物理学报 Acta Physica Sinica

一种新的航天器外露介质充电模型 原青云 王松

A new charging model for exposed dielectric of spacecraft

Yuan Qing-Yun Wang Song

引用信息 Citation: Acta Physica Sinica, 67, 195201 (2018) DOI: 10.7498/aps.67.20180532 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180532 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I19

您可能感兴趣的其他文章 Articles you may be interested in

聚酰亚胺电导率随温度和电场强度的变化规律

Study on temperature and electric field dependence of conductivity in polyimide 物理学报.2016, 65(2): 025201 http://dx.doi.org/10.7498/aps.65.025201

激光驱动准等熵压缩透明窗口 LiF 的透明性

Optical transparency of transparent window LiF in laser-driven quasi-isentropic compression experiment 物理学报.2015, 64(20): 205202 http://dx.doi.org/10.7498/aps.64.205202

不同温度下复杂介质结构内带电规律仿真分析

Computer simulation on temperature-dependent internal charging of complex dielectric structure 物理学报.2015, 64(12): 125201 http://dx.doi.org/10.7498/aps.64.125201

高能电子辐射下聚四氟乙烯深层充电特性

Research of deep dielectric charging characteristics of polytetrafluoroethene irradiated by energetic electrons

物理学报.2014, 63(20): 209401 http://dx.doi.org/10.7498/aps.63.209401

外磁场与温度对低温超导光子晶体低频禁带特性的影响

Effects of external magnetic field and temperature on low frequency photonic band width in cryogenic superconducting photonic crystals

物理学报.2012, 61(7): 075203 http://dx.doi.org/10.7498/aps.61.075203

一种新的航天器外露介质充电模型<mark>*</mark>

原青云^{1)†} 王松²⁾

1) (陆军工程大学, 电磁环境效应国家级重点实验室, 石家庄 050003)

2) (63618部队, 库尔勒 841000)

(2018年3月26日收到; 2018年7月18日收到修改稿)

为综合考虑高能电子辐射与周围等离子体对航天器外露介质充电的影响,在航天器内带电模型的基础 上,通过添加边界充电电流来考虑等离子体与航天器介质表面的相互作用,并统一参考电位为等离子体零电 位,建立了航天器外露介质充电模型,给出了新模型的一维稳态解法,并与表面充电模型和深层充电模型进行 了对比分析.结果表明:新建模型能够综合考虑表面入射电流、深层沉积电流和传导电流对充电的耦合作用 过程,实现外露介质表面和深层耦合充电计算,有利于全面评估航天器外露介质的充电问题.

关键词:充电模型,外露介质,表面充电,介质深层充电 PACS: 52.25.Mq, 94.05.Hk, 94.05.Jq

DOI: 10.7498/aps.67.20180532

1引言

航天器充放电过程是指航天器在轨运行期间, 受空间等离子体、高能电子和太阳辐射等环境的影响,会在航天器表面及介质材料内部发生静电荷的 积累及泄放过程^[1-5].静电放电会造成航天器材料 击穿、太阳电池阵性能下降,其产生的电磁脉冲干 扰会使星上敏感电子设备/系统出现误操作或者损 坏,从而影响航天器的在轨安全运行.因此,开展 航天器充放电研究具有重要意义^[6-9].

航天器蒙皮之外存在诸多外露介质结构. 按 照几何尺寸分为两类: 一类是涂覆在航天器表面 的介质薄层, 如聚酰亚胺膜; 另外一类是尺寸稍大 (>1 mm)的介质结构, 例如外露电缆绝缘层和天 线支撑结构. 介质薄层由于其厚度小(<100 µm), 一般只考虑表面充电问题, 不等量带电导致的表 面电位差或薄层前后面电位差达到放电阈值时就 会发生较严重的放电现象^[10,11]; 而第二类外露介 质除了表面充电威胁外, 还面临介质深层充电问 题. 一方面, 通量较大但能量较低 (< 0.1 MeV) 的 等离子体会在介质表面沉积并伴随二次电子发射; 另一方面, 高能电子 (> 0.1 MeV^[12]) 入射介质并 在其中沉积,导致介质深层充电^[13-17].因此,外 露介质充电需要综合考虑表面入射电流和深层沉 积电流. 回顾相关的充电模型, 表面充电的电流平 衡方程^[18]包含了入射电子、离子电流和二次电子 电流以及介质传导(泄放)电流,却未考虑介质的深 层充电电流:介质深层充电模型包括微观层面的产 生-复合模型^[19]和宏观的辐射诱导电导率(radiation induced conductivity, RIC)模型^[20],这些模 型都未考虑介质表面电流的作用.因此,鉴于航天 器外露介质面临的特殊环境,为全面评估外露介质 的充电过程,本文提出了一种新的能够同时兼顾 表面充电和深层充电的航天器外露介质充电模型 (surface and internal coupling charging model for exposed dielectric, SICCE),利用此模型实现了表 面充电和深层充电的耦合仿真,准确刻画了航天器 外露介质的完整充电过程.

* 国家自然科学基金 (批准号: 51577190)、装备预研重点基金 (批准号: 61402090201) 和电磁环境效应国家级重点实验室基金 (批准号: 614220501020117) 资助的课题.

†通信作者. E-mail: qingyuny@163.com

© 2018 中国物理学会 Chinese Physical Society

2 SICCE的构建

2.1 表面充电模型

航天器介质表面充电过程如图1所示.

图 1 航天器表面充电示意图 Fig. 1. Schema of spacecraft surface charging.

介质板背面与航天器结构地保持欧姆接触,正面(上表面)与空间等离子体相互作用.介质厚度为 d,表面电位为U,表面充电的控制方程为

$$C_{\rm A}\frac{\mathrm{d}U}{\mathrm{d}t} = j_1(U) - j_{\rm c}(U), \qquad (1)$$

式中, *C*_A 为航天器单位表面积电容, *j*_c 是介质从表面到背面方向的传导电流密度, *j*₁ 表征介质表面总入射电流密度, 其表达式为

$$j_1 = -j_e + j_{se} + j_{be} + j_i + j_{si} + j_{pe},$$
 (2)

其中, *j*_e 为入射电子电流密度, *j*_{se} 为电子二次电子 电流密度, *j*_{be} 为入射电子导致的背散射电子电流 密度, *j*_i 为离子电流密度, *j*_{si} 为离子二次电子电流 密度, *j*_{pe} 为光电子电流密度. *j*_e 前面的负号代表以 入射电流到介质方向为正.

2.2 介质深层充电模型

根据电荷守恒定律,介质深层充电的控制 方程为

 $\nabla \cdot (\boldsymbol{J} + \boldsymbol{J}_{\mathrm{e}}) = 0,$

式中, **J**为介质的传导电流密度和位移电流密度之和, 即

$$\boldsymbol{J} = \left(\boldsymbol{\sigma} + \varepsilon \frac{\partial}{\partial t}\right) \boldsymbol{E},\tag{4}$$

 σ 和 ε 分别是介质的电导率和介电常数,电场强度 **E**是电位U的负梯度(即**E** = $-\nabla U$), **J**_e是高能电 子入射导致的电流密度,满足

$$\nabla \cdot \boldsymbol{J}_{\mathrm{e}} = -Q_j, \tag{5}$$

 Q_i 为介质内部的电荷沉积率.

控制方程(3)的定解需要结合特定的边界条件 来获得.对于航天器深层带电,通常只考虑绝缘边 界和接地边界条件,其表达式分别为

$$\begin{cases} \boldsymbol{n} \cdot \boldsymbol{J}|_{S_{\text{ins}}} = 0, \\ U|_{S_{\text{grd}}} = 0, \end{cases}$$
(6)

式中, S_{ins} 和 S_{grd} 分别代表绝缘边界和接地边界. 此处接地代表航天器结构电位 U_0 . 由于 U_0 仅是决 定参考电位,不影响电场强度的计算结果,而且深 层带电主要考察电场强度来判断是否发生介质击 穿放电,所以通常设置 $U_0 = 0$.

2.3 新的外露介质充电模型 SICCE

表面带电模型没有考虑电荷沉积率,而深层充 电模型忽略了表面充电电流.并且这两种充电模 型的参考电位也不相同.前者把无穷远处等离子 体的电位视为参考电位(0电位),而后者把航天器 结构电位作为参考电位.本文在表面充电模型((1) 式)和介质深层充电模型((3)式)的基础上,通过引 入介质表面入射电流来考虑表面充电与深层充电 的相互作用,提出了一种新的外露介质充电模型, 见图2.新模型采用与表面充电模型相同的参考电 位,即无穷远处等离子体的电位.

(3)

195201-2

模型中有四个界面,分别为等离子体与介质表面相互作用的界面(标记为*S*₁),介质和航天器结构体相接触的界面(标记为*S*₂),航天器结构体和等离子体相互作用的界面(标记为*S*₃)以及介质背面局部绝缘边界(标记为*S*_{insulation}),其对应面积分别记为|*S*₁|,|*S*₂|,|*S*₃|和|*S*_{insulation}].与表面充电模型或介质深层充电模型相比,该模型可以综合考虑表面入射电流和介质内部电荷沉积率的作用.

当引入表面入射电流之后,得到的表面电位是 相对于周围等离子体而言的,这与深层充电中的结 构地电位是不同的.因此,需要在外露介质充电模 型中考虑航天器结构体的充电过程,从而统一参考 电位为等离子体零电位.记航天器单位表面积电容 为*C*₀,从介质到航天器结构体的充电电流密度为 *j*₁₂,等离子体到航天器结构体的充电电流密度为 *j*₂,于是航天器结构体电位*U*满足

 $C_0 dU/dt|_{S_2+S_3} = c_{r1} \mathbf{n} \cdot \mathbf{J}|_{S_2} + c_{r2} j_2(U|_{S_3}),$ (7) 式中, 假定 $S_1 = S_2, c_{r1} = |S_2|/(|S_2| + |S_3|),$ $c_{r2} = |S_3|/(|S_2| + |S_3|); \mathbf{n} \cdot \mathbf{J}|_{S_2} = j_{12}(U|_{S_2})$ 部 分表明外露介质和航天器结构体的耦合充电过程.

将表面充电电流密度和(7)式分别作为介质上 下表面充电的边界条件,联立电荷守恒定律得到外 露介质充电模型,其控制方程为

$$\nabla \cdot \boldsymbol{J} = Q_j,$$
$$\boldsymbol{J} = \varepsilon \partial \boldsymbol{E} / \partial t + \boldsymbol{J}_c, \tag{8}$$

边界条件为

$$\begin{cases} -\boldsymbol{n} \cdot \boldsymbol{J}|_{S_1} = j_1(\boldsymbol{U}|_{S_1}), \\ \frac{C_0 \,\mathrm{d}\boldsymbol{U}}{\mathrm{d}\boldsymbol{t}|_{S_3}} = c_r \boldsymbol{n} \cdot \boldsymbol{J}|_{S_2} + j_2(\boldsymbol{U}|_{S_3}), \\ \boldsymbol{n} \cdot \boldsymbol{J}|_{S_{\mathrm{insulation}}} = 0, \end{cases}$$
(9)

式中,第一个边界条件代表外露介质与等离子体的 相互作用,电流从等离子体流向*S*₁;第二个边界条 件涵盖了航天器结构体充电过程以及结构体与外 露介质充电的相互作用;第三个边界条件泛指介质 结构中存在的绝缘边界条件,图2中介质背面只是 局部与结构体接触,而且背面不受空间等离子体的 影响,故需要设置为绝缘边界.这个新模型((8)和 (9)式)同样满足电荷守恒定律,但边界条件上又不 同于深层充电模型.实际上,它包含了外露介质的 表面充电和深层充电两种过程.通过改变控制参 数,该模型可单独作为表面充电模型或深层充电模型.

3 模型的求解

3.1 表面入射电流的计算

(2) 式中各项电流密度的计算如下.

假设空间等离子体满足麦克斯韦速率分布,以 温度为T_e的电子为例,其速率分布函数满足

$$f(E) = n_{\rm e} \left(\frac{m_{\rm e}}{2\pi k T_{\rm e}}\right)^{3/2} \exp\left(-\frac{E}{k T_{\rm e}}\right),$$
$$E = \frac{1}{2}m_{\rm e}v_{\rm e}^2, \tag{10}$$

式中 $n_{\rm e}$, $T_{\rm e}$, $m_{\rm e}$, $v_{\rm e}$, E分别是电子的密度、温度、质量、速率和能量; k为玻尔兹曼常数. 将(10)式中的符号下标'e'换成'i'就得到离子速率分布函数.

当表面电位 $U \leq 0$ 时,只有能量 $E \geq -eU$ 的部 分电子可以到达介质表面,也就是说到达表面能量 为 $E \geq 0$ 的电子对应于初始能量为E - eU,此处 e > 0是单位电子电量的绝对值 (1.6 × 10⁻¹⁹ C).积 分得到

$$j_{\rm e}(U) = -e \frac{2\pi}{m_{\rm e}^2} \int_0^\infty Ef(E - eU) dE$$
$$= j_{\rm e0} \exp\left(\frac{eU}{kT_{\rm e}}\right), \tag{11}$$

式中 $j_{e0} = -en_e \sqrt{kT_e/2\pi m_e}$ 是表面电位U = 0时 对应的入射电子电流密度.

利用相同方法,二次电子发射电流密度为

$$j_{\rm se}(U) = e \frac{2\pi}{m_{\rm e}^2} \int_0^\infty Y_{\rm se}(E) Ef(E) dE \times \exp\left(\frac{eU}{kT_{\rm e}}\right), \qquad (12)$$

式中Y_{se}为能量为E的入射电子对应的二次电子发 射系数.用背散射电子发射系数Y_{be}替代Y_{se}可得 到背散射电子电流密度*j*_{be}.对于离子电流密度,负 电位对离子存在吸引作用,根据轨道限制模型^[11], 入射离子电流密度为

$$j_{\rm i}(U) = j_{\rm i0} \left(1 - \frac{eU}{kT_{\rm i}} \right),$$
 (13)

式中, $j_{i0} = -en_i\sqrt{kT_i/2\pi m_i}$ 是表面电位U=0时 对应的入射离子电流密度; n_i , T_i , m_i 分别是电子的密度、温度和质量.由于库仑吸引作用,能量为E 的离子到达介质表面,对应的能量增大到*E* – *eU* (注意*U* < 0),因此,离子的二次电子电流密度为

$$j_{\rm si}(U) = e \frac{2\pi}{m_{\rm i}^2} \int_0^\infty Y_{\rm si}(E - eU) Ef(E) dE \\ \times \left(1 - \frac{eU}{kT_{\rm i}}\right), \tag{14}$$

式中Y_{si}为能量为E的入射离子对应的二次电子发射系数.

当表面电位*U* > 0时,电子被吸引,离子被排 斥,对应的电流密度分别为:

$$j_{e}(U) = j_{e0} \exp\left(1 + \frac{eU}{kT_{e}}\right),$$

$$j_{i}(U) = j_{i0} \exp\left(-\frac{eU}{kT_{i}}\right),$$

$$j_{se}(U) = e\frac{2\pi}{m_{e}^{2}} \int_{0}^{\infty} Y_{se}(E + eU)Ef(E)dE$$

$$\times \left(1 + \frac{eU}{kT_{e}}\right) \exp\left(-\frac{eU}{T_{se}}\right),$$

$$j_{be}(U) = e\frac{2\pi}{m_{e}^{2}} \int_{0}^{\infty} Y_{be}(E + eU)Ef(E)dE$$

$$\times \left(1 + \frac{eU}{kT_{e}}\right),$$

$$j_{si}(U) = e\frac{2\pi}{m_{i}^{2}} \int_{0}^{\infty} Y_{si}(E)Ef(E)dE$$

$$\times \left(-\frac{eU}{kT_{i}}\right) \exp\left(-\frac{eU}{T_{si}}\right).$$
(15)

考虑到二次电子能量比较低, 当表面正电位超 过一定阈值后, 会阻碍二次电子发射, 也就是 j_{se} , j_{si} 最后一项中的二次电子温度分别为 $T_{se} = 2 \text{ eV}$ 和 $T_{si} = 5 \text{ eV}^{[21]}$. 以上各式中出现的二次电子发射 系数包括 Y_{se} , Y_{be} 和 Y_{si} . 对应光照导致的二次电子 发射过程, 一般针对特定材料来直接约定光电子电 流密度 j_{pe} . 考虑到航天器严重充放电事件基本都 是发生在阴影环境下, 本文侧重分析阴影环境下的 充电过程, 并不考虑 j_{pe} .

3.2 SICCE的一维稳态解

电导率主要受电场强度、环境温度和辐射剂量 率的影响,因为这三个参数是依赖于空间位置,因此,电导率表示为σ(x).对于特定的空间环境,假 定温度和辐射剂量率不受充电结果的影响和改变, 因此,实际的耦合计算主要是在电导率和电场强度 之间.这个问题可以利用迭代算法解决. 在一维情况下,介质板背面电位*U*(0)等于航 天器结构电位. 稳态解是充电平衡解,此时 SICCE 模型中关于时间*t* 的偏导数等于0,得到一维稳态 模型为

$$\begin{cases} \sigma(x)\frac{\partial^2 U}{\partial x^2} + \sigma'(x)\frac{\partial U}{\partial x} = -Q_j, \\ \frac{\mathrm{d}U}{\mathrm{d}x}|_{x=0} = -j_1(U(0))/\sigma(0), \\ c_r\frac{\mathrm{d}U}{\mathrm{d}x}|_{x=d} = j_2(U(d))/\sigma(d), \end{cases}$$
(16)

参照典型的常微分方程解法可以得到该模型的惟 一解. 首先对控制方程一次积分得到

$$F(x) = \frac{\partial U}{\partial x} = \exp\left(\int_0^x p(x) dx\right)$$
$$\times \left[\int_0^x q(x) \exp\left(-\int_0^x p(x) dx\right) dx + c_1\right], (17)$$
F.E.#

于是有

$$U = \int_0^x F(s) \mathrm{d}s + c_0, \qquad (18)$$

式中, $p(x) = -\sigma'(x)/\sigma(x)$, $q(x) = -Q_j(x)/\sigma(x)$; c_0, c_1 为待定系数. 利用边界条件得到

$$\begin{cases} c_1 + j_1(c_0)/\sigma(0) = 0, \\ c_r F(d) - j_2(U(d))/\sigma(d) = 0, \end{cases}$$
(19)

F(d), U(d) 都是关于 c_1 , c_2 的函数; 由(19)式可 得 c_0 , c_1 , 从而得到模型的解U(x), 继而通过 $E = -\nabla U$ 得到电场强度.只要(19)式的解是惟 一存在的, 那么一维稳态模型(16)的解便是惟一 的.由于新模型的边界条件考虑了表面入射电流, 从而使其有别于深层带电模型.

Fig. 3. Flowchart for the iterative algorithm.

上面提到的迭代算法流程如图 3 所示.图示参数是迭代求解的关键参数,对于其余参量如介质厚度和介电常数等在迭代算法求解过程中是不变的.该方法中,起始状态令电场强度 E = 0,得到固定的电导率分布 $\sigma(x)$,根据模型求解得到对应的电场强度,利用新得到的电场强度更新电导率,并再次求解直到最终达到收敛.图 3 中终止条件判据不一定是严格相等,而是设置为前后两次迭代计算对应的电场强度的相对误差(2 范数意义上) < 0.001.

4 计算结果与分析

4.1 满足Flumic3的连续电子能谱辐照下 外露介质电荷输运模拟结果

电荷输运模拟是外露介质充电仿真的关键 环节.由于不存在任何屏蔽,取能谱范围0.03— 10 MeV,考虑航天器聚酰亚胺材料,厚度为3 mm, 高能电子从单面以'cos'方式入射平板介质,电子通 量为 $f_e = 2.7593 \times 10^{11} \text{ s}^{-1} \cdot \text{m}^{-2} \cdot \text{sr}^{-1}$,得到电荷沉 积率 Q_i 和辐射剂量率如图4 所示.

图 4 Flumic 3 高能电子辐射下聚酰亚胺外露介质电荷 输运结果 (a) 电荷沉积率; (b) 辐射剂量率

Fig. 4. Charge transportation results in polyimide under the electrons radiation meeting Flumic 3:(a) Charge deposition rate; (b) radiation dose rate.

与单能电子入射会在介质内一定深度出现Q_j 和辐射剂量率的峰值不同,连续谱电子入射无屏蔽 材料得到Q_j和辐射剂量率随深度增加近似呈指数 衰减.这是因为连续能谱入射情况实际上是多个 单能电子入射的叠加,又因为此处的入射电子通量 随能量增大呈指数减小,所以各个单能电子入射对 应的电荷沉积率和辐射剂量率峰值迅速减小,又因 为电子入射深度与电子能量成正比,所以就得到 图4所示的变化趋势.

4.2 表面充电电流的计算与对比验证

要准确评估航天器充电结果,必须采用尽可能准确的二次电子发射公式^[22],尤其是 Y_{se} 对充电结果有重要影响.本文采用与Nascap-2k (NASA Charging Analyzer Program, NASCAP) 和SPIS (Spacecraft Plasma Internation Software, SPIS)权威软件相同的 Y_{se} ,即Katz型二次电子发射公式;而 Y_{be} 和 Y_{si} 的表达式由欧空局ESA提供的表面充电在线软件Spenvis的帮助文件得到.

考虑厚度为3 mm的聚酰亚胺平板,其内部充 电的电荷输运模拟结果与图4一致.对照SICCE 模型,即图2,上表面对应模型中的S₁边界,与等 离子体直接相互作用;下表面为S₂边界,与航天器 结构体保持欧姆接触;结构体材料为铝.表面充电 电流密度j₁和j₂中二次电子电流密度的计算参数 分别取自聚酰亚胺和铝,见表1.其中r₁,n₁,r₂, n₂为Katz二次电子系数中的电子入射深度参数; Y_{max}和E_{maxe}分别为高能电子垂直入射时最大二 次电子发射系数和对应的入射电子能量;Z为材料 的原子序数或等价原子序列,用来决定背散射电子 系数;Y_{1keV}代表1 keV能量的质子垂直入射材料 表面产生的二次电子发射系数;E_{maxi}为离子最大 二次电子发射系数对应的入射离子能量.

铝和聚酰亚胺的二次电子发射系数如图5所示, 〈Yield〉是关于等离子体温度的平均发射系数, 定义为二次电子电流与初次入射电子电流之比,表 达式为

$$\langle Yield \rangle = \frac{\int_0^\infty E_{\rm e} f(E_{\rm e}) (Y_{\rm se}(E_{\rm e}) + Y_{\rm be}(E_{\rm e})) \,\mathrm{d}Y_{\rm se} \,\mathrm{d}E_{\rm e}}{\int_0^\infty E_{\rm e} f(E_{\rm e}) \,\mathrm{d}E_{\rm e}}$$
(20)

将 〈*Yield*〉 = 1 对应的较大电子温度称为充电 阈值温度, 可见铝的阈值温度较聚酰亚胺更低, 这 将导致铝的平衡电位更负.

Tuble 1. I dramowie of becondary and Sachedatorica electronic.										
参数	$r_1/10^{-10} {\rm m}$	n_1	$r_2/10^{-10} {\rm m}$	n_2	Y_{\max}	$E_{\rm maxe}/{\rm keV}$	Z	$Y_{1 \rm \ keV}$	$E_{\rm maxi}/{\rm keV}$	
铝	154	0.80	220	1.76	0.97	0.30	13	0.244	230	
聚酰亚胺	70	0.60	300	1.75	1.90	0.20	5	0.455	140	
环氧树脂	75	0.50	150	1.70	1.60	0.35	10	0.455	140	
聚四氟乙烯	45	0.40	218	1.77	3.00	0.30	7	0.455	140	
Black kapton	80	0.60	200	1.77	2.50	0.30	5	0.455	140	

图 5 铝和聚酰亚胺的平均二次电子发射系数

Fig. 5. Averaged secondary electron yields of aluminum and polyimide.

表 2 ECSS-E-ST-10-04C^[25]的恶劣表面充电环境参数 Table 2. Parameters of severe charging environment according to ECSS-E-ST-10-04C.

参数	能量/eV	浓度 $/10^6 \text{ m}^{-3}$
电子1	400	0.2
电子2	27500	1.2
质子1	200	0.6
质子2	28000	1.3

表 3 ECSS 环境各向同性入射情况下聚酰亚胺表面电流 密度

Table 3. Incident electric current density on polyimide for the isotropic incidence case.

由海密度 n A am−2	U = 0 V		U = -10 kV	
电弧击反 IIA·CIII	本文	Spenvis	本文	Spenvis
$j_{ m e}$	-5442	-5450	-3708	-3708
$j_{ m se}$	911	913	486	484
$j_{ m be}$	916	919	622	616
$j_{ m i}$	141	142	455	458
$j_{ m si}$	615	605	1627	1580
j_1 (总电流)	-2859	-2871	-518	-572

与Spenvis表面充电计算软件做对比,均考虑 GEO (Geosynchronous Earth Orbit, GEO)恶劣表 面充电环境(等离子体参数见表2),其中'1'和'2' 分别代表两种组分的等离子体.得到不同电位情 况下对应的充电电流密度结果,见表3.通过与 Spenvis表面充电计算结果对比,取得的结果一致 性表明上述电流密度计算是正确的.注意到表明电 位-10 kV情况下的总充电电流仍为负值,所以平 衡态趋于更负电位.

4.3 外露介质充电计算结果的对比验证

对于外露介质充电,目前难以实现等离子体与 高能电子同时存在的充电环境,因此通过与表面和 深层充电进行对比来表明外露介质充电建模与仿 真计算的正确性,与此同时体现出新模型的必要性 与仿真优势.

按照上述一维稳态求解方法,相关参数取值 c_r = 0.005代表 |S₃|=200|S₂].首先利用电荷守恒 定律对计算结果进行验证.由(16)式中第一式积 分和左边界条件得

$$j_{1}(U(0)) + j_{e}(x) = \sigma(x)E(x),$$

$$j_{e}(x) = \int_{0}^{x} Q_{j}(x) dx.$$
 (21)

定义计算误差为

$$err(\Delta x) = \frac{|j_1(U(0)) + j_e - \sigma E|}{|\sigma E|},$$
 (22)

式中, 算符 |·| 代表向量 2-范数. 利用 (22) 式检验计 算结果, 如图 6 和图 7 所示. 图 6 曲线的一致性表 明计算结果是正确的. 图 7 表明计算结果的精度会 随着空间步长的缩小而变好, 当 $\Delta x < 3 \times 10^{-4}$ mm 时, 相对误差 <0.001. 部分网格越密, 求解过程中 涉及的数值积分越精确.

将所提模型SICCE的计算结果分别与表面充 电和介质深层充电的结果进行对比分析,结果列于 表4. SICCE和标志SC分别代表外露介质充电模型和表面充电情况,另外标志ICgnd是将外露介质边界设置为接地时的深层充电情况,而标志ICfb是根据表面充电结果预先设定深层充电边界电位进行的仿真.

四类仿真结果的对比如图8所示. 根据(20) 式,分别计算聚酰亚胺和铝在ECSS恶劣表面充电 环境下的平均二次电子发射系数都小于1 (分别 等于0.34和0.40),所以二者表面电位是负电位,分 别为-12.1 kV和-14.8 kV;在两侧端点处,SICCE 和表面充电的计算结果是十分接近的. 分析原因: 其一,内部沉积电荷对表面电位只产生微弱影响; 内部充电电流 je 比较小,本例中为10⁻⁸ A/m² 量 级,而表面电位几百伏特的波动就会引起而表面电 流密度 j_1 或 j_2 在相同量级的变化 ($U_0 = -12023$ V 和 -12106 V分别对应于 $j_1 = 3.6 \times 10^{-9} \text{ A/m}^2$ 和 2.5×10⁻⁸ A/m²); 其二, 介质电导率在10⁻¹⁵ S/m 量级,导致3mm厚度的介质板中产生的传导电流 密度很低,从而前后表面电位互不影响.与IC_{end} 结果对比,最大电位相差悬殊,对于外露介质充电 评估, 直接设定接地边界条件是不恰当的; 与IC_{fb} 结果对比,二者结果十分接近,也就是说在该算例 所考虑的充电环境下,可以根据表面充电结果预先 设定外露介质充电的边界条件,但是ICfb 实际上没 有考虑表面充电与内部沉积电荷的相互作用,这也 是与SICCE的计算结果出现偏差的原因.因此对

于其他充电环境,不能保证 IC_{fb} 依然得到可靠的充电结果.

图 6 利用电荷守恒定律验证结果

图7 计算精度随空间步长的缩小而变好

Fig. 7. Computation precisions turns better as the space step is reduced.

表 4 四类仿真情况对比 Table 4. Comparison of four simulation cases.

图 8 新模型和表面充电与深层充电结果对比 (a) 电位; (b) 电场强度

Fig. 8. Comparison between results from new model and surface charging and internal charging. (a) Electric potential; (b) electric field intensity.

图 9 电荷沉积率 Q_i 对充电结果的影响 (a) 电位; (b) 电场强度

Fig. 9. Charge deposition rate Q_j dependence of the charging results: (a) Electric potential; (b) electric field intensity.

对比电场强度,如图 8 (b) 所示, SICCE 得到的 内部电位和电场强度分布与另外两种计算模型存 在显著不同. SICCE 得到的场强峰值比深层充电 IC_{gnd} 高一个数量级,达到 MV/m 量级,比表面充 电 SC 的结果高一倍.分析其原因,介质两端将近 3 kV 的电位差导致其场强峰值远远高于两端接地 的深层充电结果;而 SICCE 与表面充电模型不同 之处在于进一步考虑了介质内部电荷沉积 Q_j 和辐 射诱导电导率.如果令 $Q_j = 0$,对比计算结果如 图 9 所示,可见 Q_j 造成的影响不大,表明辐射诱导 电导率是造成场强非均匀分布的主要原因.不考虑 Q_j 造成电场强度增大的原因见图 10 的相关分析.

图 10 介质中电流密度随深度的变化曲线式 ((21) 式) Fig. 10. Schema for current variation of Eq.(21) versus depth.

为理清外露介质充电过程, 给出充电平衡状态 下的介质内部传导电流密度 $\sigma(x)E(x)$ 的分布, 结 果如图 10 所示.根据 (21)式所代表的电流连续性 方程, 有 $\sigma(x)E(x) = j_1(U(0)) + j_e(x)$,其中表面入 射电流密度 $j_1(U(0)) > 0$,介质内部电荷沉积电流 密度 $j_e(x) < 0$,所以出现图中随深度下降的变化趋 势.根据边界条件((16)式的后两式),左边界(介质 正面)有 $\sigma(0)E(0) = j_1(U(0))$,右边界(介质背面) 电流密度 $j_{end} = -j_2(U(d))/c_r$.依据 j_{end} 是否大于 0,将充电结果分成两种情况:第一种情况 $j_{end} \ge 0$, 如图 10实线所示,表明表面入射电流密度 j_1 被内 部沉积电荷抵消了一部分,得到的电场强度大于 0,上述算例属于这种情况.图9(b)不考虑 Q_j 得到 场强峰值增大的结果,其原因正是没有 Q_j 抵消表 面入射电流导致 j_{end} 增大,从而在背面电导率不变 情况下使得电场强度增大;第二种情况 $j_{end} < 0$ 代 表内部电荷沉积率 Q_j 的贡献完全超越表面入射 电流密度 j_1 ,从而电场强度方向发生改变,对应于 图10中虚线.

外露介质内部沉积电荷是通过介质表面或 者背面泄放的,新模型可以很好地刻画该过程. 图 10 实线对应内部电荷通过介质正面泄放,而虚 线则代表两侧共同泄放的情况.电场强度的变化趋 势是由总电流密度和电导率共同决定的.介质中温 度分布的存在会进一步影响电导率分布,相应的场 强峰值也会随之改变.

5 结 论

考虑到航天器外露介质面临的特殊空间环境, 本文提出了一种新的外露介质充电模型,该模型包 含了表面充电和深层充电两种过程.新模型的构 建以电荷守恒定律为基础,综合考虑了表面入射电 流、深层沉积电流和传导电流,实现了表面充电和 深层充电的耦合仿真. 当深层沉积电荷为0时,该 模型可退化为表面充电模型.

给出了SICCE模型的一维稳态解法,得到了 在恶劣等离子体和高能电子辐射环境下航天器外 露介质平板充电的稳态解,利用电荷守恒定律对计 算结果做出了自洽验证.将稳态解与单纯的表面充 电或深层充电结果进行对比发现:如果忽略等离子 体与外露介质表面的相互作用,有可能降低充电水 平,这表明所提SICCE的必要性和现实意义. 本文新模型的电流计算仅限于充电平衡条件 下的一维情况,下一步研究工作是给出模型的2维 或3维解法,并考虑局部接地条件.

参考文献

- Mazur J E, Fennell J F, Roeder J L, O'Brien P T, Guild T B, Likar J J 2012 *IEEE Trans. Plasma Sci.* 40 237
- [2] Roeder J L, Fennell J F 2009 IEEE Trans. Plasma Sci. 37 281
- [3] Lai S T, Tautz M 2006 J. Geophys. Res. 111 338
- [4] Green N W, Dennison J R 2008 IEEE Trans. Plasma Sci. 36 2482
- [5] Han J, Huang J, Liu Z, Wang S 2005 J. Spacecraft Rockets 42 1061
- [6] Garrett H B, Whittlesey A C 2000 IEEE Trans. Plasma Sci. 28 2017
- [7] Lai S T 2012 IEEE Trans. Plasma Sci. 40 402
- [8] Huang J G, Chen D 2004 Chin. J. Geophys. 47 442 (in Chinese) [黄建国, 陈东 2004 地球物理学报 47 442]
- [9] Li S T, Li G C, Min D M, Zhao N 2013 Acta Phys. Sin.
 62 059401 (in Chinese) [李盛涛, 李国倡, 闵道敏, 赵妮 2013 物理学报 62 059401]
- [10] Cao H F, Liu S H, Sun Y W, Yuan Q Y 2013 Acta Phys. Sin. 62 119401 (in Chinese) [曹鹤飞, 刘尚合, 孙永卫, 原 青云 2013 物理学报 62 119401]
- [11] Yuan Q Y, Sun Y W, Cai H F, Liu C L 2013 High Voltage Engineering 39 2392 (in Chinese) [原青云, 孙永卫, 曹鹤飞, 刘存礼 2013 高电压技术 39 2392]

- [12] Lai S T 2012 Fundamentals of Spacecraft Charging: Spacecraft Interactions with Space Plasmas (Princeton: Princeton University Press)
- [13] Wang S, Wu Z C, Tang X J, Sun Y W, Yi Z 2016 Acta Phys. Sin. 65 025201 (in Chinese) [王松, 武占成, 唐小金, 孙永卫, 易忠 2016 物理学报 65 025201]
- [14] Wang S, Tang X J, Wu Z C, Yi Z 2016 Chin. J. Space Sci. 36 202 (in Chinese) [王松, 唐小金, 武占成, 易忠 2016 空间科学学报 36 202]
- [15] Wang S, Tang X J, Sun Y W, Wu Z C, Yi Z 2016 High Voltage Engineering 42 1429 (in Chinese) [王松, 唐小金, 孙永卫, 武占成, 易忠 2016 高电压技术 42 1429]
- [16] Wang S, Tang X J, Wu Z C, Yi Z 2015 *IEEE Trans. Plasma Sci.* **43** 4169
- [17] Wang S, Wu Z C, Tang X J, Yi Z 2015 Spacecraft Enviroment Engineering **32** 268 (in Chinese) [王松, 武占成, 唐小金, 易忠 2015 航天器环境工程 **32** 268]
- [18] Garrett H B 1981 Rev. Geophys. Space Phys. 9 577
- [19] Labonte K 1982 IEEE Trans. Nucl. Sci. 29 1650
- [20] Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961
- [21] Help: EQUIPOT spacecraft surface charging code [online] Available: https://www.spenvis.oma.be/, accessed Mar. 1, 2010 [2018-3-26]
- [22] Katz I, Mandell M, Jongeward G 1986 J. Geophys. Research 91 739
- [23] Thiébault B, Jeanty-Ruard B, Souquet P 2015 IEEE Trans. Plasma Sci. 43 2782
- [24] Jean-Charles M V, Theillaumas B, Sévoz M 2015 IEEE Trans. Plasma Sci. 43 2808
- [25] ECSS-E-ST-10-04C-2008 Space Engineering- Space Environment 2008 p46

A new charging model for exposed dielectric of spacecraft^{*}

Yuan Qing-Yun^{1)†} Wang Song²⁾

1) (National Key Laboratory of Electromagnetic Environment Effect, Army Engineering University of PLA,

Shijiazhuang 050003, China)

2) (Unit 63618, Kuerle 841000, China)

(Received 26 March 2018; revised manuscript received 18 July 2018)

Abstract

In order to consider comprehensively the effects of high-energy electron radiation and space plasma on the exposed dielectrics outside a spacecraft, in this paper, a model named surface and internal coupling charging model for the exposed dielectric of spacecraft is proposed, and its numerical solution is obtained. It is based on the deep dielectric charging model, with considering the interaction between the exposed dielectric surface and the ambient plasma by adding an incident charging current into the boundary in the proposed model, and the potential of infinite plasma is regarded as the referential potential (zero potential). The determinate solution of the model is analyzed and a numerical solution in one-dimensional case is provided by using an iterative algorithm to overcome the coupling between electric field and conductivity. The solution includes the potential of spacecraft body, the distribution of dielectric potential, and the electric field. Moreover, the new model is compared with surface charging model and internal charging model. The results show that the new model has an advatage of depicting the electric field exactly with respect to the surface charging model; if the internal deposition current is equal to zero, the new model degenerates into the one depicting the surface charging. It considers the effect of surface potential on charging results compared with the internal charging model. The three kinds of currents, namely the surface incident current, the internal deposition current and the leakage current, are considered comprehensively in the new model. Among them, the leakage current is the most complicated, which is determined by the potential and the dielectric conductivity affected by the electric field, radiation dose rate, and temperature. Using this new model, the surface and internal coupling charging simulation of the exposed dielectric can be performed. Therefore, the new model can provide a more comprehensive assessment for the charging of exposed dielectric of spacecraft.

Keywords: charging model, exposed dielectric, surface charging, deep dielectric charging PACS: 52.25.Mq, 94.05.Hk, 94.05.Jq DOI: 10.7498/aps.67.20180532

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 51577190), Equipment Preresearch Key Foundation, China (Grant No. 61402090201), and the Key Laboratory of Electromagnetic Environment Effect Foundation of China (Grant No. 614220501020117).

[†] Corresponding author. E-mail: qingyuny@163.com