物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

波长锁定激光二极管共振泵浦Nd:YVO₄晶体连续波自拉曼激光器的设计与研究

张鑫 张蕴川 李建 李仁杰 宋庆坤 张佳乐 樊莉

Research and design of continuous-wave Nd:YVO $_4$ self-Raman laser in-band pumped by a wavelength-locked laser diode

Zhang Xin Zhang Yun-Chuan Li Jian Li Ren-Jie Song Qing-Kun Zhang Jia-Le Fan Li

引用信息 Citation: Acta Physica Sinica, 66, 194203 (2017) DOI: 10.7498/aps.66.194203 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.194203 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I19

您可能感兴趣的其他文章 Articles you may be interested in

Nd:YSAG 单晶的光谱和激光性能

Spectral and laser properties of Nd:YSAG single crystal 物理学报.2017, 66(15): 154204 http://dx.doi.org/10.7498/aps.66.154204

885nm 双端泵准连续微秒脉冲 1319nm 三镜环形腔激光

A quasi-continuous dual-end 885 nm diode-pumped three-mirror ring-cavity laser operating at 1319 nm 物理学报.2016, 65(15): 154205 http://dx.doi.org/10.7498/aps.65.154205

掺镱硼酸钙氧钇飞秒激光器及在拉锥光纤中产生跨倍频程超连续光

Generation of octave-spanning super-continuum in tapered single mode fibre pumped by femtosecond Yb:YCOB laser

物理学报.2015, 64(5): 054206 http://dx.doi.org/10.7498/aps.64.054206

28.2 W 波长锁定 878.6 nm 激光二极管共振抽运双晶体 1064 nm 激光器 A 28.2-W wave-locked 878.6 nm diode-laser-pumped multi-segmented Nd:YVO₄ laser operating at 1064 nm

物理学报.2014, 63(21): 214206 http://dx.doi.org/10.7498/aps.63.214206

激光二极管抽运的Nd: YVO4 连续自拉曼 1175nm 激光器

Laser diode end-pumped continuous-wave Nd: YVO₄ self-Raman laser at 1175 nm 物理学报.2014, 63(15): 154208 http://dx.doi.org/10.7498/aps.63.154208

波长锁定激光二极管共振泵浦Nd:YVO₄晶体连续 波自拉曼激光器的设计与研究^{*}

张鑫1) 张蕴川1) 李建1) 李仁杰1) 宋庆坤1) 张佳乐1) 樊莉1)2)†

(扬州大学物理科学与技术学院,应用光子技术研究所,扬州 225002)
 2)(南京大学,固体微结构物理国家重点实验室,南京 210093)
 (2017年4月14日收到;2017年7月10日收到修改稿)

对波长锁定 878.9 nm 的激光二极管共振泵浦 Nd:YVO4 晶体的全固态连续波自拉曼激光器进行了理论 研究.考虑了激光晶体在共振泵浦时的热透镜效应,采用 ABCD 传输矩阵法和等效 G 参数法,计算了当采用 不同曲率半径输出镜时腔内振荡激光的腔模参数,通过比较抽运光与振荡激光模式匹配的情况和拉曼晶体中 基频光功率密度的大小,分析了不同腔结构对拉曼激光输出功率的影响,给出了实验结果的理论解释,并进一步优化设计了谐振腔结构.最终获得了 5.3 W 的高功率 1175 nm 连续拉曼激光输出,光光转换效率达到 20%.

关键词: 自拉曼激光, 连续波, 共振泵浦, 谐振腔结构设计 **PACS:** 42.55.Ye, 42.60.Pk, 42.55.Xi, 42.60.By

DOI: 10.7498/aps.66.194203

1引言

受激拉曼散射 (stimulated raman scattering, SRS) 是一种非常高效的光学频率变换方法.固体 拉曼激光器是利用拉曼晶体的受激拉曼散射效应, 对基频激光进行频率变换从而获得新波长激光输 出的一种激光器^[1].与基频激光相比,拉曼激光因 受激拉曼散射的光束净化效应^[2],可获得光束质量 更好、脉宽更窄、光谱纯度更高的激光输出,极大地 丰富了激光的频谱范围,在生物、医学、测量、军事、 雷达、光通讯、工农业等领域有着重要应用.

由于连续波拉曼激光器相对于脉冲拉曼激光 更加难以实现,第一个以连续方式运转的固体拉曼 激光器直到2004年才由Grabtchikov等^[3]利用拉 曼增益很高的Ba(NO₃)₂晶体实现.随后,研究者 分别选用不同晶体组合成功实现了1.1x μm内腔 分体^[4-7]和自拉曼连续激光输出^[8-11].与内腔分 体式拉曼激光器相比, 自拉曼激光器由于采用一 块晶体同时作为激光和拉曼介质,减小了腔内损 耗,有利于降低阈值、提高转换效率.但由于晶体 热效应更严重,限制了连续拉曼激光输出功率、效 率和稳定性的提升.因此,改善热效应是提高连续 波自拉曼激光器性能的关键问题. 现有研究表明: 采用共振泵浦 (in-band pumping) 技术^[12,13]、键合 晶体[14,15] 或选用低缺陷和热性能优良的新型晶 体[16] 均可有效地减轻连续拉曼激光器中的热效 应. 其中. 共振泵浦技术有效地降低了泵浦光和拉 曼激光之间的量子亏损,可从根本上减弱激光工 作物质中的热效应. 但由于一般激光晶体对共振 泵浦光吸收率偏低,最终影响了激光器总体效率 的提升. 2010年, Yu等^[15]采用880 nm激光二极 管(LD)共振泵浦新型键合Nd:LuVO4晶体,由于 Nd:LuVO4 晶体在880 nm 处具有较大的吸收截面, 因此既减轻了热效应又提高了共振泵浦光的吸收 率. 2014年, Ding等^[17]报道了采用波长锁定窄线

* 江苏省自然科学基金青年科学基金(批准号: BK20130453)和南京大学固体微结构物理国家重点实验室开放课题(批准号: M29027)资助的课题.

†通信作者. E-mail: fanli@yzu.edu.cn

© 2017 中国物理学会 Chinese Physical Society

宽的 878.6 nm LD 端面泵浦 Nd:YVO₄-YVO₄ 晶体 组合,通过 LD 发射波长与激光晶体共振泵浦吸收 峰的精确匹配,有效提高了泵浦吸收率进而实现 了高效的 1525 nm 脉冲拉曼激光运转.2016年,本 研究小组将波长锁定 LD 引入到连续波自拉曼激 光器中,采用 878.9 nm 波长锁定 LD 共振泵浦键合 Nd:YVO₄ 晶体,通过适当增加晶体长度,在改善热 效应的同时提高了泵浦光吸收率,使得拉曼激光输 出功率和转换效率都大大提高,最终在 26 W 的泵 浦功率下,获得了 5.3 W 的 1175 nm 连续拉曼激光 输出,光光转换效率达到 20%^[18].

本文对波长锁定LD共振泵浦键合Nd:YVO4 晶体的全固态连续波自拉曼激光器^[18]进行了详细 的理论研究.考虑共振泵浦时Nd:YVO4 晶体的热 透镜效应,采用ABCD传输矩阵和等效G参数法, 计算了采用不同曲率半径输出镜时输入镜处的振 荡激光腔模大小、拉曼晶体中的束腰大小和位置, 分析了泵浦光与振荡激光的腔模匹配情况以及拉 曼晶体中基频光束腰大小和位置对拉曼激光输出 功率的影响,对实验结果给出了理论解释,并进一 步对谐振腔结构进行了优化设计.

2 谐振腔理论

当考虑激光晶体的热透镜效应时,可将激光晶体看作是一个焦距随着泵浦参数变化的热透镜,对于实验中采用的简单两镜腔可等效为一个含有可变焦距热透镜的热透镜腔,如图1所示.其中 R_1 , R_2 为反射镜 M_1 , M_2 的曲率半径;将激光晶体看作是一个焦距为f的薄透镜,它到 M_1 , M_2 的距离分别为 d_1 , d_2 ;与 M_1 , M_2 镜相邻的基横模高斯光束的束腰半径分别为 ω_{01},ω_{02} ;束腰位置用 L_{01}, L_{02} 表示.

图1 等效热透镜腔结构图

Fig. 1. Equivalent cavity of the laser with a thermally induced lens.

当采用激光二极管端面泵浦时,激光晶体的热透镜焦距^[19]可以表示为

$$f = \frac{\pi K_{\rm C} \omega_{\rm P}^2}{P_{\rm in} \eta_{\rm h} (\mathrm{d}n/\mathrm{d}T)} \left[\frac{1}{1 - \exp(-\alpha L)} \right], \quad (1)$$

式中: ω_P 为泵浦光斑半径, K_C 为激光晶体的热导 率, dn/dT为热光系数, α 为晶体对泵浦光的吸收 系数, L 为激光晶体掺杂部分的长度; Pin 7h 表示吸 收的泵浦功率转化为热量的功率,其中Pin为泵浦 功率, nh 为激光器的热负载比, 即吸收泵浦光转换 为热量的比例,可简单表示为 $\eta_{\rm h} = 1 - \eta_{\rm p} \eta_{\rm l} (\lambda_{\rm p} / \lambda_{\rm l}),$ 其中η_p是泵浦量子效率,即吸收了泵浦光子的粒 子到达激光上能级的比例, η 表示激光上能级的粒 子发生受激辐射并转化为激光的比例, $\lambda_{\rm p}/\lambda_{\rm l}$ 为泵 浦光与激光波长之比. 对出射激光波长为1064 nm 的Nd:YVO4 激光器而言, 当采用传统808 nm LD 泵浦时, 粒子吸收泵浦光子后先跃迁到激发态再通 过非辐射跃迁弛豫到激光上能级, 一般取 $\eta_{\rm p} = 0.9$, 当采用 880 nm LD 共振泵浦时, 粒子吸收泵浦光子 后直接到达激光上能级, 故 $\eta_{p} \approx 1$, 而 η_{l} 仍取0.98, 则 $\eta_{\rm h} = 1 - 0.98 \times \frac{880}{1064} = 18.9\%$. 由此可见, 当采 用880 nm 共振泵浦时, 热负载比比传统808 nm 泵 浦显著降低.

对于热透镜腔使用等效*G*参数法,以镜M₁为参考,腔内单程变换矩阵为

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & d_1 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 - (d_2/f) & d_1 + d_2 - (d_1d_2/f) \\ -1/f & 1 - (d_1/f) \end{pmatrix}, \quad (2)$$

光学谐振腔G参数为

$$G_{1} = a - \frac{b}{R_{1}}$$

= $1 - \frac{d_{1} + d_{2}}{R_{1}} - \frac{d_{2}}{f} \left(1 - \frac{d_{1}}{R_{1}}\right),$ (3)

$$G_{2} = d - \frac{d_{1}}{R_{2}}$$

= $1 - \frac{d_{1} + d_{2}}{R_{2}} - \frac{d_{1}}{f} \left(1 - \frac{d_{2}}{R_{2}}\right),$ (4)

谐振腔的稳定性条件为 $0 < G_1G_2 < 1$. 以镜 M_1 为参考,由高斯光束复参数 q_1 在腔内的自在现模条件可求得镜 M_1 处基模高斯光束的光斑半径 ω_1 为

$$\omega_1^2 = \frac{\lambda b}{\pi} \sqrt{\frac{G_2}{G_1(1 - G_1 G_2)}}.$$
 (5)

与镜 M₂相邻的光束腰大小ω₀₂和位置L₀₂分别为

$$\omega_{02}^2 = \frac{\lambda b}{\pi} \frac{\sqrt{G_1 G_2 (1 - G_1 G_2)}}{G_2 + d^2 G_1 - 2d G_1 G_2},\tag{6}$$

$$L_{02} = \frac{bG_1(d - G_2)}{G_2 + d^2G_1 - 2dG_1G_2}.$$
 (7)

将 (3) 和 (4) 式中的 G_1, G_2 参数代入 (5)—(7) 式, 即 可求出热透镜腔中的 ω_1, ω_{02} 和 L_{02} , 由此可对激光 腔结构进行优化设计, 提高激光器的输出性能.

3 实验系统及测量结果

图 2 所示为波长锁定 878.9 nm LD 共振泵浦 键合 Nd:YVO₄ 晶体的全固态连续波自拉曼激光 器^[18] 实验装置示意图,具体的结构参数见文 献 [18]. 泵浦源为30 W, 878.9 nm波长锁定的光 纤耦合输出LD激光器,光纤芯径200 μm,泵浦 光经1:2的耦合系统入射到激光晶体前端面上, 因此泵浦光斑半径ω_p为200 μm. 实验中当采用 20 mm的键合YVO₄/Nd:YVO₄/YVO₄晶体作为 自拉曼介质时,拉曼激光输出功率最高,该晶体中 间Nd:YVO₄部分的晶体长度为16 mm,掺杂浓度 为0.3 at.%,前后键合的YVO₄ 晶体长各为2 mm. 激光腔采用平凹腔结构,输入镜为平镜,输出镜为 凹镜,实验中通过改变输出镜的曲率半径对激光器 性能进行了优化.为了缩短腔长减小损耗,腔内各 元件尽量紧凑放置,腔长保持在23 mm,其中输入 镜距离晶体前端面大约2 mm,输出镜距离晶体后 端面约1 mm.

图 2 波长锁定 LD 共振泵浦 Nd:YVO4 连续自拉曼激光器结构图

Fig. 2. Schematic of the cw Nd:YVO₄ self-Raman laser in-band pumped by a wavelength-locked laser diode.

图 **3** 为采用 20 mm 键合 Nd:YVO₄ 晶体时,连续波自拉曼激光器在输出镜曲率半径不同 (R = 100, 200, 300, 500 mm)时 1176 nm 拉曼激光输出 功率随泵浦功率的变化曲线. 由图 **3** 可知,相同 泵浦功率下,输出镜曲率半径越小, 拉曼激光 输出功

图 3 (网刊彩色) 输出镜不同曲率半径下拉曼激光输出功率随泵浦功率的变化

Fig. 3. (color online) Raman output power as a function of the incident pump power for output couplers with different radii of curvature. 率则越高. 当输出镜曲率半径 R = 100 mm 时, 拉 曼激光输出功率最高, 在泵浦功率 26 W时获得了 5.3 W的拉曼激光功率输出, 光-光转换效率达到 20%, 且与其他曲率半径输出镜相比, 激光输出功 率的稳定性最好, 60 min 内最高拉曼激光输出功率 的起伏不超过 1.3%.

4 理论计算与分析

4.1 实验结果的理论计算与分析

针对实验中采用的0.3 at%的20 mm键 合Nd:YVO₄晶体,取 $K_{\rm C}$ = 0.054 W/cm·K, dn/dT = 4.7 × 10⁻⁶ K⁻¹ ^[20],其对不同偏振方 向泵浦光的吸收系数分别为 α_{π} = 1.66 cm⁻¹, α_{σ} = 0.84 cm⁻¹ ^[21],由于本实验中泵浦光为圆 偏振光,所以取两个方向吸收系数的平均值即 α = 1.25 cm⁻¹,泵浦光斑半径 $\omega_{\rm p}$ = 200 µm. 将以上数据代入(1)式即可算出不同泵浦功率 下Nd:YVO₄晶体的热透镜焦距.在Matlab软件 中,根据具体实验装置,设置初始值 d_1 = 4 mm, $d_2 = 19 \text{ mm} (d_1, d_2 分别代表输入镜、输出镜到晶$ 体掺杂部分左端面即热透镜的距离, d1 + d2 即腔 长); 激光掺杂晶体长度 $L = 16 \text{ mm}; R_1 = \infty, R_2$ 分别取100, 200, 300, 500 mm. 利用(5)式计算出 不同输出镜曲率半径时输入镜处的基频光基横模 光斑半径ω1随泵浦功率的变化曲线,如图4所示, 由图4 可知,随着泵浦功率的增大,输入镜处的基 横模光斑半径ω1 随之减小. 相同泵浦功率下, 输出 镜曲率半径越小, 基横模光斑半径ω1 也越小. 例 如: 当 $R_2 = 500 \text{ mm}$ 时,随着泵浦功率的增大 ω_1 由 170 μ m 减小到110 μ m, 而 $R_2 = 100$ mm 时, ω_1 则 由120 µm减小到100 µm. 而实验中采用的LD泵 浦源尾纤是200 µm的多模光纤,经耦合器放大后 泵浦光斑半径放大到200 μm, 由此可知, 在高泵浦 功率下,基横模振荡光斑半径远小于泵浦光斑,可 允许高阶横模振荡,因此可获得更高功率的激光输 出. 且与其他曲率半径输出镜相比, $R_2 = 100 \text{ mm}$ 时随着泵浦功率的增大振荡激光基横模光斑半径 变化范围较小,因此激光输出功率较稳定.

图4 (网刊彩色)输出镜不同曲率半径下输入镜处基横模 光斑半径 ω1 随泵浦功率的变化

Fig. 4. (color online) The mode beam radius at the input mirror as a function of the incident pump power for output couplers with different radii of curvature.

由于拉曼转换效率与拉曼晶体中基频光的功率密度成正比,因此要获得更高功率的拉曼激光输出,应尽量使拉曼晶体中基频光的束腰半径更小, 且居于拉曼晶体中部.我们将相同参数代入(6)和 (7)式计算出各输出镜曲率半径下靠近输出镜的拉 曼晶体中基频振荡激光基横模束腰半径ω₀₂及位 置*L*₀₂随泵浦功率变化的曲线,如图5和图6所示. 由图5可知,随着泵浦功率增大,输出镜各曲率半 径下靠近输出镜的束腰半径ω₀₂逐渐减小;相同泵 浦功率下,输出镜曲率半径越小,束腰半径ω₀₂也 越小,则基频光功率密度越大,因此可获得更高的 拉曼转换效率,拉曼激光输出功率更高.但在高泵 浦功率下,不同曲率半径时的束腰半径 ω_{02} 比较接 近,基频光功率密度相差不大,因此对激光器输出 功率影响不大.而从图6中可以看出,在高泵浦功 率下,输出镜曲率半径越小,束腰位置 L_{02} 越大,越 接近拉曼晶体中心(根据谐振腔具体结构可知拉曼 晶体中心距输出镜为11.5 mm),因此基频光功率密 度更大,拉曼转换效率更高.由以上分析可知,当 采用输出镜曲率半径 $R_2 = 100$ mm时,拉曼晶体 中基频光的束腰半径更小,束腰更居于晶体中心, 因此拉曼激光输出功率最高.

图 5 (网刊彩色)输出镜不同曲率半径下拉曼晶体中基频 光束腰半径 ω₀₂ 随泵浦功率的变化

Fig. 5. (color online) The waist spot size of fundamental laser in the Raman crystal as a function of the incident pump power for output couplers with different radii of curvature.

图 6 (网刊彩色) 输出镜不同曲率半径下拉曼晶体中基频 光束腰位置 L₀₂ 随泵浦功率的变化

Fig. 6. (color online) The waist position of fundamental laser in the Raman crystal as a function of the incident pump power for output couplers with different radii of curvature.

4.2 谐振腔的优化设计

由于 880 nm 共振泵浦光的吸收率较低,实验 中仍观察到未被吸收的残余泵浦光输出,而拉曼激 光转换效率又与拉曼晶体长度成正比,因此进一步 增加自拉曼晶体长度,不仅有利于提高泵浦光的吸 收率,还可以提高拉曼激光转换效率,有望获得更 高功率的连续拉曼激光输出.但考虑到连续波自 拉曼激光器的热效应较严重,需要控制腔长使谐振 腔工作在稳定区内,因此需对晶体长度进行优化设 计.通过计算靠近输出镜的基频光束腰半径 ω₀₂ 随 晶体长度 *l* 增加而变化的关系,我们发现:随着晶 体长度的增加,拉曼晶体中的基频光束腰半径将进 一步减小,但当晶体长度增加到 32 mm 时,谐振腔 将不满足稳定腔条件,因此建议将自拉曼键合晶体 长度增长到 30 mm,进一步优化激光器性能,可获 得更高功率的连续拉曼激光输出.

5 结 论

本文利用 ABCD 传输矩阵法和等效 G 参数法 对LD共振泵浦的全固态连续自拉曼Nd:YVO4激 光器进行了理论研究. 计算了输出镜曲率半径 $R_2 = 100, 200, 300, 500$ mm 时基频光输入镜处 的基横模光斑半径ω1, 靠近输出镜的拉曼晶体中 束腰半径 ω_{02} 及位置 L_{02} 这三个参数. 理论计算结 果表明: 1) 在高泵浦功率下, 不同输出镜曲率半 径下输入镜处的基频振荡光斑半径 ω_1 都远小于泵 浦光斑,可允许高阶模振荡,而当采用曲率半径 $R_2 = 100 \text{ mm}$ 的输出镜时,振荡光斑 ω_1 随泵浦功 率的增大而变化的范围较小,因此激光输出功率较 稳定,且此时拉曼晶体中的基频光束腰半径 ω_{02} 最 小, 束腰位置L02更靠近拉曼晶体中心, 因此基频 光功率密度更大, 拉曼转换效率更高, 因此, 当采 用曲率半径 $R_2 = 100 \text{ mm}$ 的输出镜时拉曼激光输 出功率最高; 2) 进一步增加晶体长度将提高泵浦 光吸收率和拉曼激光转换效率,但晶体长度增加到 32 mm时, 腔长较长, 谐振腔将变为非稳腔, 因此

建议晶体长度最多增长到30 mm将有望获得更高 功率的连续拉曼激光输出.

参考文献

- [1] Mask H P 2003 Prog. Quan. Electron. 27 3
- [2] Murray J T, Austin W L, Powell R C 1999 Opt. Mater.
 11 353
- [3] Grabtchikov A S, Lisinetskii V A, Maksimenka R, Kiefer W 2004 Opt. Lett. 29 2524
- [4] Pask H M 2005 Opt. Lett. **30** 2454
- [5] Dekker P, Pask H M, Piper J A 2007 Opt. Lett. **32** 1114
- [6] Fan L, Fan Y X, Zhang H J, Wang H T 2009 Opt. Lett. 34 1687
- [7] Lee C Y, Chang C C, Sung C L, Chen Y F 2015 Opt.
 Express 23 22765
- [8] Demidovich A A, Grabtchikov A S, Orlovich V A, Kiefer W 2005 Opt. Lett. 30 1701
- [9] Dekker P, Pask H M, Spence D J, Piper J A 2007 Opt. Express 15 7038
- [10] Zhu H Y, Duan Y M, Zhang G, Huang C H, Wei Y, Chen W D, Huang L X, Huang Y D 2011 Appl. Phys. B 103 559
- [11] Kores C C, Neto J J, Geskus D, Pask H M, Wetter N U 2015 Opt. Lett. 40 3524
- [12] Lee A J, Pask H M, Piper J A, Zhang H J, Wang J Y 2010 Opt. Express 18 5984
- [13] Neto J J, Lin J, Wetter N U, Pask H 2012 Opt. Express 20 9841
- [14] Fan L, Fan Y X, Wang H T 2010 Appl. Phys. B 101 493
- [15] Lu Y F, Zhang X H, Li S T, Xia J, Cheng W B, Xiong Z 2010 Opt. Lett. 35 2964
- [16] Wang X L, Dong J, Wang X J, Xu J, Ueda K, Kaminskii A A 2016 Opt. Lett. 41 3559
- [17] Ding X, Fan C, Sheng Q, Li B, Yu X Y, Zhang G Z, Sun B, Wu L, Zhang H Y, Liu J, Jiang P B, Zhang W, Zhao C, Yao J Q 2014 *Opt. Express* 22 29111
- [18] Fan L, Zhao W Q, Qiao X, Xia C Q, Wang L C, Fan H
 B, Shen M Y 2016 Chin. Phys. B 25 114207
- [19] Innocenzi M E, Yura H T, Fincher C L, Fields R A 1990 *Appl. Phys. Lett.* **56** 1831
- [20] Mao Y F, Zhang H L, Xu L, Deng B, Sang S H, He J L, Xing J C, Xin J G, Jiang Y 2015 Acta Phys. Sin. 64 014203 (in Chinese) [毛叶飞, 张恒利, 徐浏, 邓波, 桑思晗, 何京良, 邢冀川, 辛建国, 江毅 2015 物理学报 64 014203]
- [21] Sheng Q, Ding X, Li B, Yu X Y, Fan C, Zhang H Y, Liu J, Jiang P B, Zhang W, Wen W Q, Sun B, Yao J Q 2014 J. Opt. 16 105206

Research and design of continuous-wave $Nd:YVO_4$ self-Raman laser in-band pumped by a wavelength-locked laser diode^{*}

Zhang Xin¹⁾ Zhang Yun-Chuan¹⁾ Li Jian¹⁾ Li Ren-Jie¹⁾ Song Qing-Kun¹⁾ Zhang Jia-Le¹⁾ Fan Li^{1)2)†}

 (College of Physics Science and Technology, Institute of Applied Photonic Technology, Yangzhou University, Yangzhou 225002, China)

2) (National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China)

(Received 14 April 2017; revised manuscript received 10 July 2017)

Abstract

In this paper, a continuous-wave all-solid-state Nd:YVO₄ self-Raman laser in-band pumped by a wavelength-locked laser diode at 878.9 nm is theoretically investigated in detail. Considering the thermal lens effect in the laser crystal, cavity mode parameters are calculated for several output couplers with different radii of curvature, by employing the standard ABCD matrix approach and equivalent G parameter method. The influence of cavity structure on the output characteristic of the Raman laser is investigated by analyzing mode matching between the pump and the fundamental beams, as well as the fundamental intensities in the Raman crystal. This provides theoretical explanations for the experimental results, and based on the analysis above, laser cavity is optimized. Finally, a highest Raman output of 5.3 W is obtained at 1175 nm, corresponding to a diode-to-Stokes optical conversion efficiency of 20%.

Keywords: self-Raman laser, continuous-wave, in-band pumping, design of laser cavityPACS: 42.55.Ye, 42.60.Pk, 42.55.Xi, 42.60.ByDOI: 10.7498/aps.66.194203

^{*} Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20130453) and the State Key Laboratory for Solid State Microstructures, Nanjing University, China (Grant No. M29027).

[†] Corresponding author. E-mail: fanli@yzu.edu.cn