物理学报 Acta Physica Sinica

非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质 张新成 廖文虎 左敏 Electronic structure and spin/valley transport properties of monolayer MoS₂ under the irradiation of the off-resonant circularly polarized light Zhang Xin-Cheng Liao Wen-Hu Zuo Min

引用信息 Citation: Acta Physica Sinica, 67, 107101 (2018) DOI: 10.7498/aps.67.20180213 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180213 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I10

您可能感兴趣的其他文章 Articles you may be interested in

AI 掺杂和空位对 ZnO 磁性影响的第一性原理研究

First-principles study of Al-doped and vacancy on the magnetism of ZnO 物理学报.2017, 66(6): 067202 http://dx.doi.org/10.7498/aps.66.067202

一维扩展t-J模型中密度-自旋相互作用诱导的相分离

Phase separation induced by density-spin interaction in one-dimensional extended t-J model 物理学报.2015, 64(18): 187105 http://dx.doi.org/10.7498/aps.64.187105

α -碳锗炔稳定性及性质模拟

Molecular dynamics study on the stability and properties of α -Cgeyne 物理学报.2014, 63(20): 207303 http://dx.doi.org/10.7498/aps.63.207303

La, Ce, Nd 掺杂对单层 MoS_2 电子结构的影响

Effects of La, Ce and Nd doping on the electronic structure of monolayer MoS₂ 物理学报.2014, 63(6): 067301 http://dx.doi.org/10.7498/aps.63.067301

量子点双链中电子自旋极化输运性质

Spin-polarized transport through double quantum-dot-array 物理学报.2012, 61(15): 157201 http://dx.doi.org/10.7498/aps.61.157201

非共振圆偏振光作用下单层二硫化钼电子结构 及其自旋/谷输运性质*

张新成 廖文虎 左敏

(吉首大学物理与机电工程学院,吉首 416000)

(2018年1月28日收到;2018年3月5日收到修改稿)

基于紧束缚近似下的低能有效哈密顿模型和久保线性响应理论,研究了外部非共振圆偏振光作用下单层 二硫化钼 (MoS₂)电子结构及其自旋/谷输运性质.研究结果表明:单层 MoS₂布里渊区 K 谷和 K' 谷附近自 旋依赖子带间的能隙随着非共振右旋圆偏振光引起的有效耦合能分别线性增大和先减小后增大,随着非共 振左旋圆偏振光引起的有效耦合能分别先减小后增大和线性增大,实现了系统能带结构有趣的半导体-半金 属-半导体转变.此外,单层 MoS₂在外部非共振圆偏振光作用下,呈现有趣的量子化横向霍尔电导和自旋/谷 霍尔电导,自旋极化率在非共振右/左旋圆偏振光有效耦合能±0.79 eV 附近达到最大并发生由正到负或由负 到正的急剧转变,谷极化率随着非共振圆偏振光有效耦合能先增大后减小并在其绝对值 0.79—0.87 eV 范围 内达到 100%.因而,可以利用外部非共振圆偏振光将单层 MoS₂ 调制成自旋/谷以及光电特性优异的新带隙 材料.

关键词: 二硫化钼, 非共振圆偏振光, 电子结构, 自旋/谷霍尔电导 PACS: 71.10.Hf, 72.25.Dc, 73.22.-f, 73.50.-h DOI: 10.7498/aps.67.20180213

1引言

近10多年来,以石墨烯为代表的二维材料因 为其优异的物理性质和器件设计方面的应用前景 引起了物理、材料、信息等领域的广泛关注^[1,2].边 缘功能化^[3]、微纳结构化^[4]、化学掺杂^[5]等方法能 够在一定程度上打开石墨烯的带隙,但无带隙的本 征能带结构^[6,7]使得石墨烯基场效应晶体管截止电 流较高、电流开关比较低^[8].与石墨烯几何结构类 似的单层二硫化钼(MoS₂)是直接带隙半导体,具 有自旋/谷霍尔效应等物理特性^[9–13],从器件设计 和应用角度看比石墨烯更加优异,近年来成为新型 半导体材料的研究热点之一^[14–20].

2011年, Kis 等^[14]成功地制备了单层 MoS₂场 效应晶体管, 后来 Liu 研究组^[15] 采用原子层沉积技

术成功制作出迁移率高达517 cm²/(V·s)的MoS₂场效应晶体管,Zhang等^[16]利用离子液体作为栅极制造出具有较高空穴迁移率的单层MoS₂场效应晶体管.2012年,Xiao等^[17]和Cao等^[18]发现单层MoS₂在六边形布里渊区顶点附近具有"谷"状能带结构,相邻顶点的谷对左、右旋光具有近乎完美的选择性.香港大学和哥伦比亚大学的实验组通过圆偏振光抽运方法验证了单层MoS₂具有偏振光选择性和谷霍尔效应^[19,20].2016年,Sengupta和Bellotti^[21]研究了非共振圆偏振光作用下二维过渡族金属硫化物自旋霍尔电导,单层MoS₂在应力和磁近邻交换场作用下的输运性质也受到关注^[22,23],外部电场和近邻交换相互作用被证明是调控单层MoS₂能带结构^[24-26]的有效手段.然而,很少有相关工作涉及外部非共振圆偏振光对单层MoS₂电子

†通信作者. E-mail: whliao2007@aliyun.com

© 2018 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金(批准号: 11664010, 11264013)、湖南省自然科学基金(批准号: 2017JJ2217, 12JJ4003)、湖南省教育厅优秀青 年基金(批准号: 14B148)和吉首大学科研项目(批准号: JGY201763, Jdy16021)资助的课题.

能带结构和自旋/谷输运特性的影响,本文针对这 方面的问题开展研究.

利用紧束缚近似下的低能有效哈密顿模型和 久保线性响应理论,研究了外部非共振圆偏振光对 单层MoS2电子能带结构及其自旋/谷输运性质的 影响. 研究结果表明: 单层 MoS₂ 布里渊区 K 谷和 K'谷附近自旋依赖的子带间能隙随着非共振右旋 圆偏振光引起的有效耦合能分别线性增大和先减 小后增大,随着非共振左旋圆偏振光引起的有效耦 合能分别先减小后增大和线性增大,实现了有趣的 半导体-半金属-半导体转变. 在没有非共振圆偏 振光作用时, 单层 MoS2 量子化自旋霍尔电导为0、 谷霍尔电导为2e²/h; 当非共振圆偏振光有效耦合 能绝对值在0.79—0.87 eV范围内变化时,系统自 旋霍尔电导为-2e²/h、谷霍尔电导为0; 当非共振 圆偏振光引起的有效耦合能在其他范围内变化时, 量子化自旋/谷霍尔电导与无外场时相同. 系统自 旋极化率在非共振圆偏振光有效耦合能±0.79 eV 附近达到最大并发生由正到负或由负到正的急剧 转变,谷极化率随着非共振圆偏振光有效耦合能先 增大后减小,在非共振圆偏振光有效耦合能绝对值 0.79-0.87 eV范围内达到100%. 因此,外部非共 振圆偏振光是调控单层 MoS2 量子化霍尔电导、自 旋/谷霍尔电导以及自旋/谷极化的有效手段.

2 模型与方法

如图1所示,我们构建了一个基于单层MoS₂的场效应晶体管模型,其中单层MoS₂置于中心区域并受到非共振圆偏振光的辐照,系统有效哈密顿 量为^[10,17,27,28]

$$H_{s_z}^{\tau} = at(\tau k_x \boldsymbol{\sigma}_x + k_y \boldsymbol{\sigma}_y) + \frac{\Delta}{2} \sigma_z - \frac{\lambda \tau}{2} (\boldsymbol{\sigma}_z - 1) s_z + \tau \Delta_\Omega \boldsymbol{\sigma}_z, \qquad (1)$$

其中晶格常数 a = 3.193 Å, t = 1.10 eV 为最近邻原 子间的跃迁能, $\tau = +/- 表示 K/K' 谷$, $k_{x/y}$ 为波 矢在 x/y 方向的分量, $\sigma_i(i = x, y, z)$ 为泡利矩阵, 价带与导带之间的带隙 $\Delta = 1.66$ eV, $2\lambda = 0.15$ eV 是价带顶因自旋轨道耦合而引发的自旋劈裂能, $s_z = \pm 1$ 代表自旋向上/向下, Δ_Ω 表示非共振圆偏 振光场引起的耦合能.

此外,非共振圆偏振光引起的电磁势可以 描述为

图 1 由金属源极、漏极和可调制背电极构成 MoS₂ 纳米 场效应管模型图,其中心区域受到非共振圆偏振光的辐 照,黑色小球代表钼原子 (Mo),黄色小球代表硫原子 (S) Fig. 1. Schematic representation of the MoS₂ based field effect transistor, consisting of metallic source, drain and electrically modulated back-gate, with the central region irradiated by the off-resonant circularly polarized light (demonstrated by the wave lines), and the black and yellow balls indicates the molybdenum (Mo) and sulfur (S) atoms, respectively.

$$\mathbf{A}(t) = [\pm A\sin(\Omega t), A\cos(\Omega t)], \qquad (2)$$

其中+和-分别表示右旋和左旋圆偏振光, Ω 为非 共振圆偏振光的频率, A为非共振圆偏振光的振幅. 电磁势满足时间周期性条件, 即A(t+T) = A(t), 周期 $T = 2\pi/\Omega$.通过正则变换 $hk_i \rightarrow hk_i - eA(t)$ 获得非共振圆偏振光辐照对体系的影响, 含时哈密 顿量为

$$H^{\tau}(t) = -\frac{ateA}{\hbar} [\pm \tau \sin(\Omega t)\sigma_x + \cos(\Omega t)\sigma_y]. \quad (3)$$

当非共振圆偏振光光子能量远大于最近邻跃迁 能时 ($\hbar\Omega \gg t$),非共振圆偏振光对体系的影响 可通过Floquet 理论^[28,29] 简化为有效静态 (不含 时的)哈密顿量 ΔH^{τ} . 非共振圆偏振光属于高 频弱场,不直接激发体系中的电子,而是通过 光子吸收和发射过程改变体系的电子能带结 构. 先吸收光子后发射光子过程中对体系哈 密顿量的改变为 $H_{+1}^{\tau} \frac{1}{\hbar\omega - (\hbar\omega + \hbar\Omega)} H_{-1}^{\tau}$,其中 $\hbar\omega 和 \hbar\Omega 分别为电子能量和光子能量,先发射光$ 子后吸收光子过程中对体系哈密顿量的改变为 $<math>H_{-1}^{\tau} \frac{1}{\hbar\omega - (\hbar\omega - \hbar\Omega)} H_{+1}^{\tau}$,其中,

$$\begin{aligned} H_{\pm 1}^{\tau} &= \frac{1}{T} \int_{0}^{T} H^{\tau}(t) \exp(\mp i\Omega t) dt \\ &= \pm \frac{eatA}{\hbar} \frac{1}{T} \int_{0}^{T} \exp(\mp i\Omega t) \\ &\times [\pm \tau \sin(\Omega t) \boldsymbol{\sigma}_{x} + \cos(\Omega t) \boldsymbol{\sigma}_{y}] dt \\ &= \pm \frac{eatA}{2\hbar} (\pm i\tau \boldsymbol{\sigma}_{x} \mp \boldsymbol{\sigma}_{y}). \end{aligned}$$
(4)

因此,非共振圆偏振光对体系电子能带结构的影 响^[28,30]为

$$\Delta H^{\tau} = \frac{1}{\hbar\Omega} [H^{\tau}_{\pm1}, H^{\tau}_{\pm1}] + o(A^4)$$
$$= \pm \frac{e^2 a^2 t^2 A^2}{\hbar^3 \Omega} \cdot \tau \boldsymbol{\sigma}_z + o(A^4).$$
(5)

忽略高阶小量后,获得非共振圆偏振光辐照引起的 有效耦合能 $\Delta_{\Omega} = \pm a^2 t^2 e^2 A^2 / h^3 \Omega$,其中+和-分 别表示右旋和左旋圆偏振光.

通过对角化公式(1)中的哈密顿量,可以得到 如下色散关系:

$$E_{c/v,s_z}^{\tau} = \pm \sqrt{a^2 t^2 k^2 + \left(\frac{\Delta - \lambda \tau s_z + 2\tau \Delta_{\Omega}}{2}\right)^2} + \frac{\lambda \tau s_z}{2}, \tag{6}$$

其中, $k^2 = k_x^2 + k_y^2$, 根号外的 + 和 – 分别对应导带 (c) 和价带 (v), 对应的导带与价带波函数分别为

$$\psi_{c,s_z}^{\tau} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{1 + \cos\theta} \\ \sqrt{1 - \cos\theta} e^{i\varphi} \end{pmatrix}, \quad (7)$$

和

$$\psi_{\mathbf{v},s_z}^{\tau} = \frac{1}{\sqrt{2}} \begin{pmatrix} -\sqrt{1-\cos\theta} \\ \sqrt{1+\cos\theta} \,\mathrm{e}^{\mathrm{i}\varphi} \end{pmatrix}, \qquad (8)$$

其中, $\theta = \arctan[2atk/(\Delta - \lambda \tau s_z + 2\tau \Delta_\Omega)], \varphi = \arctan(k_y/k_x).$

利用久保线性响应理论^[31-34],可以得到自旋 和谷依赖的横向霍尔电导:

$$\sigma_{xy,s_{z}}^{\tau} = \frac{\mathrm{i}e^{2}\hbar}{S} \sum_{\mathbf{c}\neq\mathbf{v}} \sum_{k} \frac{f(E_{\mathbf{c},s_{z}}^{\tau}) - f(E_{\mathbf{v},s_{z}}^{\tau})}{(E_{\mathbf{c},s_{z}}^{\tau} - E_{\mathbf{v},s_{z}}^{\tau})^{2} + \eta^{2}} \\ \times \left\langle \psi_{\mathbf{c},s_{z}}^{\tau} \left| \frac{1}{\hbar} \frac{\partial H_{s_{z}}^{\tau}}{\partial k_{x}} \right| \psi_{\mathbf{v},s_{z}}^{\tau} \right\rangle \\ \times \left\langle \psi_{\mathbf{v},s_{z}}^{\tau} \left| \frac{1}{\hbar} \frac{\partial H_{s_{z}}^{\tau}}{\partial k_{y}} \right| \psi_{\mathbf{c},s_{z}}^{\tau} \right\rangle, \tag{9}$$

其中 S 为系统面积,

 $f(E_{c/v,s_z}^{\tau}) = \{1 + \exp[(E_{c/v,s_z}^{\tau} - E_F)/k_BT]\}^{-1}$

为费米-狄拉克分布函数, η为无穷小量. 可以进一步得到系统的自旋霍尔电导^[35,36]

$$\sigma_{xy}^{s} = (\sigma_{xy,\uparrow}^{K} + \sigma_{xy,\uparrow}^{K'}) - (\sigma_{xy,\downarrow}^{K} + \sigma_{xy,\downarrow}^{K'})$$
(10)

和谷霍尔电导

$$\sigma_{xy}^{\mathsf{v}} = (\sigma_{xy,\uparrow}^{K} + \sigma_{xy,\downarrow}^{K}) - (\sigma_{xy,\uparrow}^{K'} + \sigma_{xy,\downarrow}^{K'}), \quad (11)$$

其中↑和↓分别表示自旋向上和自旋向下.

此外,系统的纵向电导^[32,33]为

$$\sigma_{xx,s_z}^{\tau} = \frac{\mathrm{i}e^2\hbar}{S} \sum_{c\neq v} \sum_k \frac{f(E_{\mathrm{c},s_z}^{\tau}) - f(E_{\mathrm{v},s_z}^{\tau})}{(E_{\mathrm{c},s_z}^{\tau} - E_{\mathrm{v},s_z}^{\tau})^2} \\ \times \frac{\eta}{(E_{\mathrm{c},s_z}^{\tau} - E_{\mathrm{v},s_z}^{\tau})^2 + \eta^2} \\ \times \left| \left\langle \psi_{\mathrm{c},s_z}^{\tau} \left| \frac{1}{\hbar} \frac{\partial H_{s_z}^{\tau}}{\partial k_x} \right| \psi_{\mathrm{v},s_z}^{\tau} \right\rangle \right|^2.$$
(12)

根据纵向电导,可以进一步得到系统自旋极化率

$$P_{\rm s} = \frac{\sigma_{xx,\uparrow}^{K} + \sigma_{xx,\uparrow}^{K'} - (\sigma_{xx,\downarrow}^{K} + \sigma_{xx,\downarrow}^{K'})}{\sigma_{xx,\uparrow}^{K} + \sigma_{xx,\uparrow}^{K'} + \sigma_{xx,\downarrow}^{K} + \sigma_{xx,\downarrow}^{K'}}$$
(13)

和谷极化率[37]

$$P_{\rm v} = \frac{\sigma_{xx,\uparrow}^K + \sigma_{xx,\downarrow}^K - (\sigma_{xx,\uparrow}^{K'} + \sigma_{xx,\downarrow}^{K'})}{\sigma_{xx,\uparrow}^K + \sigma_{xx,\downarrow}^K + \sigma_{xx,\downarrow}^{K'} + \sigma_{xx,\uparrow}^{K'} + \sigma_{xx,\downarrow}^{K'}}.$$
 (14)

3 结果与讨论

由于MoS2谷电子对光的手性选择性,使得特 定振幅和频率的非共振右旋或左旋圆偏振光只能 修饰K谷或K'谷的电子,从而产生能隙的变化,但 是此时的能隙不是平衡态布洛赫电子的能隙,而是 非平衡态 Floquet 能隙. 图 2 给出了单层 MoS_2 布 里渊区K/K'谷附近自旋依赖的价带与导带子带 间能隙随非共振圆偏振光引起的有效耦合能的变 化关系.系统布里渊区K谷附近自旋向上、向下价 带与导带间的能隙(如图2中正能段黑色实线和红 色虚线所示)随着非共振右旋圆偏振光引起的有效 耦合能增强呈线性增大,布里渊区K'谷附近自旋 向上、向下价带与导带间的能隙(如图2中正能段 蓝色点虚线和绿色点线所示)随着非共振右旋圆偏 振光引起的耦合能增强先减小后增大,在非共振右 旋圆偏振光引起的耦合能0.79和0.87 eV 附近自旋 向上和向下价带与导带间的能隙减小到趋于0,此 时 MoS₂ 表现出半金属性. 此外, 单层 MoS₂ 布里渊 区K谷附近价带与导带间的能隙随非共振左旋圆 偏振光引起的有效耦合能先减小后增大(如图2中 负能段黑色实线和红色虚线所示),在非共振左旋 圆偏振光引起的耦合能-0.79和-0.87 eV附近发 生半导体-半金属相变, K'谷附近自旋向上、向下 价带与导带间的能隙(如图2中负能段蓝色点虚线 和绿色点线所示)随着非共振左旋圆偏振光引起的 有效耦合能增强线性增大. 由此可见, 外部非共 振圆偏振光可引起单层 MoS2 能带结构有趣的半导

体-半金属-半导体转变,从而引起系统自旋/谷输运特性的有趣变化(如图3—图6所示).

图 2 单层 MoS₂ 在 K/K' 谷附近价带与导带间能隙(以 eV 为单位)随非共振圆偏振光引起的有效耦合能 Δ_{Ω} 的变 化关系,其中黑色实线和红色虚线分别表示 K 谷附近自 旋向上和自旋向下价带与导带间的能隙,蓝色点虚线和绿 色点线分别表示 K' 谷附近自旋向上和自旋向下价带与导 带间的能隙

Fig. 2. Energy gap $E_{\rm g}$ (in units of eV) of the monolayer MoS₂ as a function of the effective coupling energy Δ_{Ω} induced from the external off-resonant circularly polarized light where the (black) solid and (red) dashed line demontrates energy gap from the spin-up and -down subbands at the vicinity of K valley, while that for the K' valley is denoted by the (blue) dasheddot and (green) dot line, respectively.

利用久保线性响应理论,进一步研究了非共 振圆偏振光作用下单层 MoS2 的量子化横向霍尔 电导. 当MoS2费米能级处于价带与导带间的带隙 中时,系统自旋/谷依赖的横向霍尔电导趋于量子 化[24,32,35]. 如图3所示,系统横向霍尔电导在非 共振右旋、左旋圆偏振光作用下的变化规律类似. 下面以单层 MoS2 在非共振右旋圆偏振光作用下 的情形为例展开讨论. 当非共振右旋圆偏振光引 起的耦合能在0-0.79 eV以及0.87-1.50 eV范围 内变化时,如图3所示,单层MoS2布里渊区K谷 和K'谷自旋向上量子化霍尔电导分别为e²/2h和 $-e^2/2h$; 当非共振右旋圆偏振光引起的耦合能在 0.79—0.87 eV 范围内变化时, K 谷自旋向上量子化 霍尔电导由 $e^2/2h$ 为 $-e^2/2h$ 、自旋向下量子化霍尔 电导仍为 e²/2h (如图 3 (a) 中正能段黑色实线和红 色虚线所示), K'谷自旋向上横向量子化霍尔电导 为 $-e^2/2h$ 、自旋向下量子化霍尔电导由 $-e^2/2h$ 跃 变为 $e^2/2h$ (如图3(b)中正能段蓝色点虚线和绿色 点线所示).

图4给出了单层MoS2量子化自旋霍尔电导 (黑色实线所示)和谷霍尔电导 (红色虚线所示)

图 3 单层 MoS₂ 横向霍尔电导 (以 e^2/h 为单位)随非共振圆 偏振光引起的有效耦合能 Δ_{Ω} 的变化关系 (a) 黑色实线和红 色虚线分别表示 K 谷附近自旋向上和自旋向下横向霍尔电导; (b) 蓝色点虚线和绿色点线分别表示 K' 谷附近自旋向上和自 旋向下横向霍尔电导

Fig. 3. Transversal Hall conductance σ_{xy} (in units of e^2/h) of the monolayer MoS₂ as a function of the effective coupling energy Δ_{Ω} induced from the external off-resonant circularly polarized light: (a) The (black) solid and (red) dashed line denotes the spin-up and -down transversal Hall conductance at the vicinity of K valley, while that for K' valley in (b) is illustrated by the (blue) dashed-dot and (green) dot line, respectively.

图 4 单层 MoS₂ 横向量子化自旋霍尔电导 (以 e^2/h 为单位) 和谷霍尔电导 (以 e^2/h 为单位)随非共振圆偏振光引起的有 效耦合能 Δ_{Ω} 的变化关系,其中黑色实线和红色虚线分别表 示自旋霍尔电导和谷霍尔电导

Fig. 4. Transversal quantized spin conductance $\sigma_{xy}^{s}(\text{in units of } e^{2}/h)$ and σ_{xy}^{v} (in units of e^{2}/h) of the monolayer MoS₂ as a function of the effective coupling energy Δ_{Ω} induced from the external off-resonant circularly polarized light, as has been denoted by the (black) solid and (red) dashed line, respectively.

随非共振圆偏振光引起的有效耦合能的变化.非 共振左旋圆偏振光引起的有效耦合能在-1.50--0.87 eV范围内变化时,系统量子化自旋霍尔电 导为0 (如图4中黑色实线所示)、谷霍尔电导为 2e²/h(如图4中红色虚线所示). 有趣的是, 当非 -0.79 eV范围内变化时,如图4中黑色实线和红色 虚线所示,系统自旋霍尔电导为-2e²/h、谷霍尔 导由2e²/h 跃变为0. 当非共振光左电旋圆偏振光 引起的有效耦合能在-0.79-0 eV范围内变化时, 系统自旋霍尔电导消失、谷霍尔电导从0 跃变到 2e²/h. 此外, 如图4中黑色实线所示, 当非共振光 右旋圆偏振光引起的有效耦合能在0.79—0.87 eV 范围内变化时,系统自旋霍尔电导从0-0.79 eV 范 围内的0跃变到-2e²/h、谷霍尔电导(如图4中红 色虚线所示)由2e²/h跃变为0.当非共振光右旋圆 偏振光引起的耦合能在0.87—1.50 eV范围内变化 时,系统自旋霍尔电导为0、谷霍尔电导(如图4中 红色虚线所示)由0跃变到2e²/h.因而,系统量子 化自旋霍尔电导和谷霍尔电导[24,35]敏感地依赖于 电子的自旋/谷自由度以及外部非共振光偏振光引 起的有效耦合能.

进一步研究了单层 MoS₂ 纵向电导随非共振圆 偏振光引起的有效耦合能的变化关系.如图5中的 黑色实线和红色虚线所示,单层 MoS₂ 布里渊区 *K* 谷附近自旋向上、向下纵向电导在非共振光左旋圆 偏振光引起的耦合能-0.79和-0.87 eV 附近呈现 共振峰(共振峰的能量位置与图2中的半导体-半 金属相变能量点以及图3中的 *K* 谷横向霍尔电导 跃变能量对应).另外,如图5中蓝色点虚线和绿 色点线所示,单层 MoS₂ 布里渊区 *K*'谷附近自旋向 上、向下纵向电导在非共振光右旋圆偏振光引起的 耦合能 0.79和 0.87 eV 附近呈现共振峰,共振峰的 能量位置与图2中的相变能量点以及图3中的*K*' 谷横向霍尔电导跃变能量一一对应.

图 6 给出了单层 MoS₂ 自旋极化率和谷极化率 随非共振圆偏振光引起的耦合能的变化关系.非 共振左旋圆偏振光引起的耦合能在 -0.79—0 eV 范 围内变化时,系统自旋极化率(如图 6 中负能段黑 色实线所示)随着非共振左旋圆偏振光引起的耦 合能增强先慢后快增大,在非共振左旋圆偏振光 引起的耦合能 -0.79 eV 附近呈现由正到负的急剧 转变,系统谷极化率(如图6中负能段红色虚线所示)先随着非共振左旋圆偏振光引起的耦合能增强 先快后慢增大,在非共振左旋圆偏振光有效耦合 能-0.87—-0.79 eV范围内达到100%,然后随着非

图5 单层 $MoS_2 布里渊区 K/K' 谷附近纵向电导(以$ $<math>e^2/h$ 为单位)随非共振圆偏振光引起的耦合能 Δ_{Ω} 的变化 关系,其中黑色实线、红色虚线分别表示 K 谷附近自旋向 上、自旋向下纵向电导,蓝色点虚线和绿色点线分别表示 K' 谷附近自旋向上和自旋向下纵向电导

Fig. 5. Longitudinal conductance σ_{xx} (in units of e^2/h) at the vicinity of K/K' valley for monolayer MoS₂ as a function of the effective coupling energy Δ_{Ω} induced from the external off-resonant circularly polarized light, where the (black) solid and (red) dashed line denotes the spin-up and -down longitudinal conductance at the vicinity of K valley, while the (blue) dashed-dot and (green) dot line gives the spin-up and -down longitudinal conductance at the vicinity of K' valley, respectively.

图 6 单层 MoS₂ 纵向电导自旋极化率 P_s 和谷极化率 P_v 随非共振圆偏振光引起的有效耦合能 Δ_Ω 的变化关系,其中黑色实线和红色虚线分别表示自旋极化率 P_s 和谷极化率 P_v

Fig. 6. Longitudinal conductance spin and valley polarization rate (denoted by $P_{\rm s}$ and $P_{\rm v}$, respectively) for monolayer MoS₂ as a function of the effective coupling energy Δ_{Ω} induced from the external off-resonant circularly polarized light, as has been illustrated by the (black) solid and (red) dashed line, respectively. 共振圆偏振光有效耦能增强缓慢减小(谷极化率 一直保持在90%以上).此外,当非共振右旋圆偏 振光引起的耦合能在0-0.79 eV范围内变化时(如 图6中正能段黑色实线所示),系统自旋极化率随 着非共振右旋圆偏振光引起的耦合能增强先慢后 快增强,在非共振右旋圆偏振光引起的耦合能为 0.79 eV附近呈现由负到正的急剧转变,系统谷极 化率(如图6中正能段红色虚线所示)先随着非共 振右旋圆偏振光引起的耦合能增强先快后慢增大, 在非共振右旋圆偏振光有效耦合能0.79-0.87 eV 范围内达到100%, 然后随着非共振圆偏振光引 起的有效耦合能增强缓慢减小(谷极化率一直超 过90%). 可见,利用非共振圆偏振光有望在单层 MoS2上实现100%的谷极化,从而用于谷电子器 件设计;在特定非共振圆偏振光引起的有效耦合 能附近实现系统自旋极化的急速反转,这对基于 MoS₂的新型高速自旋电子器件设计具有一定的指 导意义.

4 结 论

利用紧束缚近似下的低能有效哈密顿模型和 久保线性响应理论,研究了外部非共振圆偏振光 对单层 MoS2 电子能带结构、横向霍尔电导、纵向 电导及其自旋/谷输运性质的影响.研究结果表明, 单层MoS2布里渊区K谷和K'谷附近能隙随着非 共振右旋圆偏振光引起的有效耦合能增强分别呈 线性增大和先减小后增大,随着非共振左旋圆偏 振光引起的有效耦合能增强分别先减小后增大和 线性增大,实现有趣的半导体-半金属-半导体转 变. 此外, 非共振圆偏振光有效耦合能绝对值在 0.79-0.87 eV范围内变化时,系统自旋霍尔电导为 -e²/2h、谷霍尔电导消失. 在非共振右/左旋圆偏 振光有效耦合能±0.79 eV附近,系统自旋极化率 呈现由负到正或由正到负的急剧转变. 系统谷极 化率随着非共振左旋和右旋圆偏振光有效耦合能 增强而增大,在非共振圆偏振光有效耦合能绝对值 0.79-0.87 eV范围内接近于100%. 总之, 外部非 共振圆偏振光是调控单层 MoS2 量子化霍尔电导、 自旋/谷霍尔电导以及纵向电导自旋/谷极化的有 效手段,可利用外部电磁场实现单层 MoS_2 完全谷 极化或自旋极化,为基于低维过渡族金属硫化物的 新型高速自旋/谷电子器件设计提供理论基础.

参考文献

- Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
- [2] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I 2005 Nature 438 197
- [3] Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P, Hornekaer L 2010 Nature Mater. 9 315
- [4] Li X, Wang X, Zhang L, Lee S, Dai H 2008 Science 319 1229
- [5] Zhou S Y, Gweon G H, Fedorov A V, First P N, de Heer W A, Lee D H, Guinea F, Castro Neto A H, Lanzara A 2007 Nature Mater. 6 770
- [6] Xia F, Farmer D B, Lin Y, Avouris P 2010 Nano Lett.
 10 715
- [7] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys.6 30
- [8] Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S 2008 Nat. Nanotechnol. 3 206
- [9] Li Z, Carbotte J P 2012 Phys. Rev. B 86 205425
- [10] Majidi L, Rostami H, Asgari R 2014 Phys. Rev. B 89 045413
- [11] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
- [12] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699
- [13] Mak K F, Lee C, Hone J, Shan J, Tony F H 2010 *Phys. Rev. Lett.* **105** 136805
- [14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
- [15] Liu H, Peide D Y 2012 IEEE Electron Dev. Lett. 33 546
- [16] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett.
 12 1136
- [17] Xiao D, Liu G B, Feng W X, Xu X D, Yao W 2012 Phys. Rev. Lett. 108 196802
- [18] Cao T, Wang G, Han W P, Ye H Q, Zhu C R, Shi J R, Niu Q, Tan P H, Wang E G, Liu B L, Feng J 2012 Nat. Commun. 3 887
- [19] Mak K F, He K, Shan J, Heinz T F 2012 Nat. Nanotechnol. 7 494
- [20] Zeng H, Dai J, Yao W, Xiao D, Cui X 2012 Nat. Nanotechnol. 7 490
- [21] Sengupta P, Bellotti E 2016 Appl. Phys. Lett. 108 211104
- [22] Zheng H L, Yang B S, Wang D D, Han R L, Du X B, Yan Y 2014 Appl. Phys. Lett. 104 132403
- [23] Yarmohammadi M 2017 J. Magnet. Magnet. Mater. 426 621
- [24] Wang S, Wang J 2015 Physica B 458 22
- [25] Yin Z Y, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D, Zhang H 2012 ACS Nano 6 74
- [26] Rostami H, Moghaddam A G, Asgari R 2013 *Phys. Rev.* B 88 085440

- [27] Tahir M, Schwingenschlogl U 2014 New J. Phys. 16 115003
- [28] Zhou L, Carbotte J P 2012 Phys. Rev. B 86 205425
- [29] Kitagawa T, Oka T, Brataas A, Fu L, Demler E 2011 *Phys. Rev. B* 84 235108
- [30] Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Guzik A A, Demler E, White A G 2012 Nat. Commun. 3 882
- [31] Tahir M, Manchon A, Sabeeh K, Schwingenschlogl U 2013 Appl. Phys. Lett. 102 162412
- [32] Sinitsyn N A, Hill J E, Min H, Sinova J, MacDonald A H 2006 Phys. Rev. Lett. 97 106804

- [33] Dutta P, Maiti S K, Karmakar S N 2012 J. Appl. Phys. 112 044306
- [34] Cazalilla M A, Ochoa H, Guinea F 2014 Phys. Rev. Lett. 113 077201
- [35] Tahir M, Manchon A, Schwingenschlogl U 2014 Phys. Rev. B 90 125438
- [36] Feng W X, Yao Y G, Zhu W G, Zhou J J, Yao W, Xiao D 2012 Phys. Rev. B 86 165108
- [37] Missault N, Vasilopoulos P, Vargiamidis V, Peeters F
 M, van Duppen B 2015 *Phys. Rev. B* 92 195423

Electronic structure and spin/valley transport properties of monolayer MoS_2 under the irradiation of the off-resonant circularly polarized light^{*}

Zhang Xin-Cheng Liao Wen-Hu[†] Zuo Min

(College of Physics, Mechanical and Electrical Engineering, Jishou University, Jishou 416000, China) (Received 28 January 2018; revised manuscript received 5 March 2018)

Abstract

The new-type monolayer semiconductor material molybdenum disulfide (MoS₂) is direct band gap semiconductor with a similar geometrical structure to graphene, and as it owns superior physical features such as spin/valley Hall effect, it should be more excellent than graphene from the viewpoint of device design and applications. The manipulation of the spin and valley transport in MoS_2 -based device has been an interesting subject in both experimental and theoretical researches. Experimentally, the photon induced quantum spin and valley Hall effects may result in high on-off speed spin and/or valley switching based on MoS₂. Theoretically, the off-resonant electromagnetic field induced Floquet effective energy should modulate effectively the electronic structure, spin/valley Hall conductance as well as the spin/valley polarization of the MoS_2 , through the virtual photon absorption and/or emission processes. Utilizing the low energy effective Hamilton model from the tight-binding approximation and Kubo linear response theorem, we theoretically investigate the electronic structure and pin/valley transport properties of the monolayer MoS_2 under the irradiation of the off-resonant circularly polarized light in the present work. The band gaps around the K and K' point of the Brillouin region for monolayer MoS_2 proves to increase linearly and decrease firstly and then increase, respectively with the increase of external off-resonant right-circularly polarized light induced effective coupling energy, and decrease firstly and then increase and increase linearly with the increase of left-circularly polarized light induced effective coupling energy, therefore, the interesting transition of semiconducting-semimetallic-semiconducting may be observable in monolayer MoS_2 . Furthermore, the spin and valley Hall conductance of the monolayer MoS_2 for the case without off-resonant circularly polarized light are 0 and $2e^2/h$, respectively, and they will convert into $-2e^2/h$ and 0 when the absolute value of the off-resonant circularly polarized light induced effective coupling energy is in a range of 0.79–0.87 eV. Finally, the spin polarization for monolayer MoS₂ increases up to a largest value and changes from positive to negative and/or negative to positive at the vicinity of the effective coupling energy ± 0.79 eV of the off-resonant right/left circularly polarized light, while the valley polarization should increase firstly and then decrease with the off-resonant circularly polarized light, and goes up to 100% in the range of 0.79–0.87 eV of the absolute value for effective coupling energy. Therefore, the external off-resonant circularly polarized electromagnetic field should be an effective means in manipulating the electronic structure, spin/valley Hall conductance and spin/valley polarization of the monolayer MoS_2 , the two-dimensional MoS_2 may be tuned into a brand bandgap material with excellent spin/valley and optoelectrical properties.

Keywords: MoS₂, off-resonant light, electronic structure, spin/valley Hall conductance PACS: 71.10.Hf, 72.25.Dc, 73.22.-f, 73.50.-h DOI: 10.7498/aps.67.20180213

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 11664010, 11264013), the Hunan Provincial Natural Science Foundation of China (Grant Nos. 2017JJ2217, 12JJ4003), the Scientific Research Fund of Hunan Provincial Education Department of China (Grant No. 14B148), and the Research Program of Jishou University, China (Grant Nos. JGY201763, Jdy16021).

[†] Corresponding author. E-mail: whliao2007@aliyun.com