分析可知CeH<sub>2.73</sub>和CeO<sub>2</sub>是具有立方 -立方关系的纳米共生相,结合原位脱氢HRTEM 和第一性原理计算可知,CeH<sub>2.73</sub>和CeO<sub>2</sub>共生界 面处的自发脱氢效应是实现高效催化的重要 原因.



图 11 (a)—(c) 对应 Mg<sub>80</sub>Ce<sub>10</sub>Ni<sub>10</sub> 非晶态合金、MgH<sub>2</sub>-Mg<sub>2</sub>NiH<sub>4</sub>-CeH<sub>2.73</sub> 和 MgH<sub>2</sub>-Mg<sub>2</sub>NiH<sub>4</sub>-CeH<sub>2.73</sub>/CeO<sub>2</sub> 纳米复合物的 XRD 和 BSEM 图; (d)—(f) CeH<sub>2.73</sub>/CeO<sub>2</sub> 纳米共生相的 TEM 和 HRTEM 图; (g), (h) 分别为 CeH<sub>2.73</sub> 和 CeO<sub>2</sub> 的 FFT 谱<sup>[102]</sup>

Fig. 11. (a)–(c) XRD patterns and BSEM images of amorphous  $Mg_{80}Ce_{10}Ni_{10}$  alloy,  $MgH_2-Mg_2NiH_4-CeH_{2.73}$ and  $MgH_2-Mg_2NiH_4-CeH_{2.73}/CeO_2$  nanocomposites, respectively; (d)–(f) TEM and HTEM images showing the symbiotic  $CeH_{2.73}/CeO_2$  nanoparticle; (g), (h) are the corresponding FFT patterns of  $CeH_{2.73}$  and  $CeO_2$  <sup>[102]</sup>.

#### 3.4.3 吸氢粉碎大块非晶态合金

Maeland和Libowitz<sup>[103]</sup>报道了利用吸氢破 坏块体非晶态合金来制备非晶态合金粉末.首 先利用甩带法制备非晶态合金,包括Fe<sub>84</sub>B<sub>16</sub>, Ni<sub>45</sub>Co<sub>20</sub>Cr<sub>10</sub>Fe<sub>5</sub> Mo<sub>4</sub>B<sub>16</sub>, Fe<sub>40</sub>Ni<sub>40</sub>P<sub>14</sub>B<sub>16</sub>, Fe<sub>83</sub> P<sub>16.5</sub>Si<sub>0.5</sub>, Fe<sub>40</sub>Ni<sub>38</sub>Mo<sub>4</sub>B<sub>18</sub>, Co<sub>60</sub>Fe<sub>7.5</sub>Ni<sub>7.5</sub>Mo<sub>2</sub>Si<sub>8</sub> B<sub>15</sub>和CuTi等非晶态合金,接着在室温和12— 15 MPa气氛条件下对非晶态合金进行吸氢处理 1—6 h,吸氢处理之后合金发生膨胀甚至破碎,最 后对非晶态含金中非常稳定而不容易脱附,其他 的合金在真空处理之后均可得到不含氢具有不规 则形状的非晶态合金粉末,粉末的表面光滑干净, 颗粒尺寸大体上小于200 μm. 可见通过吸氢来破 坏块体非晶态合金, 随后进行真空处理来制备非晶 态合金粉末是一条独特的途径.

## 4 结论与展望

本文综述了非晶态合金和氢相互作用的研究 进展,讨论了非晶态合金中氢的溶解度、分布、占位 和扩散等相关物理化学问题,分析了氢对非晶态合 金的热稳定性、磁性、内耗、氢脆等的影响,对非晶 态合金和氢相互作用相关的材料应用研究进展进 行简述.总结已有的进展,我们认为关非晶态合金 和氢相互作用的研究在以下几方面应该继续探索 和加强研究.

1)吸氢可以改变非晶态合金的热稳定性、内耗、磁性等特性,这些物理现象背后的微观机制很复杂,未来还需要大量的研究来加深理解.

2) 非晶态合金的微观原子结构仍是未解之谜, 借助内耗测试、中子散射、核磁共振等手段研究氢 在非晶态合金中的状态,可以间接理解非晶态合金 的无序原子结构,氢具有很强的敏感性,借助氢来 研究非晶态合金的微观结构在不久的将来可能会 取得较大的突破.

3)随着非晶态合金体系越来越多的发明,非晶态合金在储氢材料、氢渗透膜、氢传感器、氢致变色智能玻璃等领域必然有着越来越广泛的应用.

4)除了提高非晶态合金的塑性和玻璃形成能力,氢合金化对非晶态合金力学性能和功能性等方面还有很多潜在的积极影响,设计巧妙的吸氢方式以及调控非晶态合金中氢的状态可能是未来发展的方向.

5)利用非晶态合金作为前驱体可控地制备纳 米颗粒,如氢化物、氧化物等,这种多相复合策略在 储氢、储能、催化、化工等领域有着广阔的应用前景, 应当进一步积极拓展.

#### 参考文献

- Klement W, Willens R H, Duwez P L 1960 Nature 187 869
- [2] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243
- [3] Wang W H 2011 Physics 40 701 (in Chinese) [汪卫华 2011 物理 40 701]
- [4] Wang W H, Dong C, Shek C H 2004 Mater. Sci. Engineer. R: Reports 44 45
- [5] Li Z, Bai H Y, Zhao D Q, Pan M X, Wang W L, Wang W H 2005 Acta Phys. Sin. 54 652 (in Chinese) [李正, 白海洋, 赵德乾, 潘明祥, 王万录, 汪卫华 2005 物理学报 54 652]
- [6] Wang W H 2013 Prog. Phys. 33 177 (in Chinese) [汪卫 华 2013 物理学进展 33 177]
- [7] Kirchheim R, Sommer F, Schluckebier G 1982 Acta Metall. 30 1059
- [8] Kirchheim R 1988 Prog. Mater. Sci. 32 261
- [9] Dong F Y, Luo L S, Su Y Q, Guo J J, Fu H Z 2013 *Rare Metal Mater. Engineer.* 42 1536 (in Chinese) [董福宇, 骆良顺, 苏彦庆, 郭景杰, 傅恒志 2013 稀有金属材料与工程 42 1536]
- [10] Eliaz N, Eliezer D 1999 Adv. Perform. Mater. 6 5
- [11] Rush J J, Rowe J M, Maeland A J 1980 J. Phys. F: Metal Phys. 10 L283
- [12] Spit F H M, Drijver J W, Radelaar S 1980 Scripta Metall. 14 1071

- [13] Turnbull D, Cohen M H 1961 J. Chem. Phys. 34 120
- [14] Lin H J, He M, Pan S P, Gu L, Li H W, Wang H, Ouyang L Z, Liu J W, Ge T P, Wang D P, Wang W H, Akiba E, Zhu M 2016 Acta Mater. 120 68
- [15] Yamaura S, Sakurai M, Hasegawa M, Wakoh K, Shimpo Y, Nishida M, Kimura H, Matsubara E, Inoue A 2005 Acta Mater. 53 3703
- [16] Dolan M D, Dave N C, Ilyushechkin A Y, Morpeth L D, McLennan K G 2006 J. Membrane Sci. 285 30
- [17] Hara S, Sakaki K, Itoh N, Kimura H M, Asami K, Inoue A 2000 J. Membrane Sci. 164 289
- [18] Ding H Y, Yao K F 2014 Rare Metal Mater. Engineer.
   43 1787 (in Chinese) [丁红瑜, 姚可夫 2014 稀有金属材料 与工程 43 1787]
- [19] Richardson T J, Slack J L, Armitage R D, Kostecki R, Farangis B, Rubin M D 2001 Appl. Phys. Lett. 78 3047
- [20] Chaudhari P, Cuomo J J, Gambino R J 1973 Appl. Phys. Lett. 22 337
- [21] Victoria M, Westerwaal R J, Dam B, van Mechelen J L M 2016 ACS Sensors 1 222
- [22] Zhao Q, Li Y, Song Y, Cui X, Sun D, Fang F 2013 Appl. Phys. Lett. 102 161901
- [23] Dong F, Lu S, Zhang Y, Luo L, Su Y, Wang B, Huang H, Xiang Q, Yuan X, Zuo X 2017 J. Alloy Comput. 695 3183
- [24] Dong F, Su Y, Luo L, Wang L, Wang S, Guo J, Fu H 2012 Int. J. Hydrogen Energy 37 14697
- [25] Granata D, Fischer E, Löffler J F 2015 Acta Mater. 99 415
- [26] Su Y, Dong F, Luo L, Guo J, Han B, Li Z, Wang B, Fu H 2012 J. Non-Cryst. Solids 358 2606
- [27] Huot J, Ravnsbæk D B, Zhang J, Cuevas F, Latroche M, Jensen T R 2013 Prog. Mater. Sci. 58 30
- [28] Harris J H, Curtin W A, Tenhover M A 1987 Phys. Rev. B 36 5784
- [29] Fries S M, Wagner H G, Campbell S J, Gonser U, Blaes N, Steiner P 1985 J. Phys. F: Metal Phys. 15 1179
- [30] Itoh K, Kanda K, Aoki K, Fukunaga T 2003 J. Alloy Comput. 348 167
- [31] Fukunaga T, Itoh K, Orimo S, Aoki K 2004 Mater. Sci. Engineer. B 108 105
- [32] Völkl J, Alefeld G 1978 Hydrogen in Metals I: Basic Properties (Berlin & New York: Springer-verlag) p321
- [33] Eliaz N, Fuks D, Eliezer D 1999 Acta Mater. 47 2981
- [34] Lee Y S, Stevenson D A 1985 J. Non-Cryst. Solids 72 249
- [35] Kirchheim R 1982 Acta Metall. 30 1069
- [36] Knapton A 1977 Platinum Metals Rev. 21 44
- [37] Spassov T, Stergioudis G, Ivanov G, Polychroniadis E 1998 Zeitschrift f
  ür Metallkunde 89 23
- [38] Huett V, Zander D, Jastrow L, Majzoub E, Kelton K, Köster U 2004 J. Alloy Comput. 379 16
- [39] Bowman R Jr, Furlan R, Cantrell J, Maeland A 1984 J. Appl. Phys. 56 3362
- [40] Yamaura S, Isogai K, Kimura H, Inoue A 2002 J. Mater. Res. 17 60
- [41] Isogai K, Shoji T, Kimura H, Inoue A 2000 Mater. Trans. JIM 41 1486

- [42] Peng D, Yan M, Sun J, Shen J, Chen Y, McCartney D 2005 J. Alloy Comput. 400 197
- [43] Rangelova V, Spassov T, Neykov N 2004 J. Thermal Analy Calorim. 75 373
- [44] Lazarova M, Spassov T, Budurov S 1994 Int. J. Rapid Solidificat. 8 133
- [45] Li X G, Otahara T, Takahashi S, Shoji T, Kimura H M, Inoue A 2000 J. Alloy Comput. 297 303
- [46] Stolz U, Weller M, Kirchheim R 1986 Scripta Metall. 20 1361
- [47] Künzi H U, Agyeman K, Güntherodt H J 1979 Solid State Commun. 32 711
- [48] Hasegawa M Takeuchi M, Inoue A 2005 Acta Mater. 53 5297
- [49] Hasegawa M, Takeuchi M, Kato H, Inoue A 2004 Acta Mater. 52 1799
- [50] Coey J M D, Ryan D, Gignoux D, Liénard A, Rebouillat J P 1982 J. Appl. Phys. 53 7804
- [51] Coey J, Ryan D, Boliang Y 1984 J. Appl. Phys. 55 1800
- [52] Ryan D H, Coey J M D, Batalla E, Altounian Z, Ström-Olsen J O 1987 Phys. Rev. B 35 8630
- [53] Aoki K, Nagano M, Yanagitani A, Masumoto T 1987 J. Appl. Phys. 62 3314
- [54] Nagumo M 2016 Characteristic Features of Deformation and Fracture in Hydrogen Embrittlement, in: Fundamentals of Hydrogen Embrittlement pp137–165
- [55] Nagumo M, Takahashi T 1976 Mater. Sci. Engineer. 23 257
- [56] Jayalakshmi S, Fleury E 2010 J. ASTM International 7 1
- [57] He T, Pachfule P, Wu H, Xu Q, Chen P 2016 Nat. Rev. Mater. 1 16059
- [58] Sandrock G 1999 J. Alloy Comput. 293-295 877
- [59] Buschow K H, van Mal H H 1972 J. Less-Common Metals 29 203
- [60] Reilly J J, Johnson J R, Reidinger F, Lynch J F, Tanaka J, Wiswall R H 1980 J. Less-Common Metals 73 175
- [61] Maeland A J, Tanner L E, Libowitz G 1980 J. Less-Common Metals 74 279
- [62] Aoki K, Masumoto T, Kamachi M 1985 J. Less Common Metals 113 33
- [63] Bowman R C Jr 1988 Mater. Sci. Forum. 31 197
- [64] Ciureanu M, Ryan D H, Ström-Olsen J O, Trudeau M L 1993 J. Electrochem. Soc. 140 579
- [65] Wang H, Lin H J, Cai W T, Ouyang L Z, Zhu M 2016 J. Alloy Comput. 658 280
- [66] Inoue A, Masumoto T 1993 Mater. Sci. Engineer. A 173 1
- [67] Spassov T, Lyubenova L, Köster U, BaróM D 2004 Mater. Sci. Engineer. A 375–377 794
- [68] Spassov T, Köster U 1999 J. Alloy Comput. 287 243
- [69] Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H 1999 J. Alloy Comput. 293–295 521
- [70] Wu D C, Huang L J, Liang G Y 2008 Acta Phys. Sin.
  57 1813 (in Chinese) [吴东昌, 黄林军, 梁工英 2008 物理 学报 57 1813]

- [71] Lei Y, Wu Y, Yang Q, Wu J, Wang Q 1994 Zeitschrift für Physikalische Chemie 183 379
- [72] Liu W, Wu H, Lei Y, Wang Q, Wu J 1997 J. Alloy Compud. 252 234
- [73] Huang L, Wang Y, Tang J, Zhao Y, Liu G, Wang Y, Liu J, Jiao J, Wang W, Jin B, Belfiore L A, Kipper M J 2017 J. Alloy Comput. 694 1140
- [74] Lin H J, Wang W H, Zhu M 2012 J. Non-Cryst. Solids 358 1387
- [75] Griessen R 1983 *Phys. Rev. B* 27 7575
- [76] Fadonougbo J O, Suh J Y, Han S, Shim C H, Kim G H, Kim M H, Fleury E, Cho Y W 2016 J. Alloy Comput. 660 456
- [77] Shao H, Asano K, Enoki H, Akiba E 2009 Scripta Mater.
   60 818
- [78] El-Eskandarany M S, Aoki K, Sumiyama K, Suzuki K 1997 Scripta Mater. 36 1001
- [79] Jiang P, Yu Y D 2013 Rare Metal Mater. Engineer. 42
   868 (in Chinese) [江鹏, 于彦东 2013 稀有金属材料与工程
   42 868]
- [80] Paglieri S N, Pal N K, Dolan M D, Kim S M, Chien W M, Lamb J, Chandra D, Hubbard K M, Moore D P 2011 J. Membrane Sci. 378 42
- [81] Dolan M, Dave N, Morpeth L, Donelson R, Liang D, Kellam M, Song S 2009 J. Membrane Sci. 326 549
- [82] Kim K B, Kim K D, Lee D Y, Kim Y C, Fleury E, Kim D H 2007 Mater. Sci. Engineer. A 449–451 934
- [83] Yamaura S, Inoue A 2010 J. Membrane Sci. 349 138
- [84] Yamaura S, Nakata S, Kimura H, Inoue A 2007 J. Membrane Sci. 291 126
- [85] Jayalakshmi S, Choi Y G, Kim Y C, Kim Y B, Fleury E 2010 Intermetallics 18 1988
- [86] Brinkman K, Fox E, Korinko P, Missimer D, Adams T, Su D 2011 J. Membrane Sci. 378 301
- [87] Ockwig N W, Nenoff T M 2007 Chem. Rev. 107 4078
- [88] Serra E, Kemali M, Perujo A, Ross D K 1998 Metall. Mater. Trans. A 29 1023
- [89] Nakano S, Yamaura S, Uchinashi S, Kimura H, Inoue A 2005 Sensors and Actuators B: Chemical 104 75
- [90] Zhao Y, Choi I C, Seok M Y, Kim M H, Kim D H, Ramamurty U, Suh J Y, Jang J 2014 Acta Mater. 78 213
- [91] Granata D, Fischer E, Löffler J F 2015 Scripta Mater. 103 53
- [92] Mahjoub R, Laws K J, Hamilton N E, Granata D, Ferry M 2016 Computat. Mater. Sci. 125 197
- [93] Yeh X L, Samwer K, Johnson W L 1983 Appl. Phys. Lett. 42 242
- [94] Aoki K, Yamamoto T, Masumoto T 1987 Scripta Metall. 21 27
- [95] Aoki K, Yanagitani A, Li X G, Masumoto T 1988 Mater. Sci. Engineer. 97 35
- [96] Aoki K, Li X G, Masumoto T 1992 Acta Metall. Mater.
   40 1717
- [97] Aoki K, Masumoto T 1995 J. Alloy Comput. 231 20
- [98] Zhang Q A, Yang D Q 2017 J. Alloy Comput. 711 312
- [99] Wu Y, Solberg J K, Yartys V A 2007 J. Alloy Comput. 446-447 178

[100] Lin H J, Ouyang L Z, Wang H, Zhao D Q, Wang W H, Sun D L, Zhu M 2012 International J. Hydrogen Energy 37 14329 Wang W, Zhu M 2016 J. Alloy Comput. 685 272
[102] Lin H J, Tang J J, Yu Q, Wang H, Ouyang L Z, Zhao Y J, Liu J W, Wang W H, Zhu M 2014 Nano Energy 9 80
[102] Madan J A, L Liberric C G 1022 Matrix Lett. 1 2

[101] Lin H J, Zhang C, Wang H, Ouyang L, Zhu Y, Li L,

#### [103] Maeland A J, Libowitz G G 1982 Mater. Lett. 1 3

## SPECIAL ISSUE — Progress in research of amorphous physics

## Research progress of interactions between amorphous alloys and hydrogen<sup>\*</sup>

Lin Huai-Jun<sup>1)†</sup> Zhu Yun-Feng<sup>2)‡</sup> Liu Ya-Na<sup>2)</sup> Li Li-Quan<sup>2)</sup> Zhu Min<sup>3)‡</sup>

1) (Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, China)

2) (College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China)

3) (School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China)

(Received 2 May 2017; revised manuscript received 8 June 2017)

#### Abstract

Amorphous alloys are a group of novel mechanical and functional materials that possess remarkably improved properties, such as mechanical property, wear property, anti-corrosion property, magnetic property and catalytic property, compared with those of their crystalline counterparts. The interactions between amorphous alloys and hydrogen can lead to various interesting physical and chemical phenomena, and also important applications. Typically, some amorphous alloys can store more hydrogen with faster kinetics than their crystalline counterparts due to the disordered atomic structures, which make them promising candidates for hydrogen storage. Hydrogen induced optical transformation in amorphous alloy film with thickness on a nanoscale makes them suitable for developing optical switchable windows. Hydrogen could be used as a sensitive probe to study the atomic structures of amorphous alloys. Amorphous alloys, whose structures are similar to defects in crystalline alloys (vacancies, dislocations, boundaries, ect.), are a group of suitable objects to study the interactions between hydrogen and defects. Amorphous alloys are also promising membranes materials for industrial hydrogen gas purification. Micro-alloying by hydrogenation could enhance the plasticity and glass-forming ability of amorphous alloy.

In this review, recent research progress of interactions between amorphous alloys and hydrogen are summarized from two main aspects: fundamental research and practical applications. In the aspect of fundamental research, we firstly review the recent study on hydrogen in the amorphous alloy, including the hydrogen concentration and distribution, hydrogen occupancy type and geometric size, hydrogen diffusion and thermodynamics and other relevant physical and chemical issues. Secondly, the studies on the effects of hydrogenation on thermal stability, magnetic property and internal friction of amorphous alloys, together with some discussion on the corresponding mechanisms are summarized. Thirdly, hydrogen embrittlement of amorphous alloy and the corresponding prevention techniques, together with the studies of the interactions between hydrogen and defects in crystalline materials such as vacancies, dislocations and boundaries in material, are also involved. In the aspect of practical applications, we firstly review recent advances in amorphous

<sup>\*</sup> Project supported by National Natural Science Foundation of China (Grant Nos. 51601090, 51571112, 51471087, 51621001).

<sup>†</sup> Corresponding author. E-mail: hjlin@jnu.edu.cn

<sup>‡</sup> Corresponding author. E-mail: yfzhu@njtech.edu.cn; memzhu@scut.edu.cn

hydrogen storage alloys, focusing on transition metal based amorphous alloys and Mg based alloys. Secondly, amorphous alloy films for hydrogen purification, hydrogen sensors and optical switchable windows are reviewed. Thirdly, some positive influences introduced by hydrogenation on amorphous alloys are discussed, typically on enhancing plasticity and glass-forming ability. Besides the above, hydrogen induced amorphization on crystalline alloy, the use of amorphous alloy for preparing nanocrystalline hydrogen storage materials, and using hydrogenation to crack bulk amorphous alloys to produce amorphous alloys powders are also discussed. In the last section of this review, we try to give our own viewpoint of the future perspectives of relevant researches and applications of interactions between hydrogen and amorphous alloys.

Keywords: amorphous alloys, hydrogen, hydrogen storage, hydrogen-induced phase transformationPACS: 61.43.Dq, 81.05.KfDOI: 10.7498/aps.66.176105