物理学报 Acta Physica Sinica

新型 4d/5d 基超导体的结构和物性

宋艳鹏 陈洪祥 郭建刚 陈小龙

Crystal structures and physical properties of novel 4d/5d based superconductors

Song Yan-Peng Chen Hong-Xiang Guo Jian-Gang Chen Xiao-Long

引用信息 Citation: Acta Physica Sinica, 67, 127101 (2018) DOI: 10.7498/aps.67.20180767 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180767 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I12

您可能感兴趣的其他文章 Articles you may be interested in

一种数据非易失性、多功能和可编程的自旋逻辑研究进展

Recent progress of nonvolatile, multifunctional and programmable spin logic 物理学报.2018, 67(12): 127102 http://dx.doi.org/10.7498/aps.67.20180906

外加电场和AI组分对纤锌矿AIGaN/GaN量子阱中的电子g因子的影响

Effects of external electric field and Al content on g factor of wurtzite AlGaN/GaN quantum wells 物理学报.2018, 67(5): 057101 http://dx.doi.org/10.7498/aps.67.20172213

Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N 量子阱中的 Rashba 自旋劈裂

Rashba spin splitting in the Al_{0.6}Ga_{0.4}N/GaN/Al_{0.3}Ga_{0.7}N/Al_{0.6}Ga_{0.4}N quantum well 物理学报.2016, 65(9): 097101 http://dx.doi.org/10.7498/aps.65.097101

强自旋轨道耦合化合物 $Sr_{2-x}La_xIrO_4$ 的掺杂和拉曼谱学

Doping and Raman scattering of strong spin-orbit-coupling compound $Sr_{2-x}La_xIrO_4$ 物理学报.2015, 64(20): 207103 http://dx.doi.org/10.7498/aps.64.207103

金属表面 Rashba 自旋轨道耦合作用研究进展

Recent progress in Rashba spin orbit coupling on metal surface 物理学报.2015, 64(18): 187103 http://dx.doi.org/10.7498/aps.64.187103

新型4d/5d基超导体的结构和物性*

宋艳鹏¹⁾²⁾ 陈洪祥¹⁾²⁾ 郭建刚^{1)†} 陈小龙^{1)2)‡}

1) (中国科学院物理研究所,北京 100190)

2) (中国科学院大学,北京 100049)

(2018年4月22日收到;2018年5月6日收到修改稿)

在强关联电子体系中,轨道、自旋和晶格等自由度之间的相互作用一直是研究的热点.这些自由度之间的 竞争和共存产生了复杂新奇的物理现象,如超导现象、量子相变、自旋有序、拓扑相变、金属绝缘转变等,这些 丰富的物理现象来源于不同的有序态或量子涨落之间的竞争和耦合.自旋轨道耦合作用是指粒子的自旋角动 量和轨道角动量之间的相互作用,在4d/5d基化合物中,由于电子的运动速度较快,自旋轨道耦合的效应不可 忽视,可能表现出与3d基化合物不同的物性.例如,在含4d/5d过渡族金属元素的超导体中,其电子配对的机 制可能不同于常规的s波Bardeen-Cooper-Schrieffer超导体.本文以几种典型的4d/5d基超导体为例,对其晶 体结构和超导物性及其内在联系进行了详细论述,重点探讨了阴离子共价键强弱对晶体结构、相变和超导物 性的影响,希望引起相关研究者对该类超导体的重视.

关键词: 自旋轨道耦合, 超导体, 化学键 **PACS:** 71.70.Ej, 74.25.Ld, 61.50.Lt

DOI: 10.7498/aps.67.20180767

1引言

过渡族金属元素与非金属元素常会结合成 形状各异的配位多面体,如经典的CuO₂平面和 FeAs₄四面体等,其中较强的晶体场和扬-特勒效 应,会导致化合物展现不同的自旋有序态和轨道有 序态.与3d过渡族金属元素相比,4d/5d过渡族金 属元素中电子云有着更大的实空间半径,受到更强 的屏蔽作用,电子间的库仑作用较小^[1].此时,电 子的运动速度会接近光速,就需要考虑相对论效 应,自旋与轨道的作用就显现出来.一般而言,具 有未完全填充d轨道的化合物应该表现出金属行 为^[2],但人们在大量含4d/5d过渡元素的化合物中 发现了多种新奇物性,如强自旋轨道诱导的绝缘体 和Slater绝缘体、p波超导体、电荷密度波 (charge density wave, CDW)等,这些新效应由电子关联、 自旋轨道耦合及晶体场等效应相互竞争而决定.目前, Sr_2IrO_4 , TaS_2 和 $IrCh_2(Ch = Se, Te)$ 等4d/5d基化合物受到国内外研究者的广泛关注,本文从以上体系出发,对4d/5d基超导体展开讨论,着重探讨晶体结构和超导物性的联系,包括化学键的强弱对超导物性的影响等,希望对该类超导体的研究提供更多的线索和启示.

2 4d基超导体

1986年, 铜基高温超导体 La_{2-x}Ba_xCuO₄(T_c = 35 K)的发现在物理和材料研究领域引起了巨大的反响. La_{2-x}Ba_xCuO₄的母体材料 La₂CuO₄ 属于正交晶系, 原子按 K₂NiF₄型结构分布, 其基本结构单元是以6个氧原子为顶点的 CuO₆ 畸变八面体. 研究人员在与 La₂CuO₄ 同构的 4d 基钌氧化物 Sr₂RuO₄ 中发现了 T_c 为 0.93 K的超导转变^[3],

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金 (批准号: 51772322) 资助的课题.

[†]通信作者. E-mail: jgguo@iphy.ac.cn

[‡]通信作者. E-mail: xlchen@iphy.ac.cn

^{© 2018} 中国物理学会 Chinese Physical Society

它是第一个无CuO₂面的强关联层状氧化物超导体,在电子配对机制上与传统的Bardeen-Cooper-Schrieffer (BCS)超导体有很大区别. 钌氧化物的晶体结构为Ruddlesden-Popper型钙钛矿,其通式为A_{n+1}B_nO_{3n+1},其中n为BO₆正八面体的层数, n可以为1,2,3等;A为碱金属;B为3d,4d或5d 金属.图1为Sr₂RuO₄,Sr₃Ru₂O₇和Sr₄Ru₃O₁₀的晶体结构^[4].Sr₂RuO₄超导电性的出现,引发了 4d及5d过渡金属氧化物的研究热潮,研究人员对 Sr₂RuO₄的配对机理和费米面等进行了系统的研 究. 其中, 磁化率测量发现 Sr₂RuO₄ 从室温到 T_c 是 非磁的, 而核磁共振 (nuclear magnetic resonance, NMR)^[5] 和中子散射证实了其中存在较强的磁涨 落, 可能对 Sr₂RuO₄ 的超导电子配对起着至关重 要的作用. 在 Sr₂RuO₄ 中, 费米面附近的电子主要 来自于三个能带, 其中两个能带 (α 和 β) 具有准一 维结构, 另一个能带 (γ) 是二维结构. 理论研究认 为^[6] 一维的 α 和 β 能带更加重要, 因为一维能带的 嵌套结构会导致较强的自旋密度波涨落.

图 1 $A_{n+1}B_nO_{3n+1}$ 的晶体结构,其中八面体为 $BO_6 \in [4]$

Fig. 1. Schematic crystal structures of n = 1, 2 and 3 members of Ruddlesden-Popper type $A_{n+1}B_nO_{3n+1}$. The denotation of n represents the number of stacked octahedral layers that are separated by rock salt AO layer^[4].

多种实验手段证明,稀土化合物UPt₃是自旋 三重态超导体,但理论计算表明Sr₂RuO₄也可能 是自旋三重态超导体.Maeno等^[5]提出,Sr₂RuO₄ 的库珀对可以形成自旋三重态(S = 1),类似于 超流体³He中成对中性费米子的自旋三重"p波" 态^[7].Maeno等用NMR测量了Sr₂RuO₄中¹⁷O的 奈特位移,发现在温度低于 T_c 时,奈特位移没有增 加,为自旋三重态超导体提供了强有力的证据.此 外,非常规超导体Sr₂RuO₄也是一种可能的拓扑超 导体,其超导电子配对具有特殊的手性 p-波对称 性^[6].

另一方面,当超导体的晶体结构缺少反演中 心时,由于自旋-轨道耦合效应的不对称,宇称守 恒被违反,也可能导致电子配对的对称性发生 变化. Nishiyama等^[8]发现4d基化合物Li₂Pd₃B $(T_c \sim 7 \text{ K})$ 为常规的 BCS 超导体,但在 5d 基超导体 Li₂Pt₃B ($T_c \sim 2.7 \text{ K}$)中,奈特位移在低于 T_c 时也 没有增加,其自旋晶格弛豫率 $1/T_1$ 与温度呈 T^3 关 系,且没有出现相干峰,清楚地表明 Li₂Pt₃B 中的 库珀对处于自旋三重态,这种超导能隙的对称性显 然与强自旋轨道耦合效应存在着密切的关系.

3 5d基超导体

3.1 具有强自旋轨道耦合效应的5d基 氧化物

5d过渡族金属元素具有很强的自旋轨道耦 合作用,它与强电子关联作用以及晶体场一起决 定着材料的基态.近几年研究较多的化合物为铱 氧化物,如Na₄Ir₃O₈是一种磁几何阻挫的 hyperkagome 晶体 (磁几何阻挫是指在系统内部,如果由 于局域几何的限制,最紧邻原子之间的两两磁相 互作用不能同时最小化,导致阻挫现象出现),在 磁性上表现为一种三维的自旋玻璃态^[9]; SrIrO3在 量子临界点附近表现为一种非费米液体行为,这 可能和它具有较强的自旋涨落有关^[10]:通过Sn部 分替代Ir,可以在SrIrO3中诱导出Slater绝缘体转 变^[11](Slater 绝缘体是 20 世纪 50 年代 J. C. Slater 提出的一种完全由三维反铁磁序造成的金属绝缘 体相变,即在具有半填充的金属体系中,当发生三 维反铁磁序时会降低平移对称性,在布里渊区的中 心打开带隙,形成绝缘体);烧绿石结构的Y₂Ir₂O₇ 最早被预言为Weyl半金属^[12];Nd₂Ir₂O₇被认为 是 Slater 绝缘体 [13,14]. 此外, Sr₂IrO₄ 的晶体结构 与La2CuO4相似,被认为是具有强自旋轨道耦合 的Mott绝缘体,是高温超导体的潜在母体材料之 一[15-18], 见图2.

2014年,南京大学的王强华等^[19]通过重整化 群计算表面电子型掺杂可以在 Sr_2IrO_4 中实现超导,空穴型掺杂也可以实现.不同的是,电子型掺 杂超导体其能隙具有 $d_{x^2-y^2}$ 对称性,而空穴型掺 杂超导体的能隙具有 $S\pm$ 波对称性.2014年,美国 阿贡实验室的Kim等^[20]在 Sr_2IrO_4 单晶表面蒸镀 碱金属原子,成功实现了电子型掺杂,利用角分 辨光电子能谱(angle resolved photoemission spectroscopy, ARPES),它们在碱金属镀层样品中观测 到了费米弧,这种费米弧和铜氧化物超导体中费米 弧很相似.后来,Kim等^[21]用ARPES在6 at.%— 8 at.% 电子掺杂的 Sr₂IrO₄ 中观察到布里渊区内有 四个孤立的无能隙节点,此种对称性可以用d 波来 描述. 2015 年,复旦大学的封东来等^[22] 通过扫描 隧道显微镜和扫描隧道谱研究了表面蒸镀碱金属 K的 Sr₂IrO₄ 样品的电子态,发现体系从 Mott 绝缘 态演化到正常的金属态,并在中间成分发现了赝能 隙态.进一步地,在K原子覆盖率为0.5—0.7单层 Sr₂IrO₄ 样品上观察到了尖锐的"V"型能隙,其费 米面处的态密度减少了95%,类似于超导能隙,如 图 3 所示.重要的是,电子掺杂 Sr₂IrO₄ 的扫描隧道

Fig. 2. $\text{Sr}_2 \text{IrO}_4$ the $J_{\text{eff}} = 1/2$ Mott insulator is induced by spin-orbit coupling ^[18].

图 3 纯 Sr_2IrO_4 与表面蒸镀 K 的 Sr_2IrO_4 的表面形貌和 dI/dV 谱^[22] Fig. 3. Surface topography and dI/dV spectrum of Sr_2IrO_4 with and without K coverage^[22].

谱线形、能隙的能量尺度和特征温度以及电子态随 着掺杂浓度的演化规律,都与空穴型铜氧化物超导 体相类似.

3.2 5d基硫属化合物的结构与超导

过渡金属二硫属化合物 (transition metal dichalcogenides, TMDCs) 是一系列可以用 MX₂ (M 为过渡族金属, X 为硫族元素 S, Se, Te) 分子式表 达的层状化合物. 在这种层状化合物体系中, 层 间距较长, 层间耦合较弱, 有着突出的准二维特性, 这种特性往往会导致 CDW. 更有趣的是, 在部分 TMDC 化合物中, 通过插层或掺杂, 可以有效地抑 制 CDW 相, 诱导出超导电性.

3.2.1 1T相TaS₂的CDW与超导

在TaS₂中,Ta与S之间主要由共价键结合,与 大多数的TMDCs相同,TaS₂中Ta通常为+4价, 由于还剩余一个d电子未参与成键,因而具有一个 半满的导带,电学上表现为金属性.该类材料通 常具有CDW或超导电性,受到人们的关注^[23,24], 同时掺杂和插层可以有效地调控或诱发出超导电 性.下面以1T-TaS₂为例,简要介绍TMDCs中调 控CDW与超导的主要手段.

一是压力调控. Sipos 等^[25] 对不同压力下 1T-TaS₂ 的输运性质进行了表征,描绘出了1T-TaS₂ 随压力变化的电子结构相图. 如图 4 所示,公 度电荷密度波 (CCDW) 与 Mott 态随着压力的增 加逐渐受到抑制,转变为近公度电荷密度波 (NC-CDW),并诱导出超导电性. 随着压力的进一步 升高,其NCCDW 转变温度逐渐降低,进入非公 度电荷密度波 (ICCDW) 区域. 因为NCCDW是 ICCDW与CCDW的混合态,随着压力的升高, IC-CDW 区域逐渐增大,因而Sipos等提出1T-TaS₂ 中 超导主要是由NCCDW 的区域所决定的.

二 是 层 内 调 控. 2013 年, Ang 等 ^[26] 对 1T-TaS_{2-x}Se_x 的连续固溶体进行了超导电性和 CDW 的表征,发现 Mott 相与 CCDW 态被抑制,进而变 为 NCCDW 态,此时原本 Γ 点附近的 Mott 能隙打 开处,具有了态密度,并诱发出超导电性,它们用 ARPES 对不同样品的能带结构进行了观测,验证 了从 Mott 态到 NCCDW 态的转变,确认了最优掺 杂区域的态密度为最高值. 三是层间调控.通过碱金属插层或过渡族 金属插层等方法,也可以在1T-TaS₂中诱导出超 导电性^[27,28].2012年,Ang等^[29]研究了Fe_xTaS₂ 中超导、CDW与Mott相的关系,得到了与1T-TaS_{2-x}Se_x中相似的结果.最近几年,研究人员 通过栅压调控^[30]、纳米化^[31]、离子轰击制造缺 陷^[32]等方法,同样实现了1T-TaS₂中的CDW和 超导物性的系统调控.但是,在1T-TaS₂的电子掺 杂体系中,超导是不能与CCDW共存的,与Morosan等^[33]发现的1T-Cu_xTiSe₂中CCDW与超导 共存的现象是有明显区别的.

图 4 1T-TaS₂中 CDW 相变和超导随压力变化的电子相 图 [25]

Fig. 4. The electronic phase diagram of 1T-TaS₂ as a function of physical pressure ^[25].

3.2.2 三方晶系 Ir Te₂ 的 CDW 与超导

IrTe₂作为5d过渡金属二硫属化合物的代表, 包含丰富的结构相变、电子相变和超导,引起了研 究人员的关注.常压下IrTe₂具有三方对称晶格, 空间群为*P*3*m*1,每个Ir离子与周围的六个Te离 子构成IrTe₆八面体结构,IrTe₆八面体组成IrTe₂ 的层状结构, 层与层之间通过Te—Te共价键连接^[34-37], 晶体结构如图5所示. 低温结构测试表明IrTe2在270K发生结构相变, 已有研究认为这种结构相变与CDW相关联, 其本质源自费米面嵌套引起的不稳定性. 但是, IrTe2的层间有Te—Te 共价键, 耦合作用较强, 不利于传统的CDW的形成, 因此该结构相变可能存在其他机制. Pascut 等^[34]认为IrTe2的结构相变主要是由Ir离子的二 聚化所驱动, 电子关联和自旋轨道耦合起次要作用.

图 5 (a), (c) 室温和 (b), (d) 220 K时 IrTe₂ 的晶体结 构与费米面 ^[34]

Fig. 5. The structure and Fermi surface of IrTe₂ at (a), (c) room temperature and (b), (d) 220 K ^[34].

Yang 等^[35] 发现 IrTe₂ 在 262 K时出现明显的 电阻率上升和磁化率下降现象,并伴随着超结构 的出现, 超结构波矢为q = (1/5, 0, -1/5), 理论计 算表明 262 K的相变是电荷-轨道密度波 (density wave, DW) 类型. 我们知道, 在铁基超导化合物中, 通过化学掺杂或加压, 能有效抑制结构相变和自旋 密度波, 从而诱导出超导^[38,39]. 同样地, 在 IrTe₂ 中进行 Pd 插层或替代也会快速地抑制 DW, 从而 诱导出超导电性, 如图 6 所示. 我们发现在两个体 系中, T_c 先增大后减小, 形成一个 "dome" 状, 最高 T_c 为 3 K, 并且超导态与 DW 以量子临界点方式相 互竞争.

图 6 $\operatorname{Pd}_{x}\operatorname{IrTe}_{2}$ 与 $\operatorname{Ir}_{1-y}\operatorname{Pd}_{y}\operatorname{Te}_{2}$ 的电子相图 ^[35] Fig. 6. Electronic phase diagram of $\operatorname{Pd}_{x}\operatorname{IrTe}_{2}$ (circles) and $\operatorname{Ir}_{1-y}\operatorname{Pd}_{y}\operatorname{Te}_{2}$ (diamonds) ^[35].

图7 (a)—(f) IrTe_{2-x}Se_x 的电子衍射图谱; IrTe_{2-x}Se_x 的 (g) 磁化率 (1 emu = 10^{-3} A·m²) 和 (h) 电阻率 (1 bar = 10^{5} Pa); IrTe₂ 单晶 (i) 在不同静压下的电阻率升温曲线及 (j) 300 K 时电阻率随压力的变化关系 ^[37] Fig. 7. (a)–(f) Electron diffraction patterns for IrTe_{2-x}Se_x; (g) magnetic susceptibility and (h) resistivity for

Fig. 7. (a)–(f) Electron diffraction patterns for $Ir1e_{2-x}Se_x$; (g) magnetic susceptibility and (h) resistivity for $IrTe_{2-x}Se_x$; (i) resistivity rise profile at different static pressures and (j) resistivity dependence of pressure at 300 K of $IrTe_2$ single crystal ^[37].

Fang 等^[36] 通 过 自 助 溶 剂 法 成 功 合 成 了 Ir_{1-x}Pt_xTe₂超导单晶,对其晶体结构、磁学性能 和电输运性质进行了表征,揭示了伴随结构相变 的发生,IrTe₂的电子结构经历了重构.通过红外 光谱测量,发现相变前后样品处在完全不同的金 属状态,其电导率上没有出现任何 CDW 所导致 的特征能隙.结合第一性原理计算,该研究证实 了 IrTe₂结构相变不是源自于 CDW 相变,而是由 于晶体场效应导致 Te 的 p_x, p_y和 p_z轨道劈裂增 大,电子占据态发生变化,使系统电子动能下降. Oh 等^[37]研究了 Se掺杂对 IrTe₂结构相变的影响, 发现 Se 的掺杂将 IrTe₂ 的相变温度从 278 K提高至 560 K,并将超结构类型由 5 倍转变为 6 倍,其波矢 方向 q = (1/5, 0, -1/5) 保持不变,如图 7 所示.

图 8 二维 IrTe₂ 薄单晶标准电阻率 [$\rho(T)/\rho(300 \text{ K})$] 的温度 (T) 依赖性, 插图是 $\rho(T)/\rho(4 \text{ K})$ 的 T 依赖性 [40]

Fig. 8. Temperature (*T*) dependence of normalized resistivity $[\rho(T)/\rho(300 \text{ K})]$ for the two-dimensional IrTe₂ thin single crystals. Inset is *T* dependence of $\rho(T)/\rho(4 \text{ K})$ ^[40].

最近, Yoshida 等^[40] 通过机械剥离法获得了 薄层 IrTe₂ 单晶样品 (75 nm), 发现 IrTe₂ 体材料中 的"丝状超导"变成了体超导, 最高 *T*_c 为 3.2 K, 这 一温度与 Pt 掺杂 IrTe₂^[41] 最高的 *T*_c 值相一致, 如 图 8 所示. 该结果表明在层状超导体中, 超导物性 与晶体结构的维度有重要的联系, 同时, Yoshida 等 发现薄层样品的 CDW 相变动力学行为也表现出明 显不同的温度依赖关系.

3.2.3 立方晶系的Ir基超导体

在高压条件下, $IrCh_2(Ch = Se, Te)$ 的晶体结构由层状的三角晶格变为立方晶格, 其物性也随之改变. Qi等^[42]通过带式高压装置 (1673 K, 5 GPa) 合成了黄铁矿型 Ir_xCh_2 (*Ch* = Se, Te), 晶体结构为立方相, 空间群为 *Pa*3, *Z* = 4. Ir_xCh_2 中存在大量的 *Ch*—*Ch*共价键, 表现为负二价 *Ch*₂²⁻, Ir 的价态为+2, Ir^{2+} 按面心立方点阵排列, 晶体结构如图 9 所示. 研究发现 *Ch*—*Ch*的键长随 *x* 的增加而线性增加, 同时 Ir_xCh_2 经历了绝缘体-金属-超导的相变. 在化合物 Ir_xSe_2 中, 最高 T_c 为 6.4 K, Ir_xTe_2 中最高 T_c 为 4.7 K.

2012年, Guo 等^[43] 报道了 (IrRh)_xSe₂ 固溶体 中阴离子二聚体失稳而诱导的最大 T_c 现象.在 Ir_{0.94-x}Rh_xSe₂中,随Rh含量的增加,Se—Se键长 先增大后减小,同时 T_c 形成一个"dome"状,当Rh 含量为0.36时, T_c 为最高值9.6K,如图10所示.实 验进一步观察到Ir_{0.94-x}Rh_xSe₂的德拜温度、 T_c 和 $\Delta C/\gamma T_c$ 在弱化的二聚体附近出现极值,清楚地 表明Ir_{0.94-x}Rh_xSe₂中Se—Se共价键的强度与化 合物的物性存在密切的关系.Guo 等^[44]继续研 究了Ir_{0.95-x}Rh_xTe₂ (0 $\leq x \leq 0.52$)中Te—Te键强

图 9 黄铁矿型 Ir_xCh₂ 的晶体结构; Se—Se 键的距离和 Ir_xSe₂ 的电子相图与 Ir 含量的关系 ^[42] Fig. 9. Crystal structure of Ir_xCh₂. The Se—Se distance of Ch_2^{2-} and electronic phase diagram of pyrite Ir_xSe₂ as a function of Ir content ^[42].

度和超导的对应关系,结构分析表明晶胞大小随 Rh含量的增加而增加, Te₂²⁻二聚体的共价键键长 在Rh含量为0.3时呈现最大值,如图11所示.与 Ir_{0.94-x}Rh_xSe₂的超导物性明显不同,其 T_c 仅呈现 单调减小的趋势.结合比热等数据,发现德拜温度 在共价键较弱时最小,但超导电子的关联强度仅单 调减小,且强度值均小于Ir_{0.94-x}Rh_xSe₂,这可能与 弱的电子-电子关联强度有关.在Ir_{0.95-x}Rh_xTe₂ 中,空间更加扩展的Te 5p轨道可以增加带宽并减 弱Ir_{0.95-x}Rh_xTe₂中电子与电子之间的相互作用 和电声耦合,最终导致超导极值的消失.以上结果 表明在黄铁矿型过渡金属化合物中,可以通过调节 阴离子的共价键强度来有效地调节晶体结构的稳 定性和电子关联强度,进而有效地调控物性.

图 10 (a)—(e) $Ir_{0.94-x}Rh_xSe_2$ 的粉末 X 射线衍射图和晶体结构; $Ir_{0.94-x}Rh_xSe_2$ 的 (f) Se—Se 共价键键长、(g) 德拜温 度 Θ_D 和 $\Delta C/\gamma T_c$ 、(h) 电子相图与 Rh 含量的关系曲线^[43]

Fig. 10. (a)–(e) The powder X-ray diffraction pattern and crystal structure of $\text{Ir}_{0.94-x}\text{Rh}_x\text{Se}_2$; (f) variation of bond length of the Se–Se dimer; (g) Debye temperature Θ_{D} and $\Delta C/\gamma T_{\text{c}}$ as a function of Rh; (h) electronic phase diagram of $\text{Ir}_{0.94-x}\text{Rh}_x\text{Se}_2$ ^[43].

图 11 (a), (b) $Ir_{0.95-x}Rh_xTe_2$ 的晶体结构和 Te—Te 共价键键长与 Rh 含量的关系曲线; (c) $Te_2^{2-} = 5e_2^{2-} = \mathbb{R}$ 体键长 的比较; (d) $Ir_{0.95-x}Rh_xTe_2$ 的德拜温度 $\Theta_D, \Delta C/\gamma T_c$, (e) 超导相图与 Rh 含量的关系 ^[44] Fig. 11. (a), (b) Crystal structure and Te—Te distance of $Ir_{0.95-x}Rh_xTe_2$; (c) the bond length of the anion Te—Te dimer and the separation of Se—Se dimer depends on the content of Rh; (d) the Debye temperature Θ_D and $\Delta C/\gamma T_c$ as a function of Rh; (e) the electronic phase diagram of $Ir_{0.95-x}Rh_xTe_2$ ^[44].

图 12 (a) IrAs₃和 Ba_xIr₄As₁₂的晶体结构; (b) Ba_xIr₄As₁₂的超导相图^[45] Fig. 12. (a) Crystal structures of IrAs₃ and Ba_xIr₄As₁₂; (b) the superconducting phase diagram of Ba_xIr₄As₁₂^[45].

最近, Qi 等^[45] 报道了碱土金属 Ba 所填充的 方钴矿型 Ba_xIr₄Pn₁₂ (Pn = P, As) 化合物的超 导电性, X射线衍射分析表明 Ba_xIr₄Pn₁₂ 的空间 群是 Im3 (No. 204), Z = 2. 随着 Ba 含量的增加, Ba_xIr₄Pn₁₂ 体系经历了从绝缘体-金属-超导体的 相变, 其中 Ba_xIr₄As₁₂ 和 Ba_xIr₄P₁₂ 的最高 T_c 分别 为4.8和5.6 K, 如图 12 所示. 实验和理论计算表 明, Ba_xIr₄Pn₁₂ (Pn = P, As) 为具有中等耦合强 度的 BCS 超导体.

3.2.4 含Au的5d族超导体

常温常压下AuTe₂的晶体结构属于非公度调制的单斜晶系,空间群为C2/m (No. 12),其基本的结构单元为畸变的AuTe₆八面体^[46],每个Au原子被六个Te原子包围,形成两个短的(2.67 Å)和四个长(2.98 Å)的Au—Te键,AuTe₂中存在Te₂二聚体,在这个平均结构中,Te原子形成锯齿链,原子间距离为3.20 Å,如图13所示.Kudo等^[47]发现Pt取代Au时可以有效抑制AuTe₂的晶格畸变,形成CdI₂型($P\overline{3}m1$)的结构,其中AuTe₂中的Te₂二聚体被分解成孤立的Te原子.在Au_{1-x}Pt_xTe₂中,当x = 0.4时,其 T_c 为4.0 K,实验测量表明Te₂二聚体的破裂是诱导Au_{1-x}Pt_xTe₂超导的原因,结构精修表明Te原子的原子间距离是均匀的3.2995(9) Å,比Te₂二聚体的键长更长(2.91 Å).

在 2.5 GPa 的 压力下, AuTe₂ 由 非 公 度 的 超 结构变为标准的 CdI₂ 型结构^[48], 空间 群为 $P\bar{3}m1$ (No. 164).此时, Te₂ 二聚体分解, 二维 Au 平面和 Te 层交替堆叠.Kitagawa 等^[49]通过高压原位测量 手段表征了 AuTe₂ 在低温下的电阻率和磁化率 (如 图 14 所示), 结果表明, AuTe₂ 的超导只出现在高压 相 CdI₂ 型结构中, 当压力为 2.46 GPa 时, 最高 $T_{\rm c}$ 为 2.3 K.

图 13 (a) AuTe₂ 单斜结构, 空间群为 C2/m; (b) AuTe₂ 的超结构; (c) Au_{0.65}Pt_{0.35}Te₂ 的晶体结构, 空间群为 $P\bar{3}m1$, Te 原子是孤立的, 黑色实线表示单胞^[47] Fig. 13. (a) Average structure of calaverite AuTe₂ with the space group C2/m; (b) modulated structure of calaverite AuTe₂; (c) structure of Au_{0.65}Pt_{0.35}Te₂ with the space group $P\bar{3}m1$, Te atoms are isolated. The solid lines indicate the unit cell^[47].

早在1962年,Luo等^[50]通过快速冷却Au_{1-x}Te_x (0.6 < x < 0.85)熔融体的方法获得了Au_{1-x}Te_x 亚稳态简单立方相^[51,52],其中Au和Te原子无序 地占据立方体的八个顶点.低温测试表明T_c在 1.5—3.0 K的范围内波动,但受样品所限,其超导 机制仍不清楚.最近,Guo等^[53]利用助溶剂法制 备出一种新型层状超导体AuTe₂Se_{4/3},成功地将三 维无序的AuTe₂立方相转化为二维层状结构,其晶 体结构如图15和图16所示,空间群为P-1 (No. 2). 图15是利用球差电子显微镜获取的晶体*ab*-面内和 沿*c*轴排列的原子分布图,可以看出化合物的晶体 结构是由相同的立方体基元沿*a*-,*b*-和*c*-轴堆垛而 成.该立方体基元内Au,Te和Se的原子占位有序, Au占据立方体的面心, Te占据立方体棱的中心, Se 占据立方体的顶点.如图 16 所示, AuTe₂Se_{4/3}的晶 体结构中, 沿 *ab* 方向的立方体前/后平面与中间面 的原子成典型的二维结构. 电阻率的测试表明该化 合物的 T_c为2.85 K, 通过上临界场与磁场和电流 夹角的依赖关系, 判断出该超导呈现出准二维化特征.

图 14 左图上半部分为 AuTe₂ 在 290 K时, 电阻率 ρ 随压力的变化曲线, 下半部分为 AuTe₂ T-P 相图; 右图为 AuTe₂ 的 χ'_{ac} 在不同压力下随温度的变化曲线 ^[49]

Fig. 14. Left: the upper panel is pressure dependence of ρ at 290 K; the lower panel are *T-P* phase diagram for AuTe₂. Right: temperature dependence of the real part of χ_{ac} at several pressures^[49].

图 15 AuTe₂Se_{4/3}的球差电子显微镜图、电子衍射图像和晶体结构意图 ^[53] Fig. 15. Spherical electron microscope image, electron diffraction image and crystal structure of AuTe₂Se_{4/3} ^[53].

127101-9

图 17 AuTe₂Se_{4/3} 的低温电阻率、转角上临界场和变温 *V*-*I* 曲线 (1 Oe = 79.5775 A/m) ^[53] Fig. 17. The low temperature electrical resistivity, angular dependence of the upper critical field $\mu_0 H_{c2}(\theta)$ and *V*-*I* curves plotted in a log-log scale at various temperatures near T_c of AuTe₂Se_{4/3} ^[53].

进一步测量变温*V*-*I*曲线,可以看出当温度趋近于 *T*_c时,AuTe₂Se_{4/3}的*V*-*I*曲线幂指数逐渐增大,当 该指数大于3时,意味着超导态发生了Berezinskii-Kosterlitz-Thouless (BKT)拓扑相变,此时原本自 由运动的涡旋在进入超导态后变为两两成对且手 性相反的束缚态涡旋,形成"准长程序",此种涡旋 状态是新奇的拓扑相变,不同于对称性破缺导致 的经典相变.*T*_{BKT} = 2.78 K 与*T*_c一致,同时通过 拟合电阻与温度的关系曲线得到*T*'_{BKT} = 2.69 K, 该值又与*V*-*I*曲线拟合的*T*_{BKT}自洽,如图17 所示. 由以上结果表明,诱导结构有序和层状化对探索新 型二维超导材料和研究物性对维度的依赖具有重 要意义.

4 总结与展望

含4d/5d族过渡金属元素的超导体结构多种 多样,有层状结构的四方和三方晶系,也有对称性 最高的六方晶系,其表现出的物性也和3d族超导 体有明显不同,如4d基超导体Sr₂RuO₄中超导能 隙的p波对称性,5d基硫族化合物中的CDW和插 层/掺杂/加压等诱导的超导电性,立方相IrCh₂中 阴离子共价键强度变化所诱导的不同物性等.本文 只对比较熟悉的几个体系进行了简要介绍,从文中 所列的体系来看,4d/5d基化合物的结构和物性值 得更深入的研究,有望探索出更有趣的物理现象和 更有基础研究价值的化合物体系,大大丰富凝聚态物理的研究对象.

参考文献

- [1] Kim B J, Yu J, Koh H 2006 Phys. Rev. Lett. 97 106401
- [2] Baumberger F, Ingle N J C, Meevasana W 2006 Phys. Rev. Lett. 96 246402
- [3] Maeno Y, Hashimoto H, Yoshida K 1994 Nature 372 532
- [4] Lee D, Lee H N 2017 Materials 10 368
- [5] Ishida K, Mukuda H, Kitaoka Y, Asayama K, Mao Z Q, Mori Y, Maeno Y 1998 *Nature* 396 658
- [6] Huo J W, Rice T M, Zhang F C 2013 *Phys. Rev. Lett.* 110 167003
- [7] Lee D M 1997 Rev. Mod. Phys. 69 645
- [8] Nishiyama M, Inada Y, Zheng G 2007 *Phys. Rev. Lett.* 98 047002
- [9] Okamoto Y, Nohara M, Aruga-Katori H 2007 *Phys. Rev.* Lett. 99 137207
- [10] Cao G, Durairaj V, Chikara S 2007 Phys. Rev. B 76 100402
- [11] Cui Q, Cheng J G, Fan W 2016 Phys. Rev. Lett. 117 176603
- [12] Wan X, Turner A M 2011 Phys. Rev. B 83 205101
- [13] Tomiyasu K, Matsuhira K, Iwasa K 2012 J. Phys. Soc. Jpn. 81 034709
- [14] Disseler S M, Dhital C, Hogan T C 2012 Phys. Rev. B 85 174441
- [15] Wang F, Senthil T 2011 Phys. Rev. Lett. 106 136402
- [16] Mitchell J F 2015 APL Mater. 3 062404
- [17] Meng Z Y, Kim Y B, Kee H Y 2014 Phys. Rev. Lett.
 113 177003

- [18] Kim B J, Jin H, Moon S J 2008 Phys. Rev. Lett. 101 076402
- [19] Yang Y, Wang W S, Liu J G, Chen H, Dai J H, Wang Q H 2014 Phys. Rev. B 89 094518
- [20] Kim Y K, Krupin O, Denlinger J D, Bostwick A, Rotenberg E, Zhao Q, Kim B J 2014 *Science* 125 1151
- [21] Kim Y K, Sung N H, Denlinger J D 2016 Nat. Phys. 12 37
- [22] Yan Y J, Ren M Q, Xu H C, Xie B P, Tao R, Choi H Y, Lee N, Choi Y J, Zhang T, Feng D L 2015 *Phys. Rev.* X 5 041018
- [23] Rossnagel K 2011 J. Phys. Condens. Matter 23 213001
- [24] Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193
- [25] Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L, Tutis E 2008 Nat. Mater. 7 960
- [26] Ang R, Miyata Y, Ieki E 2013 Phys. Rev. B 88 115145
- [27] Di Salvo F J, Schwall R, Geballe T H 1971 Phys. Rev. Lett. 27 310
- [28] Morris R C, Coleman R V 1973 Phys. Rev. B 7 991
- [29] Ang R, Tanaka Y, Ieki E 2012 Phys. Rev. Lett. 109 176403
- [30] Yu Y, Yang F, Lu X F 2015 Nat. Nanotechnol. 10 270
- [31] Dunnill C W, Edwards H K, Brown P D 2006 Angew. Chem. Int. Ed. Engl. 45 7060
- [32] Tsang J C, Shafer M W, Crowder B L 1975 Phys. Rev. B 11 155
- [33] Morosan E, Zandbergen H W, Dennis B S 2006 Nat. Phys. 2 544
- [34] Pascut G L, Haule K, Gutmann M J, Barnett S A, Bombardi A, Artyukhin S, Birol T, Vanderbilt D, Yang J J, Cheong S W, Kiryukhin V 2014 *Phys. Rev. Lett.* **112** 086402

- [35] Yang J J, Choi Y J, Oh Y S 2012 Phys. Rev. Lett. 108 116402
- [36] Fang A F, Xu G, Dong T 2013 Sci. Rep. 3 1153
- [37] Oh Y S, Yang J J, Horibe Y 2013 Phys. Rev. Lett. 110 127209
- [38] Kamihara Y, Watanabe T, Hirano M 2008 J. Am. Chem. Soc. 130 3296
- [39] Paglione J, Greene R L 2010 Nat. Phys. 6 645
- [40] Yoshida M, Kudo K, Nohara M, Iwasa Y 2018 Nano Lett. 18 3113
- [41] Pyon S, Kudo K, Nohara M 2012 J. Phys. Soc. Jpn. 81 053701
- [42] Qi Y, Matsuishi S, Guo J 2012 Phys. Rev. Lett. 109 217002
- [43] Guo J, Qi Y, Matsuishi S 2012 J. Am. Chem. Soc. 134 20001
- [44] Guo J, Qi Y, Hosono H 2013 Phys. Rev. B 87 224504
- [45] Qi Y, Lei H, Guo J 2017 J. Am. Chem. Soc. 139 8106
- [46] Schutte W J, De Boer J L 1988 Acta Crystallogr. Sect. B 44 486
- [47] Kudo K, Ishii H, Takasuga M 2013 J. Phys. Soc. Jpn. 82 063704
- [48] Reithmayer K, Steurer W, Schulz H 1993 Acta Crystallogr. Sect. B 49 6
- [49] Kitagawa S, Kotegawa H, Tou H 2013 J. Phys. Soc. Jpn.
 82 113704
- [50] Luo H L, Klement Jr W 1962 J. Chem. Phys. 36 1870
- [51] Duwez P, Willens R H, Klement Jr W 1960 J. Appl. Phys. **31** 1136
- [52] Tsuei C C, Newkirk L R 1969 Phys. Rev. 183 619
- [53] Guo J G, Chen X, Jia X Y 2017 Nat. Commun. 8 871

Crystal structures and physical properties of novel 4d/5d based superconductors^{*}

Song Yan-Peng¹⁾²⁾ Chen Hong-Xiang¹⁾²⁾ Guo Jian-Gang^{1)†} Chen Xiao-Long^{1)2)‡}

1) (Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)

2) (University of Chinese Academy of Sciences, Beijing 100049, China)

(Received 22 April 2018; revised manuscript received 6 May 2018)

Abstract

The interplay among spin, orbital and lattice in a strongly-correlated electron system attracts a lot of attention in the community of condensed matter physics. The competition and collaboration of these effects result in multiple ground states, such as superconductivity, quantum criticality state, topological phase transition, metallic-insulating transition, etc. As is well known, the spin-orbital coupling is an interaction between the spin angular moment and orbit angular moment. In quantum mechanics, the spin-orbital coupling can be described as an additional interaction in the Hamitonian. For a compound containing heavy elements, the spin-orbital interaction becomes nontrival and can influence the ground states. For instance, in 4d/5d based superconductors, the superconducting pairing mechanism might be significantly different from that of conventional Bardeen-Cooper-Schrieffer superconductor. In this paper, we will summarize the structures and physical properties of several typical 4d/5d transition metal-based superconductors and discuss the intrinsic relationship between them. Importantly, the strength of anionic covalent bonds can determine the phase transition and superconductivity, which will be highlighted here.

Keywords: spin-orbit coupling, superconductor, chemical bonds

PACS: 71.70.Ej, 74.25.Ld, 61.50.Lt

DOI: 10.7498/aps.67.20180767

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51772322).

[†] Corresponding author. E-mail: jgguo@iphy.ac.cn

[‡] Corresponding author. E-mail: xlchen@iphy.ac.cn