物理学报 Acta Physica Sinica

石墨烯沟道全自旋逻辑器件开关特性

李成 蔡理 王森 刘保军 崔焕卿 危波

Switching characteristics of all-spin logic devices based on graphene interconnects

Li Cheng Cai Li Wang Sen Liu Bao-Jun Cui Huan-Qing Wei Bo

引用信息 Citation: Acta Physica Sinica, 66, 208501 (2017) DOI: 10.7498/aps.66.208501 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.208501 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I20

您可能感兴趣的其他文章 Articles you may be interested in

三角形石墨烯量子点阵列的磁电子学特性和磁输运性质

Magneto-electronic and magnetic transport properties of triangular graphene quantum-dot arrays 物理学报.2017, 66(13): 138501 http://dx.doi.org/10.7498/aps.66.138501

功能化扶手椅型石墨烯纳米带异质结的磁器件特性

Magnetic device properties for a heterojunction based on functionalized armchair-edged graphene nanoribbons

物理学报.2016, 65(11): 118501 http://dx.doi.org/10.7498/aps.65.118501

基于钴和坡莫合金纳磁体的全自旋逻辑器件开关特性研究

Switching characteristics of all spin logic devices based on Co and Permalloy nanomagnet 物理学报.2016, 65(9): 098501 http://dx.doi.org/10.7498/aps.65.098501

界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能

Spin transport properties for iron-doped zigzag-graphene nanoribbons interface 物理学报.2016, 65(6): 068503 http://dx.doi.org/10.7498/aps.65.068503

面内形状各向异性能对自旋转矩振荡器零场振荡特性的影响

Effect of the intrinsic in-plane shape anisotropy on the oscillation characteristics of zero-field spin torque oscillator

物理学报.2015, 64(19): 198502 http://dx.doi.org/10.7498/aps.64.198502

石墨烯沟道全自旋逻辑器件开关特性*

李成¹) 蔡理¹, 王森¹) 刘保军²) 崔焕卿¹) 危波¹)

1) (空军工程大学理学院, 西安 710051)

2) (空军工程大学第一航空学院, 信阳 464000)

(2017年5月13日收到;2017年7月10日收到修改稿)

由于石墨烯的电导率相比典型的金属材料更大,自旋弛豫时间更长,自旋轨道相互作用更弱,从而在相同 的注入电流情况下,自旋电流在石墨烯材料中的耗散作用更弱.基于自旋传输和磁化动力学耦合模型,研究 了石墨烯沟道全自旋逻辑器件的开关特性.结果显示,在相同的电源电压下和器件尺寸下,石墨烯沟道材料 的全自旋逻辑器件磁矩翻转时间比 Cu沟道更短,流入输出纳磁体的自旋电流更大.同时,长度越短、宽度越 窄的沟道其开关时间更短,功耗更小.在满足磁体磁矩翻转的临界开关电流的情况下,石墨烯沟道的可靠工 作长度也显著大于 Cu沟道.所以石墨烯材料是相比于金属材料更理想的沟道材料.另外,通过合理选择沟道 尺寸,能进一步降低器件开关时间和功耗.上述结论为全自旋逻辑器件的优化设计与应用提供了理论参考.

关键词: 全自旋逻辑器件, 石墨烯, 沟道尺寸, 开关特性 PACS: 85.75.-d, 75.78.-n

DOI: 10.7498/aps.66.208501

1引言

自旋电子器件(spintronics)是利用电子的自 旋而不是传统的电子电荷作为状态变量来处理和 存储信息的新型电子器件,由于电子的自旋极化和 输运只需要非常小的电流来控制,并且自旋反转是 瞬间完成的,所以自旋电子器件具有超低功耗、非 易失性、能持续缩小等优点,这些特点使自旋电子 器件有可能成为未来纳电子器件的重要候选者 [1]. 但传统的自旋电子器件只是利用自旋作为内部变 量,在逻辑门层面依然采用电子电荷作为状态变 量^[2],因此需要附加硬件结构来进行自旋信息与电 荷信息间的不断转换,部分抵消了自旋作为状态变 量进行逻辑运算的优势,同时也增加了器件电路的 复杂度和功耗. 全自旋逻辑 (all spin logic, ASL)器 件^[3]在内部和逻辑门层面均采用自旋作为状态变 量来进行信息的处理和传递,该器件利用纳磁体的 磁化方向表征和存储信息,利用自旋电流来传输和

处理信息,具有结构简单、集成密度高、体积小且可 持续缩小等优点.

如图1所示, ASL器件的接触层和接地层通常 由金属构成,沟道可由非磁金属或半导体构成,纳 磁体为铁磁材料,隔离层为绝缘层,阻止自旋电流 从一个沟道流向另一个沟道影响下一磁体磁矩变 化. 通过选择合适的纳磁体尺寸, 使得每个纳磁体 的磁矩只有+x方向和-x方向两个稳定的状态,当 磁体的磁矩指向+x方向,表示逻辑"1",指向-x 方向, 表示逻辑"0". 图1所示的ASL采用的是非局 域自旋阀结构(nonlocal spin valve, NLSV), 通过 纯自旋流的注入、传输和探测,实现信息的传输和 逻辑功能. 在采用半导体作为沟道材料时由于半 导体材料和铁磁体之间存在电导不匹配,通常自旋 注入效率较低,为此在输入纳磁体与沟道间加入一 层薄的隧道势垒,多为氧化物,例如MgO,Al₂O₃, SiO_2 或HfO₂等, 能显著提高自旋电流在铁磁体和 半导体沟道间的自旋注入效率[4,5].

* 国家自然科学基金(批准号: 11405270)和陕西省自然科学基础研究计划(批准号: 2017JM6072, 2014JQ8343)资助的课题.

© 2017 中国物理学会 Chinese Physical Society

[†]通信作者. E-mail: qianglicai@163.com

国 (四国が亡)主日旋送丼協厅 Fig. 1. (color online) All spin logic devices.

通常,要实现逻辑运算,需要输入和输出之间 具有非倒易性, NLSV结构的ASL器件是通过接地 位置的不对称性来实现非倒易性的^[6],与接地位置 临近的磁体(输入磁体)是输入端,而距离接地位置 较远的磁体(输出磁体)是输出端, 文献 [7] 提出采 用输入输出隔离的方式实现非倒易性完成逻辑运 算,输入与输出之间利用双极子耦合来实现信息传 递完成多个逻辑器件的连接. ASL除了能实现非 运算和复制逻辑运算外,将多个ASL器件进行适当 的连接还可实现与门、或门、全加器等基本逻辑电 路^[8,9]. 由于自旋轨道耦合和材料中自旋电子低迁 移率,一般的传统非磁金属材料并不适合作为沟道 传输自旋电流. 文献 [4, 10] 提出了 Si, Al 和 Cu 沟 道材料的ASL,研究了电源电压和沟道长度对器件 开关延迟时间、功耗和自旋注入效率的影响. 与传 统的金属材料作沟道材料相比, 文献 [11] 采用磁体 的畴壁作为沟道材料,在理论上也验证了ASL的 工作机理和相关特性. 综上所述, 当前提出的ASL 沟道材料主要局限于Cu, Al等金属或Si, GaAs等 半导体材料,由其构成的器件在开关延迟时间和功 耗上与传统的CMOS器件相比还不具备明显优势, 而且对于选取何种的沟道材料也缺乏系统的理论 依据和指导. 所以, 探索新的沟道材料来降低器件 的开关延迟时间和功耗并为沟道尺寸的选取提供 理论依据显得十分必要.

石墨烯是单层碳原子组成的蜂巢结构的二维 材料,其载流子为无质量的狄拉克费米子,相比传 统的沟道材料如Si,Cu和Al等石墨烯具有更长的 自旋弛豫时间、更高的电导率^[12],自旋电流在其中 的耗散作用较弱,能提高沟道的可靠工作长度和降 低开关时间,所以石墨烯是相比上述沟道材料更好 的选择.当前,石墨烯材料室温下的自旋注入与自 旋传输已经得到实验验证^[13].同时,基于非局域 自旋阀结构的石墨烯自旋转矩效应(spin transfer torque, STT) 也已得到证实^[14], 文献 [15] 已经提出 了磁性隧道结 (magnetic tunnel junction, MTJ) 为 基本单元的石墨烯沟道自旋电子器件,采用基于漂 移扩散方程的自旋注入模型完成了逻辑运算,在磁 体材料方面选用垂直各向异性磁体材料来降低器 件开关延迟时间和功耗. 但这种MTJ单元下的自 旋逻辑器件采用的是两层纳磁体材料,其中上层 为固定磁矩层.并非文献[3]提出的经典ASL结构, 经典ASL结构的磁体单元只采用一层自由层磁体, 采用自旋传输模型来描述自旋电子的注入、传输和 耗散过程. 前期对经典ASL器件的研究中沟道材 料只考虑了典型的Cu, Al, Si 等, 未采用石墨烯作 为沟道材料来传输自旋信息. 文献 [16] 对石墨烯的 自旋弛豫时间等关键参数做了详细比较,但未对石 墨烯作为沟道材料构成的ASL器件做详细分析,同 时未对自旋电子器件中的自旋输运载体的尺寸给 出理论选择依据. 文献 [17] 对石墨烯的自旋反转和 弛豫的微观机理进行了研究. 这些为石墨烯在自旋 电子器件中的应用提供了理论和实验基础.

本文重点研究采用石墨烯沟道材料的经典 ASL器件开关特性,同时研究了沟道长度和宽度对 器件开关特性的影响以及临界开关电流下器件的 最大可靠工作长度,并与Cu沟道材料的ASL器件 进行了对比,揭示了不同沟道材料对经典ASL器件 开关特性的影响,为优化器件的开关延迟时间和功 耗提供了一种新的沟道材料选择,同时为合理选择 沟道尺寸提供了理论依据.

2 电路仿真模型

ASL器件采用的是NLSV结构,可用Laudau-Lifshitz-Gilbert (LLG)方程来描述自旋阀结构中 的磁化动力学行为^[18],用自旋传输模型^[19,20]来描 述电子自旋在磁体、非磁金属、半导体以及界面间 的注入、传输和耗散过程.通过将LLG方程与自 旋传输模型进行耦合,可获得纳磁体磁矩的进动轨 迹,最终揭示ASL器件和电路的工作机理.

2.1 磁矩动力学模型

ASL器件中纳磁体n的磁矩动力学行为可用 LLG方程加自旋转移力矩来描述:

$$rac{\mathrm{d}}{\mathrm{m}_n} = -\gamma \mu_0 \mathrm{m}_n imes (\mathrm{H}_k + \mathrm{H}_\mathrm{d} + \mathrm{H}_\mathrm{th})$$

$$+ \alpha \boldsymbol{m}_n \times \frac{\mathrm{d}\boldsymbol{m}_n}{\mathrm{d}t} + \frac{\boldsymbol{m}_n \times (\boldsymbol{I}_{\mathrm{sn}} \times \boldsymbol{m}_n)}{aN_{\mathrm{s}}}, \ (1)$$

其中, γ 为电子回旋磁比, μ_0 为真空的电导率, α 为铁磁材料的Gilbert 系数, m_n 为纳磁体n的归 一化磁矩, I_{sn} 为流入纳磁体n的自旋电流; H_k 表 示磁晶各向异性场, 对于图1所示的坐标系, 有 $H_k = \left(\frac{2K_{\mu}}{M_s\mu_0}\right)m_x x$, m_x 表示磁矩m在x轴方向上的分量, M_s 为饱和磁化强度, x表示x轴方向上的单位向量; $H_d = -M_smN_d$ 表示形状各向异性场, 其中 N_d 表示退磁张量, 与纳磁体的形状和尺 寸有关, 它是一个3×3维的矩阵, 非对角线上的元 素为零, 对角线上的元素一般表述为[$N_x N_y N_z$], 分别表示x, y和z方向上的退磁因子; N_s 为单个磁 体的玻尔磁子总数; q为元电荷的电量; $H_{\rm th}$ 表示热 量场^[21], 用来描述热噪声对磁矩进动的影响.

2.2 自旋传输模型

为了解石墨烯沟道材料的ASL器件的开关特 性和机理,需要计算自旋电子在铁磁体与接触层金 属界面、石墨烯沟道和接地中的注入效率以及在铁 磁金属与石墨烯沟道内的耗散效应.为此,采用自 旋传输模型来描述.在自旋传输模型中,自旋电流 和电荷电流可以表示为

$$\begin{bmatrix} I_{\rm c} \\ I_{\rm s} \end{bmatrix} = [\boldsymbol{G}^{\rm se}]_{2\times 2} \begin{bmatrix} \Delta V_{\rm c} \\ \Delta V_{\rm s} \end{bmatrix} + [\boldsymbol{G}^{\rm sh}]_{2\times 2} \begin{bmatrix} 0 \\ V_{\rm s1} \end{bmatrix}, \quad (2)$$

(2) 式中, I_c , I_s 分别表示电荷电流和自旋电流, ΔV_c 表示两个结点间的电荷电压降, ΔV_s 表示两个结 点间的自旋电压降, V_{s1} 表示流入结点的自旋电压; $G^{se} 与 G^{sh} 分别表示等效的水平支路和垂直支路$ $电导矩阵. <math>G^{se} 与 G^{sh} 可以为2 × 2 也可以为4 × 4$ 的电导矩阵. 其中界面电导矩阵用 G_{FM-NM} 描述, 反映自旋电子在磁体 (ferromagnet, FM)-非磁体 (non-magnet, NM)界面处的反射和传输特性,非 磁电导矩阵用 G_{NM} 描述,反映自旋电子在非磁材 料中的耗散效应,其可分为水平电导矩阵和垂直电 导矩阵. 磁体电导矩阵用 G_{FM} 描述,反映自旋电子 在磁性材料中的耗散效应. 基本 ASL 器件等效的 电路图如图 2 所示.

图 2 (网刊彩色) 全自旋逻辑器件的等效电路图 Fig. 2. (color online) ASL equivalent circuit.

GA1, GI1, GI3, GF1, GC1, GG1, GI5 分别为 接触层电导矩阵、铁磁体与接触层界面电导矩阵、 铁磁体与石墨烯沟道电导矩阵、铁磁体电导矩阵、 石墨烯沟道电导矩阵、接地层电导矩阵、石墨烯沟 道与接地层电导矩阵.其中,铁磁体与石墨烯沟道 的电导矩阵采用垂直支路与水平支路等效的电导 矩阵^[22],根据上述等效电路模型,首先假设纳磁体 的磁矩方向都为-x方向,根据自旋传输模型采用 节点电压法对电路进行分析,计算出两个磁体中的 自旋电流,根据自旋电流可以根据LLG方程计算 出下一时刻纳磁体的磁矩,依次循环可以得到纳磁 体的进动轨迹.

3 石墨烯沟道全自旋器件开关特性 分析

纳磁体层的材料选为Co,接触层和接地层材料选为Cu,沟道材料为石墨烯,在此定义开关时间 τ_{switch} 为纳磁体2的 m_{2x} 由-0.99变为0.99所经历的时间,此时ASL2的磁矩由-x轴翻转到+x轴,功耗为

$$E_{\text{switch}} = V_{\text{DD}} \int_0^{\tau_{\text{switch}}} (I_{\text{C1}} + I_{\text{C2}}) \,\mathrm{d}t, \quad (3)$$

式中, *V*_{DD} 为加在两个纳磁体上的电压; *I*_{C1}, *I*_{C2} 为 流入两个纳磁体的电荷电流.具体参数设置见表1.

			_		
参数	值/nm	参数	值	参数	值
$l_{ m FM}$	50	R_{I3} ^[22]	$300 \ \Omega$	$\lambda_{ m FM}$ ^[23]	38 nm
$w_{ m FM}$	20	$R_{\rm I4} ^{[22]}$	$300 \ \Omega$	$ ho_{ m FM}$ ^[23]	210 n Ω ·m
$t_{ m FM}$	3	μ_0	$4\pi\times 10^{-7}~{\rm N}\cdot{\rm A}^{-2}$	$\mu_{ m B}$	$9.274\times 10^{-24}~\mathrm{A\cdot m^2}$
$l_{\rm ground}$	50	$M_{\rm s}^{\rm Co~[23]}$	$1.2\times 10^6~{\rm A}{\cdot}{\rm m}^{-1}$	$\lambda_{\mathrm{Cu}} ^{[23]}$	350 nm
$w_{\rm ground}$	20	$K_{\rm s} ^{[23]}$	$2.1\times10^{-4}~\mathrm{J}{\cdot}\mathrm{m}^{-2}$	$\alpha_{ m Co}$ ^[23]	0.011
$t_{\rm ground}$	50	T	300 K	$P_{\rm I}^{\ [22]}$	0.4
l_{contact}	10	$g_{ m int}$ ^[23]	$1.92 \times 10^{-15} \ \Omega^{-1} {\cdot} \mathrm{m}^{-2}$	$\lambda_{ m c}$ ^[22]	3 µm
$w_{\rm contact}$	20	$g_{ m Re}$ ^[23]	$0.54 \times 10^{-15} \ \Omega^{-1} {\cdot} \mathrm{m}^{-2}$	$ ho_{ m c} {}^{[22]}$	$10 \ n\Omega \cdot m$
$t_{\rm contact}$	50	$g_{ m Im}$ ^[23]	$0.02\times 10^{-15}~\Omega^{-1}{\cdot}{\rm m}^{-2}$	$K_{\rm B}$	$1.38 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$
$t_{\rm channel}$	50	$\eta^{[23]}$	0.77	$ ho_{ m Cu} ^{[24]}$	$34 \text{ n}\Omega \cdot \text{m}$

表 1 全自旋逻辑器件的仿真参数 Table 1. Simulation parameters for ASL devices.

3.1 沟道材料对磁矩翻转和自旋电流 的影响

不同沟道材料的电导率差别很大,而且不同材料自旋轨道耦合作用也不尽相同,这些对器件的开关延迟时间和功耗有很大影响^[25].对石墨烯材料

和Cu沟道材料的磁矩翻转与自旋电流的情况进行 对比,沟道长度选200 nm,宽度选为20 nm.

由图3(a)可见,正电源电压 V_{DD} (0.05 V)加 在接触层上,ASL2的磁矩在0.2 ns 左右翻转到与 ASL1的磁矩相反的状态.通过图3(b)的纳磁体 的磁矩三维进动轨迹更能直观显示磁矩翻转情况,

图 3 ASL 器件仿真结果 (a) m_{1x} , m_{2x} 随时间变化的暂态轨迹; (b) m_2 随时间变化的三维暂态轨迹; (c) 石墨烯沟道与 Cu 沟道磁体磁矩随时间变化的暂态轨迹; (d) 石墨烯沟道与 Cu 沟道流入磁体 2 自旋电流随时间变化的暂态轨迹 Fig. 3. Simulation results of ASL devices: (a) Transient of m_{1x} , m_{2x} ; (b) trajectory of the magnetic moment of the ASL2; (c) trajectory of the magnetic moment of the ASL2 for graphene and copper interconnects; (d) transient of I_{S2} for graphene and copper interconnects.

在0-0.5 ns时间内,纳磁体2的磁矩发生的明显 的翻转现象, 实现了磁矩的翻转现象, 完成了"非 门"逻辑运算. 在整个过程中磁体1的磁矩始终保 持-x方向. 从图3(c)可以看出, 与Cu作为沟道材 料的ASL器件相比,石墨烯磁矩翻转时间提高了 0.4 ns, 这是由于石墨烯的电导率比Cu高, 自旋弛 豫时间更长, 所以自旋电流在沟道中耗散作用更 弱,在相同的电源电压和沟道长度情况下,自旋电 流诱导磁矩翻转的时间更短. 图3(d)为两种沟道 材料下流入纳磁体2的自旋电流对比,可以看出石 墨烯沟道流入纳磁体2的自旋电流明显大于Cu沟 道,这是由于石墨烯的电导率比Cu高,自旋电流在 其中的耗散作用更弱,相同电源电压和沟道尺寸下 流入其中的自旋电流较大,图中自旋电流有一个较 大的跃变是因为输出纳磁体的磁矩翻转导致磁体 的电导矩阵发生变化,而电源电压不变所以电流有 一个跃变.

3.2 沟道长度对开关时间和功耗的影响

对石墨烯和Cu两种材料下沟道长度对开关时间和功耗的情况进行对比,电源电压取为0.05 V, 沟道宽度取为20 nm.为体现热噪声对开关特性的 影响,对相同的数据进行了5次仿真.

从图4(a)和图4(b)可以看出,随着沟道长度 的增加,开关延迟时间和功耗越来越大,这是由于 随着沟道长度的增加,自旋电流在其中的耗散作用 更强,导致磁化翻转的时间增长,功耗也越来越大. 相比之下,石墨烯沟道的电导率高,自旋弛豫时间 长,所以其开关延迟时间和功耗均比Cu 沟道材料 小,随着沟道长度的增加,同一沟道长度下得到的 开关时间和功耗离散性越来越大,这说明热噪声的 影响越来越大,为降低热噪声的影响可以选取较短 的沟道长度.

图 4 沟道长度对开关延迟时间及功耗的影响 (a) 石墨烯与 Cu 沟道器件开关延迟时间随沟道长度的变化; (b) 石墨烯与 Cu 沟道器件功耗随沟道长度的变化

Fig. 4. The effects of witching delay time and energy dissipation versus channel length: (a) Switching delay time under a fixed applied voltage of for graphene and copper interconnects; (b) energy dissipation under a fixed applied voltage of for graphene and copper interconnects.

3.3 沟道宽度对开关时间和功耗的影响

自旋传输模型中沟道的电导矩阵与沟道宽度 关系较大,本节对两种不同材料开关时间和功耗 对沟道宽度的情况进行仿真,其中沟道长度选为 200 nm,电源电压选为0.05 V.

图 5 显示随着沟道宽度的增加, 开关时间和功 耗逐渐增大. 这是由于沟道宽度的增加, 沟道的电 导减小, 自旋电流在沟道的耗散作用更强. 在相同 的沟道宽度下,石墨烯的开关时间和功耗均小于 Cu沟道,这是由于自旋电流在石墨烯中的耗散作 用更弱.从上述仿真结果可以看出,为降低开关时 间和功耗,需要选择较窄的沟道宽度,但沟道宽度 通常与纳磁体的宽度一致,纳磁体的长宽比对器件 的开关时间和功耗影响较大^[26],所以为降低器件 的开关时间和功耗,通常要合理选择沟道的宽度来 兼顾纳磁体尺寸和沟道两者对开关时间和功耗的 影响.

图 5 沟道宽度对开关延迟时间及功耗的影响 (a) 开关延迟 时间随沟道宽度的变化; (b) 功耗随沟道宽度的变化 Fig. 5. The effect of switching delay time and energy dissipation versus different interconnects width: (a) Switching delay time for different interconnects width; (b) energy dissipation for different interconnects width.

3.4 石墨烯沟道材料最大可靠工作长度

不同磁体材料的临界开关自旋电流有很大差别,但沟道作为自旋电流传输的载体,不同沟道材 料对自旋电流的耗散作用也不尽相同.根据临界开 关电流的定义^[21]:

$$I_{\rm sc} = \frac{8\pi q}{h} \alpha E_{\rm b} \left(1 + \frac{|H_{\rm d}|}{2|H_k|} \right),\tag{4}$$

式中, $E_{\rm b} = K_{\rm u}\Omega$ 为各向异性能量势垒(Ω 为磁体 的体积), 当流入输出端的自旋电流 $I_{\rm s}$ 小于临界开 关自旋电流 $I_{\rm sc}$ 时,将无法翻转其磁矩,完成逻辑运 算.由(4)式计算出 Co纳磁体临界开关自旋电流约 为1.05×10⁻⁴ A.

图 6 为石墨烯材料不同沟道长度下流入纳磁体2 的自旋电流,从仿真结果可以看出,在电源电压为0.05 V 的情况下,沟道长度为1800 nm 时,其自旋电流小于开关临界自旋电流,此时将无法翻转输出纳磁体的磁矩完成逻辑运算,所以石墨烯沟道

材料的最大工作沟道长度为1800 nm. Cu 沟道材 料的ASL器件^[23],在相同的电源电压下,其最大的 沟道长度为600 nm. 这是由于石墨烯沟道材料相 比Cu沟道材料电导率更大,对自旋电流的耗散作 用更弱,所以采用石墨烯沟道的ASL器件能显著提 高沟道的可靠工作长度.

图6 沟道长度对自旋电流的影响

Fig. 6. The effects of transient of spin currents for different channel lengths.

4 结 论

根据 NLSV 结构的 ASL 器件的磁矩动力学模 型和自旋传输模型,分别研究了石墨烯作为沟道材 料的ASL器件的磁矩翻转时间与流入输出纳磁体 的自旋电流,并与Cu沟道材料的器件进行了对比. 研究了不同沟道尺寸对开关时间和功耗的影响以 及满足临界开关自旋电流的最大沟道长度. 结果表 明,由于石墨烯的电导率高,自旋弛豫时间长,自旋 轨道相互作用弱,导致器件磁矩翻转时间低于Cu 作为沟道材料的ASL器件, 流入输出纳磁体的自旋 电流大于Cu沟道材料的器件. 随着沟道宽度和长 度的增加,器件的功耗和延迟时间均增大,表明宽 度越宽、沟道越长的器件开关时间与功耗越大.在 满足磁矩翻转的临界开关电流的情况下,石墨烯沟 道的最大工作长度也显著大于Cu 沟道材料的长 度.因此,石墨烯是比Cu更好的沟道材料.同时, 兼顾纳磁体尺寸和沟道宽度对器件开关时间和功 耗的影响,可以通过适当洗取沟道宽度和尽可能短 的沟道长度来进一步降低器件开关的时间和功耗. 上述结论为选取合适的沟道材料和尺寸提供了依 据,为降低器件的开关延迟时间和功耗提供了一种 新的方法. 另外, 石墨烯是由单层碳原子的二维六

角格子构成,其低能带呈现出无质量手征的Dirac 电子特征,其布里渊区包含两个不等价的能谷.石 墨烯中的这两个谷由时间反演对称性相联系,这与 电子自旋十分类似.石墨烯的谷自由度可以视为赝 自旋,所以可以利用赝自旋来实现自旋逻辑器件. 利用大块石墨烯结构中的不同能谷的电子具有不 同的布儒斯特角,可以实现谷依赖的类光学输运现 象,进而产生谷极化电流,可以利用谷极化电流来 构造新的自旋电子器件.所以石墨烯作为新兴材 料,其器件构造思路不局限于传统的真实自旋,也 可以利用赝自旋来构造新的自旋电子器件,这为下 一步石墨烯在自旋电子学中的应用提供了一个新 的思路.

参考文献

- Kim J, Paul A, Crowell P A, Koester S J, Sapatnekar S S, Wang J P, Kim C H 2015 *Proc. IEEE* 103 106
- [2] Xu P, Xia K, Gu C Z, Tang L, Yang H F, Li J J 2008 Nature Nanotech. 3 97
- [3] Behin-Aein B, Datta D, Salahuddin S, Datta S 2010 Nature Nanotech. 5 266
- [4] Chang S C, Iraei R M, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 *IEEE Trans. Electron Dev.* 61 2905
- [5] Volmer F, Drogeler M, Maynicke E, et al. 2013 Phys. Rev. B 88 161405
- [6] Srinivasan S, Sarkar A, Behin-Aein B, Datta S 2011 IEEE Trans. Magn. 47 4026
- [7] Hu J X, Haratipour N, Koester S J 2015 J. Appl. Phys. 117 17B524
- [8] Augustine C, Panagopoulos G, Behin-aein B, Srinivasan S, Sarkar A, Roy K 2011 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures San Diego, California, USA, June 8–9, 2011 p129

- [9] An Q, Su L, Klein J O, Beux S L, Connor I, Zhao W S 2015 Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures Boston, Massachusetts, USA, July 8–10, 2015 p163
- [10] Chang S C, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2014 IEEE Trans. Magn. 50 3400513
- [11] Chang S C, Dutta S, Manipatruni S, Nikonov D E, Young I A, Naeemi A 2015 IEEE J. Explorat. Solid-State Computat. Dev. Circ. 1 49
- [12] Han W, Mccreary K M, Pi K, Wang W H, Li Y, Wen H, Chen J R, Kawakami R K 2012 J. Magn. Magn. Mater. 324 369
- [13] Lin C C, Penumatcha A V, Gao Y, Diep V Q, Appenzeller J, Chen Z 2013 Nano Lett. 13 5177
- [14] Lin C C, Gao Y, Penumatcha A V, Diep V Q, Appenzeller J, Chen Z 2014 ACS Nano 8 3807
- [15] Su L, Zhao W S, Zhang Y, Querlioz D, Zhang Y G, Klein J O, Dollfus P, Bournel A 2015 Appl. Phys. Lett. 106 072407
- [16] Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nature Nanotech. 9 794
- [17] Zhai F, Zhao X F, Chang K, Xu H Q 2010 Phys. Rev. B 82 115442
- [18] Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1
- [19] Manipatruni S, Nikonov D E, Young I A 2012 IEEE Trans. Circ. Syst. I. Reg. Papers 59 2801
- [20] Calayir V, Nikonov D E, Manipatruni S, Young I A 2014 IEEE Trans. Circ. Syst. I. Reg. Papers 61 393
- [21] Roy K, Bandyopadhyay S, Atulasimha J 2012 J. Appl. Phys. 112 023914
- [22] Verma S, Murthy M S, Kaushik B K 2015 IEEE Trans. Magn. 51 3400710
- [23] Wang S, Cai L, Cui H Q, Feng C W, Wang J, Qi K 2016
 Acta Phys. Sin. 65 098501 (in Chinese) [王森, 蔡理, 崔 焕卿, 冯朝文, 王峻, 齐凯 2016 物理学报 65 098501]
- [24] Bass J, William P P 2007 J. Phys.: Condens. Matter 19 183201
- [25] Takahashi S, Maekawa S 2003 Phys. Rev. B 67 052409
- [26] Wang S, Cai L, Qi K, Yang X K, Feng C W, Cui H Q 2016 Micro. Nano Lett. 11 508

Switching characteristics of all-spin logic devices based on graphene interconnects^{*}

Li Cheng¹⁾ Cai Li^{1)†} Wang Sen¹⁾ Liu Bao-Jun²⁾ Cui Huan-Qing¹⁾ Wei Bo¹⁾

1) (College of Science, Air Force Engineering University, Xi'an 710051, China)

2) (The First Aeronautic Institute, Air Force Engineering University, Xinyang 464000, China)

(Received 13 May 2017; revised manuscript received 10 July 2017)

Abstract

Traditional complementary metal-oxide-semiconductor (CMOS) technology has reached nanoscale and its physical limits are determined by atomic theory and quantum mechanics, which results in a series of problems such as deteriorated device reliability, large circuit interconnection delay, and huge static power dissipation. In the past decades, with the discovery of giant magnetoresistance effect and tunnel magnetoresistance effect, spintronics has become a research hotspot in this field. Specially, spin transfer torque effect has been experimentally verified that the magnetization of a ferromagnet layer can be manipulated using spin polarized current rather than an external magnetic field. Spintronics is a new type of electronics which utilizes spin rather than charge as state variable for electrical information processing and storage. As an example, all spin logic (ASL) devices, which stores information by using the magnetization direction of the nanomagnet and communication by using spin current, is generally thought to be a good post-CMOS candidate. Compared with the typical metal material, the graphene material has a large conductivity, long spin relaxation time, and weak spin-orbit interaction. Therefore, the dissipation of spin current in the graphene material is weaker than the counterpart in typical metal when the injected current is identical. In this paper, the switching characteristics of all spin logic device comprised of graphene interconnects are analyzed by using the coupled spin transport and magneto-dynamics model. The results show that comparing with ASL device comprised of copper interconnects, the magnetic moment reversal time of ASL with graphene interconnection is short and the spin current flows into the output magnet is large under the condition of same applied voltage and device size. Meanwhile, the switching delay and the energy dissipation are lower when the interconnects are shorter and narrower. When the critical switching current which is required for the magnetization reversal is applied, the reliable working length of graphene interconnection is significantly longer than that of copper interconnection. So the graphene is the more ideal interconnect material than metal material. Moreover, the switching delay and power dissipation could be further reduced by properly selecting the interconnection dimension. These results mentioned above provide guidelines for the optimization and applications of ASL devices.

Keywords: all spin logic device, graphene, interconnection dimension, switching characteristicsPACS: 85.75.-d, 75.78.-nDOI: 10.7498/aps.66.208501

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11405270) and the Program of Shaanxi Provincial Natural Science for Basic Research, China (Grant Nos. 2017JM6072, 2014JQ8343).

 $[\]dagger$ Corresponding author. E-mail: <code>qianglicai@163.com</code>