物理学报 Acta Physica Sinica

Chinese Physical Society

Na₂CaSiO₄:Sm³⁺, Eu³⁺ 荧光粉的发光特性和能量传递 苏小娜 万英 周芷萱 吐沙姑阿不都吾甫 胡莲莲 艾尔肯斯地克

Luminescence properties and energy transfer of Na₂CaSiO₄:Sm³⁺, Eu³⁺ phosphor

Su Xiao-Na Wan Ying Zhou Zhi-Xuan TushaguAbuduwufu Hu Lian-Lian AierkenSidike

引用信息 Citation: Acta Physica Sinica, 66, 230701 (2017) DOI: 10.7498/aps.66.230701 在线阅读 View online: http://dx.doi.org/10.7498/aps.66.230701 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2017/V66/I23

您可能感兴趣的其他文章 Articles you may be interested in

新型干涉高光谱成像系统的光束剪切特性分析

Beam shearing characteristic analysis of interferometric hyperspectral imaging system 物理学报.2017, 66(19): 190704 http://dx.doi.org/10.7498/aps.66.190704

基于孔径分割与视场分割的通道型成像光谱偏振技术

Channeled spectropolarimetry based on division of aperture and field of view 物理学报.2016, 65(8): 080703 http://dx.doi.org/10.7498/aps.65.080703

基于指数再生窗 Gabor 框架的窄脉冲欠 Nyquist 采样与重构

Sub-Nyquist sampling and reconstruction of short pulses based on Gabor frames with exponential reproducing windows

物理学报.2015, 64(7): 070701 http://dx.doi.org/10.7498/aps.64.070701

差分偏振干涉成像光谱仪 II. 光学设计与分析

The polarization-difference interference imaging spectrometer-II. optical design and analysis 物理学报.2014, 63(11): 110705 http://dx.doi.org/10.7498/aps.63.110705

一种面向信息带宽的频谱感知方法研究

Investigation of information bandwidth oriented spectrum sensing method 物理学报.2014, 63(3): 030701 http://dx.doi.org/10.7498/aps.63.030701

Na₂CaSiO₄:Sm³⁺, Eu³⁺荧光粉的 发光特性和能量传递^{*}

苏小娜 万英 周芷萱 吐沙姑·阿不都吾甫 胡莲莲 艾尔肯·斯地克*

(新疆师范大学,新疆矿物发光材料及其微结构实验室,乌鲁木齐 830054)

(2017年4月27日收到;2017年7月25日收到修改稿)

利用高温固相法合成 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 系列荧光粉末, 研究了 Sm³⁺ 和 Eu³⁺ 掺杂对 Na₂CaSiO₄ 晶体结构的影响、材料发光特性以及存在的能量传递现象. X 射线衍射结果表明 Sm³⁺ 和 Eu³⁺ 单掺及共掺样 品均为单相的 Na₂CaSiO₄ 结构, 晶体结构没有改变. Na₂CaSiO₄:Sm³⁺ 荧光样品在 404 nm 激发波长下呈现 峰峰值为 602 nm 的橙红色荧光, 来源于 ${}^4G_{5/2} \rightarrow {}^{6}H_{7/2}$ 跃迁. Na₂CaSiO₄:Eu³⁺ 荧光样品在 395 nm 激发 波长下发射出峰峰值为 613 nm 的红色荧光. 对光谱和荧光寿命的测试和分析结果表明 Sm³⁺ 与 Eu³⁺ 之间 存在能量传递, 通过理论计算得到 Sm³⁺ 和 Eu³⁺ 之间的能量传递临界距离为 1.36 nm, 相互作用形式为电四 极-电四极相互作用. 随着 Eu³⁺ 掺杂浓度的增加, 能量传递效率也逐渐提高至 20.6%.

关键词: Na₂CaSiO₄:Sm³⁺, Eu³⁺, 红色发光材料, 能量传递 **PACS:** 07.05.Hd, 07.60.Rd, 06.60.Ei

DOI: 10.7498/aps.66.230701

1引言

在过去几年中,稀土离子掺杂硼酸盐、铝酸盐等的荧光粉材料得到广泛的研究^[1,2]. 与传统的基质发光材料相比,硅酸盐结构具有化学稳定性、防水性、耐热性、耐腐蚀性好,以及制作成本低、激发光谱范围宽等特点,因而在节能灯、白光发光二极管(LED)、显示器领域具有广泛的应用,引起了诸多关注^[3-5].将具有硅酸盐结构的Na₂CaSiO₄作为基质的研究也在逐渐深入. 2011年Shi等^[6]首次研究了Na₂CaSiO₄:Eu³⁺的荧光性质,其良好的色彩饱和度和高量子效率表明该荧光粉在发光二极管中有潜在的应用价值. 2012年卓芳平等^[7]研制了Na₂CaSiO₄:R ($R = Ce^{3+}$, Tb³⁺, Eu³⁺)荧光材料,探索了其在紫外光激发下的发光特性. 2013年Xie等^[8]发现Na₂CaSiO₄:Eu³⁺荧

光样品中Eu³⁺占据了两种格位,表征了其样品结 构并对其荧光性质进行分析. 2014年Liu 等⁹制 备了 Na₂CaSiO₄:Ce³⁺ 可调谐蓝光荧光粉. Sm³⁺ 和Eu³⁺是稀土离子中两种重要的红光激活剂离 子, Sm^{3+} 和 Eu³⁺ 的能级结构相似. 关于 Sm³⁺ 和 Eu³⁺ 单掺体系的光谱性质研究报道比较多. 最 近,一些文献报道了不同基质中共掺Sm³⁺和Eu³⁺ 后材料的能量传递和荧光性质[10-18]. 随着对可 见光和激光、LED、光学信息转换和红光荧光粉 需求的上升, Sm³⁺ 和Eu³⁺ 发挥了越来越重要的 作用, 但关于 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 荧光性能的 研究报道甚少.本文利用高温固相法合成一系列 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 红色荧光粉, 研究了其光 致发光性能,探讨了该基质中Sm³⁺和Eu³⁺之间 的能量传递机理, 使 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 有望 成为白色LED中发出红光的物质.

^{*} 国家自然科学基金(批准号: 11464045)资助的课题.

[†]通信作者. E-mail: aierkenjiang@sina.com

^{© 2017} 中国物理学会 Chinese Physical Society

2 实 验

2.1 荧光粉制备

利用高温固相法制备以下荧光材料: Na₂CaSiO₄: x%Sm³⁺ (x%为掺杂原子数分数,即 掺杂浓度,下同; x = 0.5, 1, 2, 3, 4), Na₂CaSiO₄: y%Eu³⁺ (y = 0.5, 1, 2, 4, 8, 12, 14), Na₂CaSiO₄: 2%Sm³⁺, y%Eu³⁺ (y = 0.5, 1, 2, 4, 8, 12)系列荧 光粉.用AL104型电子天平称取Na₂CO₃, CaCO₃, H₂SiO₃, Sm₂O₃和Eu₂O₃(均为分析纯试剂),并将 这些试剂放入玛瑙研钵中充分研磨.在研磨过程中 为使原料混合均匀,放入适量无水乙醇,再将磨好 的原料装入刚玉坩埚并放入箱式电阻炉,在空气气 氛下于1150°C高温煅烧3h. 煅烧完成后使样品 迅速冷却至室温,再次进行研磨得到测量用粉末.

2.2 测试方法

采用日本岛津 XRD-6100 型粉末衍射仪进行 物相鉴定和结构分析.测试条件如下:X光源 为Cu-K_a射线(波长 $\lambda = 0.154178$ nm),工作电 压为40 kV,工作电流为30 mA,扫描2 θ 范围为 10°—70°,扫描速度为5 (°)/min.样品的激发、 发射光谱和荧光寿命使用英国爱丁堡FLS920 型稳态/瞬态荧光光谱仪测量,其测量范围为 250—900 nm.在测量过程中用450 W 氙灯(Ushio UXL-500D)作为激发光源.根据实验需求选取适 当的滤光片放置在观测光栅入口处以消除激发光 源的杂散光.所有测试均在室温下进行.

3 结果与讨论

3.1 X射线衍射分析

图 1 为 样 品 Na₂CaSiO₄:x%Sm³⁺, y%Eu³⁺(x= 0, y = 12; x = 2, y = 0, 2, 8, 12)的X射线 衍射(XRD)图谱. Na₂CaSiO₄是立方结构,属于 P_{213} 空间群,晶格常数a = b = c = 0.7497 nm,晶 面间距 d = 0.904 nm.由图1可见,Sm³⁺和Eu³⁺ 低浓度掺杂时,合成的样品为纯正的单相,其衍射 峰位置与Na₂CaSiO₄(JCPDS#24-1069)标准卡片 基本一致.少量Sm³⁺和Eu³⁺的掺杂并没有引起 基质立方晶相结构的改变,因为掺杂Sm³⁺, Eu³⁺ 的样品结构中没有出现 Sm_2O_3 , Eu_2O_3 的杂质峰, 说明 Sm^{3+} , Eu^{3+} 已经完全掺入基质晶格中. 当 Sm^{3+} 和 Eu^{3+} 掺杂浓度较高时,样品的结晶度降 低,出现了少量 $Na_2Ca_2Si_2O_7$ (JCPDS#10-0016) 杂质相,图中已用*标出.

图 1 Na₂CaSiO₄:x%Sm³⁺, y%Eu³⁺ 的 XRD 图谱

Fig. 1. XRD patterns of Na₂CaSiO₄:x%Sm³⁺, y%Eu³⁺.

图 2 (网刊彩色) Na₂CaSiO₄:2%Sm³⁺ 的激发光谱(红线)和 发射光谱(蓝线)(插图为Na₂CaSiO₄:x%Sm³⁺ 的发光强度与 Sm³⁺ 浓度的函数关系)

Fig. 2. (color online) Emission spectrum (blue line) and excitation spectrum (red line) of Na₂CaSiO₄:2%Sm³⁺. The inset shows the emission intensity of Na₂CaSiO₄:x%Sm³⁺ as a function of Sm³⁺ concentration.

图 2 中红色谱线为602 nm 发射波长下监测 的 Na₂CaSiO₄:Sm³⁺ 荧光粉的激发光谱. 激发 光谱覆盖范围为300—500 nm,由一系列尖锐 峰组成,峰值分别为⁶H_{5/2} \rightarrow ⁴D_{7/2} (343 nm), ⁶H_{5/2} \rightarrow ⁴D_{5/2} (362 nm), ⁶H_{5/2} \rightarrow ⁶P_{7/2} (377 nm) 和⁶H_{5/2} \rightarrow ⁶P_{3/2} (404 nm),这些都是Sm³⁺的 4f组态电子能级之间的跃迁引起的,最强激 发峰位于404 nm处. 图2中蓝色谱线所示为 404 nm激发波长下Na₂CaSiO₄:Sm³⁺荧光粉的发 射光谱,发射峰依次对应 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ (565和 572 nm), ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (602 nm)和 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ (650 nm)和 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{11/2}$ (713 nm),最 强发射峰位于602 nm处. 图2插图所示为Sm³⁺掺 杂浓度对主峰 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ (602 nm)发光强度 的影响. Sm³⁺掺杂浓度为2% 时,样品的发光强度 最大.

图3中红色谱线为613 nm发射波长下监测的 Na₂CaSiO₄:Eu³⁺荧光粉的激发光谱. 该激发光谱 由一个位于220—300 nm的宽激发带和一系列位 于300-420 nm的尖峰组成. 宽激发带中最强激 发峰为264 nm 处对应的 $O^{2-} \rightarrow Eu^{3+}$ 的电荷迁移 带, 一系列尖峰对应Eu³⁺的f-f特征吸收. 图3中 蓝色谱线为394 nm 激发波长下 Na₂CaSiO₄:Eu³⁺ 的发射光谱,由一系列Eu³⁺的发射峰组成,依次 对应⁵D₀ \rightarrow ⁷F₁ (591 nm), ⁵D₀ \rightarrow ⁷F₂ (613 nm), ${}^{5}D_{0} \rightarrow {}^{7}F_{3}$ (655 nm) 和 ${}^{5}D_{0} \rightarrow {}^{7}F_{4}$ (705 nm), 最 强发射峰位于 613 nm 处, 属 $^{5}D_{0} \rightarrow ^{7}F_{2}$ 受迫电偶 极跃迁. 图3插图所示为Eu3+掺杂浓度对主峰 ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ (613 nm) 发光强度的影响, 当 Eu³⁺ 掺 杂浓度为12%时,样品的发光强度最强,继续增加 Eu³⁺的掺杂浓度,样品发光强度反而降低,这是由 于Eu³⁺的多极相互作用导致浓度猝灭^[8].

图 3 (网刊彩色) Na₂CaSiO₄:12% Eu³⁺ 的激发光谱(红线) 和发射光谱(蓝线) (插图为Na₂CaSiO₄:y% Eu³⁺ 的发光强 度与 Eu³⁺ 浓度的函数关系)

Fig. 3. (color online) Emission spectrum (blue line) and excitation spectrum (red line) of Na₂CaSiO₄:12% Eu³⁺. The inset shows the emission intensity of Na₂CaSiO₄:y% Eu³⁺ as a function of Eu³⁺ concentration.

3.2 Na₂CaSiO₄:2%Sm³⁺, y%Eu³⁺ 荧光 粉的发光性质

在 404 nm 激发波长下测量 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 的发射光谱,如图 4 (a) 所示.从图中可以看 到, Sm³⁺ 和 Eu³⁺ 的特征发射峰同时存在,主要有 5 个发射峰,分别对应 Sm³⁺ 的 565 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$), 602 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$), 650 nm (${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$)和 Eu³⁺ 的 613 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{2}$), 705 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{4}$).结果显示,固定 Sm³⁺ 的掺 杂浓度 (2%)、增加 Eu³⁺ 的掺杂浓度时, Sm³⁺ 的 发射强度明显减弱,这是由于 Sm³⁺ 将能量传递 给 Eu³⁺.当 Eu³⁺ 的掺杂浓度低于 2% 时, Sm³⁺ 的 发射峰 (602 nm) 较强, Eu³⁺ 的发射峰 (613 nm) 较 弱; 当 Eu³⁺ 掺杂浓度大于 2% 时, Sm³⁺ 的 565, 602,

图 4 (a) Na₂CaSiO₄:2%Sm³⁺, y%Eu³⁺ 的发射光谱; (b) Sm³⁺ 和 Eu³⁺ 的发光强度与 Eu³⁺ 浓度的函数关系 Fig. 4. (a) Emission spectra of Na₂CaSiO₄:2%Sm³⁺, y%Eu³⁺; (b) emission intensity of Sm³⁺ and Eu³⁺ as a function of Eu³⁺ concentration.

650 nm 发射峰强度逐渐减小, Eu³⁺ 对应的 613 和 705 nm 发射峰强度逐渐增大; 当 Eu³⁺ 掺杂浓度 为 8% 时, Eu³⁺ 红光发射达到最强, 继续增加 Eu³⁺ 掺杂浓度时, Eu³⁺ 对应的 613 和 705 nm 发射峰强 度开始减小, 这是由于会发生 Eu³⁺ 的浓度猝灭. 图 4 (b) 所示为 Eu³⁺ 掺杂浓度对 Sm³⁺ 和 Eu³⁺ 发 射强度的影响. 在合成的 Na₂CaSiO₄:Sm³⁺, Eu³⁺ 荧光粉中存在 Sm³⁺ → Eu³⁺ 的能量传递.

为进一步证明Sm³⁺将能量传递给Eu³⁺,对 Sm³⁺的寿命进行研究,在激发波长404 nm、发 射波长602 nm下监测Na₂CaSiO₄:Sm³⁺, Eu³⁺样 品中Sm³⁺的⁴G_{5/2} → ⁶H_{5/2}荧光衰减曲线,如 图5所示.

图 5 (网刊彩色) 样品 Na₂CaSiO₄:2%Sm³⁺, y%Eu³⁺ 在 Sm³⁺ 的 ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ 能级处的发光衰减时间 Fig. 5. (color online) Luminescence decay time of Na₂CaSiO₄:2%Sm³⁺, y% Eu³⁺ samples at ${}^{4}G_{5/2} \rightarrow {}^{6}H_{5/2}$ level of Sm³⁺.

平均寿命计算公式为^[19]
$$\tau = \frac{\int_0^\infty I(t)t dt}{\int_0^\infty I(t) dt},$$
(1)

式中 τ 为荧光寿命, I(t) 为t时刻的发光强度. 随着 Eu³⁺ 离子掺杂浓度的增大, Sm³⁺ 在 602 nm 处的 荧光衰减时间逐渐缩短. 计算结果显示, 当 y = 0, 4, 8, 12时, 对应的荧光寿命分别为1.533, 1.393, 1.347, 1.216 ms. Sm³⁺ \rightarrow Eu³⁺ 的能量传递效率计 算公式为^[20]

$$\eta_{\rm T} = 1 - \frac{\tau_{\rm d}}{\tau_{\rm d0}},\tag{2}$$

式中 η_{T} 为能量传递效率, τ_{d0} 和 τ_{d} 分别为Sm³⁺单 掺杂以及Sm³⁺和Eu³⁺共掺杂Na₂CaSiO₄荧光粉 中Sm³⁺的寿命.在Na₂CaSiO₄:2%Sm³⁺, y%Eu³⁺ 荧光粉样品中,当y = 4, 8, 12时,计算可得 Sm³⁺ → Eu³⁺的能量传递效率分别为9.1%, 12.1%, 20.6%.结果表明Sm³⁺掺杂浓度固定、增 加Eu³⁺掺杂浓度时,能量传递效率逐渐提高,且 Sm³⁺ → Eu³⁺能量传递效率最高为20.6%.

图 6 所 示 为 Sm³⁺ 和 Eu³⁺ 能 量 转 移 机 理, Sm³⁺ 可 以 将 能 量 传 递 给 Eu³⁺,因为 Sm³⁺ 的 ${}^{4}G_{5/2}$ 能级比 Eu³⁺ 的 ${}^{5}D_{0}$ 能级高 638 cm⁻¹, Sm³⁺ (${}^{4}G_{5/2}$) → Eu³⁺ (${}^{5}D_{0}$)发射 声子 的 概 率 大 于 Eu³⁺ (${}^{5}D_{0}$) → Sm³⁺ (${}^{4}G_{5/2}$)俘获 声子 的 概 率 [21,22].从 Eu³⁺ 到 Sm³⁺ 的能量转移几乎不会 发生.Na₂CaSiO₄:Sm³⁺, Eu³⁺ 的发射光谱也证明 了 Sm³⁺ 可以将能量有效传递给 Eu³⁺.

Fig. 6. Energy transfer process of Sm^{3+} and Eu^{3+} .

共振能量传递通常有两种传递方式: 一种为 交换作用, 另一种为电多极相互作用^[23]. 如果能 量传递由交换作用引起, 则要求敏化剂和激活剂 之间的临界距离小于 0.3—0.4 nm^[24]. 对具体的样 品, Sm³⁺ \rightarrow Eu³⁺ 能量传递临界距离由 Blasse^[25] 提出的浓度猝灭法计算, 公式为

$$R_{\rm Sm-Eu} = 2 \left(\frac{3V}{4\pi X_{\rm c} N}\right)^{\frac{1}{3}},\tag{3}$$

式中 $R_{\text{Sm-Eu}}$ 为Sm³⁺到Eu³⁺能量传递的临界距 离, X_c 为临界浓度, N为一个晶胞中可以取代 的格位, V为晶胞体积. 对于Na₂CaSiO₄基质, $X_c = 0.08, N = 4, V = 0.42137 \text{ nm}^3$, 计算可 得能量传递的临界距离 $R_{\text{Sm-Eu}} = 1.36 \text{ nm}$, 这表 明Sm³⁺和Eu³⁺通过交换作用发生能量传递的概 率很小.因此, Sm³⁺ \rightarrow Eu³⁺能量传递主要是通过 电多极相互作用. 由 Dexter 电多极相互作用表达式^[26]可得

$$P_{\rm SA} = \frac{4\pi^2}{h} \iiint g(W')g(W_{\rm A}) \left| M^2 \right| \\ \times dW' dW_{\rm A} d(hv), \tag{4}$$

式中 *P*_{SA} 为能量传递概率, *g*(*W*')和 *g*(*W*_A)为统计 权重因子, *M* 为跃迁矩阵元, *h* 为普朗克常量, *v* 为 频率. 分别作电偶极-电偶极、电偶极-电四极、电四 极-电四极的近似, 可得共振能量传递3种不同相 互作用的区分判别公式为

图 7 $I_{S0}/I_S = C_{Eu}^{n/3}$ 的线性关系 (a) n = 6; (b) n = 8; (c) n = 10

Fig. 7. Linear relationship between $I_{\rm S0}/I_{\rm S}$ and $C_{\rm Eu}^{n/3}$: (a) n = 6; (b) n = 8; (c) n = 10.

$$P_{\rm SA} \propto \left(\frac{1}{R_0}\right)^n,$$
 (5)

式中 R_0 为离子间距离, n = 6, 8, 10. 由于 R_0 与离 子浓度C的关系为 $C \propto 1/R_0^3$,可以用敏化剂的发 射强度比 I_{S0}/I_S 表征能量传递概率 P_{SA} ,则(5)式 可变为^[27]

$$\frac{I_{\rm S0}}{I_{\rm S}} \propto C^{\frac{n}{3}},\tag{6}$$

式中 I_{S0} 为Sm³⁺单独存在时的发射强度, I_S 为 共掺杂Sm³⁺和Eu³⁺时Sm³⁺的发射强度,C为 Eu³⁺的浓度.n = 6, 8, 10分别对应电偶极-电偶 极、电偶极-电四极和电四极-电四极相互作用.

图 7 所示为 n = 6, 8, 10 时 $I_{S0}/I_S = C^{n/3}$ 的线 性关系,图中 R 为相关系数.当n = 6, 8, 10 时, 直线的 R^2 值分别为 0.9359, 0.9697, 0.9836,由此 可知,当n = 10 时二者为最佳线性关系,这表明 Sm³⁺和Eu³⁺之间的能量传递机理为电四极-电四 极相互作用.因此,在 Na₂CaSiO₄:Sm³⁺, Eu³⁺材 料中,Sm³⁺和Eu³⁺之间的电四极-电四极相互作 用在能量传递中占主导地位.

4 结 论

使用高温固相法合成了 $Na_2CaSiO_4:Sm^{3+}$, Eu³⁺ 荧光粉末样品. XRD 结果表明 Sm³⁺, Eu³⁺ 单掺与Sm³⁺和Eu³⁺共掺杂均能形成单相的 Na₂CaSiO₄ 结构化合物, 基质的晶体结构没有改 变.在Na₂CaSiO₄荧光粉单掺样品中Sm³⁺的最佳 掺杂浓度为2%, Eu³⁺的最佳掺杂浓度为12%; 在 共掺样品中, Sm³⁺和Eu³⁺的最佳掺杂浓度分别为 2%和8%. 比较Sm³⁺和Eu³⁺共掺样品的激发、发 射光谱以及单掺和共掺时Sm³⁺的荧光寿命,结果 表明Sm³⁺将能量传递给Eu³⁺,并且随着Eu³⁺掺 杂浓度的增大,能量传递效率逐渐提高,最高可达 到20.6%. 此外, 计算得到 Sm³⁺ 和 Eu³⁺ 之间能量 传递的临界距离为1.36 nm. 根据 Dexter 的多极相 互作用表达式,通过数据拟合证明了Sm³⁺和Eu³⁺ 之间能量传递的方式为电四极-电四极相互作用. 随着Eu³⁺掺杂浓度的增大, Sm³⁺在565 nm 处的 荧光衰减时间逐渐缩短. Sm³⁺和Eu³⁺之间的能 量传递过程, 使Na₂CaSiO₄:Sm³⁺, Eu³⁺有望成为 白色LED 中发出红光的材料.

参考文献

- [1] Barsoum M W 2000 Prog. Solid State Ch. 28 201
- [2] Pietzka M A, Schuster J C 1994 J. Phase Equilib. 15 392
- [3] Nag A, Kutty T P N 2005 Mater. Chem. Phys. 91 524
- [4] Jiao H Y, Wang Y H 2010 Apply Phys. B 98 423
- [5] Natarajan V, Murthy K V R 2005 Solid State Commun. 134 261
- [6] Shi Y R, Yang Z, Wang W, Zhu G, Wang Y 2011 Mater. Res. Bull. 46 1148
- [7] Zhuo F P, Zhang W, Huo J M, Zhao Y L, Wu Y, Ding X 2012 China. J. Lumin. 33 238 (in Chinese) [卓芳平, 张伟, 火军明, 赵玉亮, 吴垠, 丁鑫 2012 发光学报 33 238]
- [8] Xie M B, Li Y, Li R 2013 J. Lumin. 136 303
- [9] Liu Q B, Liu Y, Ding Y, Peng Z, Yu Q, Tian X 2014 J. Sol. Gel. Sci. Techn. 71 276
- [10] Wang Z, Lou S, Li P 2014 J. Alloy Compd. 586 536
- [11] Min X, Huang Z, Fang M, Liu Y G, Tang C, Wu X 2014 *Inorg. Chem.* 53 60605
- [12] Zhen Xing F U, Liu B R, Yang B X 2016 Spectrosc Spectr. Anal. 36 2686
- [13] Park W J, Jung M K, Masaki T, Im S J, Yoon D H 2008 Mater. Sci. Eng. 146 95
- [14] Li P, Xu Z, Zhao S, Zhang F, Wang Y 2012 Mater. Res. Bull. 47 3825

- [15] Hachani S, Moine B, El-Akrmi A, Férid M 2010 J. Lumin. 130 1774
- [16] Naresh V, Rudramadevi B H, Buddhudu S 2015 J. Alloy Compd. 632 59
- [17] Gong W L, Zhong R X, Qi J Q, Liu Z R, Zhang X Y 2015 China. J. Lumin. Synth. Cryst. 44 3280 (in Chinese) [龚文丽, 钟瑞霞, 齐建全, 刘自然, 张晓燕 2015 人工 晶体学报 44 3280]
- [18] Lin H, Yang D L, Liu G S, Ma T A, Zhai B, An Q D 2005 J. Lumin. 113 121
- [19] Daldosso M, Falcomer D, Speghini A, Ghigna P, Bettinelli M 2008 Opt. Mater. 30 1162
- [20] Paulose P I, Jose G, Thomas V, Unnikrishnan N V, Warrier M K R 2003 J. Phys. Chem. Solids. 64 841
- [21] Xie M B, Pan R K 2013 J. Alloy Compd. 551 48
- [22] Huang D, Zhou Y, Xu W, Yang Z, Liu Z, Hong M, Lin Y, Yu J 2013 J. Alloy Compd. 554 312
- [23] Dexter D, Schulman J H 1954 J. Chem. Phys. 22 1063
- $[24]\,$ van Uitert L G
 1971 J. Lumin. 41
- [25]~Blass G
 1969 Philips Res. Rep. ${\bf 24}$ 131
- [26] Yang Z P, Yang G W, Wang S L, Tian J, Li P L, Li X 2008 Acta Phys. Sin. 57 581 (in Chinese) [杨志平, 杨广伟, 王少丽, 田晶, 李盼来, 李旭 2008 物理学报 57 581]
- [27] Xiong X B, Yuan X M, Liu J C, Song J Q 2015 Acta Phys. Sin. 64 017801 (in Chinese) [熊晓波, 袁曦明, 刘金 存, 宋江齐 2015 物理学报 64 017801]

Luminescence properties and energy transfer of $Na_2CaSiO_4:Sm^{3+}, Eu^{3+}$ phosphor^{*}

Su Xiao-Na Wan Ying Zhou Zhi-Xuan Tushagu-Abuduwufu Hu Lian-Lian Aierken-Sidike[†]

(Key Laboratory of Mineral Luminescent Material and Microstructure of Xinjiang, Xinjiang Normal University,

Urumqi 830054, China)

(Received 27 April 2017; revised manuscript received 25 July 2017)

Abstract

A series of Na₂CaSiO₄:Sm³⁺, Eu³⁺ phosphors is prepared by the high-temperature solid-state reaction method at 1150 °C, and their crystal structures, luminescent properties and energy transfer phenomenon influenced by Sm³⁺ and Eu³⁺ are studied. The X-ray diffraction results indicate that the samples single- and co-doped with Sm³⁺ and Eu³⁺ keep single-phase and no impurity phases are observed. At the excitation wavelength of 404 nm, the Na₂CaSiO₄:Sm³⁺ samples emit narrow-band spectral fluorescence with lines composed of peak-to-peak values of 565, 602, 650, 713 nm, which correspond to the electronic transitions of Sm³⁺ from the ground state level ${}^{4}G_{5/2}$ to ${}^{6}H_{5/2}$, ${}^{6}H_{7/2}$, ${}^{6}H_{9/2}$, and ${}^{6}H_{11/2}$. On the other hand, the Na₂CaSiO₄:Eu³⁺ sample exhibits red emission with a peak-to-peak value of 613 nm at the excitation wavelength of 395 nm. The analyses of the spectrum and lifetime of fluorescence show that with the increase of Eu³⁺ content, the emission intensity of Sm³⁺ decreases and the emission intensity of Eu³⁺ increases. Moreover, the lifetime corresponding to Sm³⁺ at 602 nm decreases gradually. It is indicated that the energy transfers from Sm³⁺ to Eu³⁺. The critical distance of energy transfer is 1.36 nm, which is calculated by the concentration quenching method. The energy transfer mechanism is ascribed to the quadrupole-quadrupole interaction. As the Eu³⁺ doping concentration increases, the transfer efficiency increases to 20.6\%. In conclusion, the Na₂CaSiO₄:Sm³⁺, Eu³⁺ phosphors may be used as a red component for white light-emitting diodes.

 Keywords:
 Na₂CaSiO₄:Sm³⁺, Eu³⁺, red luminescent material, energy transfer

 PACS:
 07.05.Hd, 07.60.Rd, 06.60.Ei

 DOI:
 10.7498/aps.66.230701

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 11464045).

[†] Corresponding author. E-mail: aierkenjiang@sina.com