物理学报 Acta Physica Sinica

Chinese Physical Society

Institute of Physics, CAS

一级磁结构相变材料 Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}和 Ni₅₀Mn₃₄Co₂Sn₁₄的磁热效应与磁场的线性相关性 张虎 邢成芬 龙克文 肖亚宁 陶坤 王利晨 龙毅 Linear dependence of magnetocaloric effect on magnetic field in Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} and

 $Ni_{50}Mn_{34}Co_2Sn_{14}$ with first-order magnetostructural transformation Zhang Hu Xing Cheng-Fen Long Ke-Wen Xiao Ya-Ning Tao Kun Wang Li-Chen Long Yi

引用信息 Citation: Acta Physica Sinica, 67, 207501 (2018) DOI: 10.7498/aps.67.20180927 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20180927 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I20

您可能感兴趣的其他文章 Articles you may be interested in

间隙原子H,B,C对LaFe_{11.5}Al_{1.5}化合物磁性和磁热效应的影响

Influences of interstitial atoms H, B and C on magnetic properties and magnetocaloric effect in LaFe_{11.5}Al_{1.5} compound 物理学报.2018, 67(7): 077501 http://dx.doi.org/10.7498/aps.67.20172250

磁热效应材料的研究进展

Research progress in magnetocaloric effect materials 物理学报.2016, 65(21): 217502 http://dx.doi.org/10.7498/aps.65.217502

Dy₃Al₅O₁₂ 磁热性质研究

Study on the magnetic and magnetocaloric effects of Dy₃Al₅O₁₂ 物理学报.2015, 64(17): 177502 http://dx.doi.org/10.7498/aps.64.177502

一级相变磁制冷材料的基础问题探究

Basic problem in the first-order phase transition magnetic refrigeration material 物理学报.2014, 63(14): 147502 http://dx.doi.org/10.7498/aps.63.147502

$Mn_{42}Al_{50-x}Fe_{8+x}$ 合金的磁性和磁热效应

Magnetic properties and magnetocaloric effect in $Mn_{42}Al_{50-x}Fe_{8+x}$ alloys 物理学报.2013, 62(16): 167501 http://dx.doi.org/10.7498/aps.62.167501

一级磁结构相变材料Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}和 Ni₅₀Mn₃₄Co₂Sn₁₄的磁热效应与磁场的 线性相关性^{*}

张虎1)† 邢成芬1) 龙克文2)3) 肖亚宁1) 陶坤1) 王利晨4) 龙毅1)

(北京科技大学材料科学与工程学院,北京 100083)
 2)(佛山市程显科技有限公司,佛山 528513)
 3)(佛山市川东磁电股份有限公司,佛山 528513)
 4)(首都师范大学物理系,北京 100048)
 (2018年5月9日收到;2018年8月9日收到修改稿)

磁熵变 ($\Delta S_{\rm M}$) 与磁场 ($\mu_0 H$) 的相关性已在很多二级相变材料中被研究并报道, 但一级相变材料的磁热 效应与磁场相关性还少有报道.本文在具有一级磁结构相变的 Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} 材料中研究发现 $\Delta S_{\rm M}$ 与 $\mu_0 H$ 存在线性相关性,并通过麦克斯韦关系式的数值分析详细讨论了这一线性相关性的来源.同时, 进一 步发现在低磁场时, $\Delta S_{\rm M}$ 近似正比于 $\mu_0 H$ 的平方.该线性相关性同样在一级磁结构相变 Ni₅₀Mn₃₄Co₂Sn₁₄ 材料中得到了印证.但由于一级磁弹相变 LaFe_{11.7}Si_{1.3} 材料相变温度具有更强的磁场依赖性,不具有 $\Delta S_{\rm M}$ 的线性相关性,因此,本研究表明,当磁结构相变材料的相变温度具有弱磁场依赖性时, $\Delta S_{\rm M}$ 与 $\mu_0 H$ 具有线 性相关性.进而,在磁场未达到相变饱和磁场以下,利用 $\Delta S_{\rm M}$ 与 $\mu_0 H$ 的线性相关性可以有效推测更高磁场下 的 $\Delta S_{\rm M}$.

关键词:磁热效应,磁熵变,磁结构相变 PACS: 75.30.Sg, 81.30.Kf, 75.30.Kz

1引言

与传统的气体压缩制冷技术相比,基于磁热效应 (magnetocaloric effect, MCE)的磁制冷技术具有环境友好和节能高效等优点,因此受到广泛的关注 [1-4].磁热效应可以由等温磁熵变 ($\Delta S_{\rm M}$)和绝热温变 ($\Delta T_{\rm ad}$)两种参数来表征 [5].通常,磁制冷材料可以分为一级磁相变材料和二级磁相变材料 [6]. 许多一级磁相变材料表现出大的磁热效应 [7-11],但其磁热效应的工作温区往往很窄,且常伴有大的磁滞和热滞,这会大幅降低材料的制冷效率 [12,13].

DOI: 10.7498/aps.67.20180927

相反,二级磁相变材料虽然磁热效应相对低,但其 工作温区大且没有磁滞和热滞,使其在宽温区内具 有大的磁制冷能力^[14,15].因此,两种磁相变材料各 有优缺点,近年来都被进行了广泛的研究^[1,16].

无论从基础研究还是实际应用的角度, 磁热效 应与磁场的相关性都具有非常重要的意义, 因为 它不仅能够指导我们更好地理解和优化磁热效应, 还能够帮助我们估测更高磁场下的磁热效应^[6,17]. 利用平均场模型, Oesterreicher 和 Parker^[18] 推导 出二级磁相变材料居里温度 $T_{\rm C}$ 附近 $\Delta S_{\rm M}$ 与磁场 的相关性可以表达为 $|\Delta S_{\rm M}^{\rm pk}| \propto H^n$, 其中n = 2/3. 但后来发现, 一些二级磁相变材料中n值明显偏离

†通信作者. E-mail: zhanghu@ustb.edu.cn

© 2018 中国物理学会 Chinese Physical Society

http://wulixb.iphy.ac.cn

^{*} 国家自然科学基金(批准号: 51671022, 51701130)、国家重点研发计划(批准号: 2017YFB0702704)、北京市自然科学基金(批准号: 2162022)和佛山市科技计划(批准号: 2015IT100044)资助的课题.

了 $2/3^{[19-21]}$. Franco 等 $^{[19,22]}$ 进一步证明二级磁相 变材料中 $n = 1 + (1/\delta)[1 - (1/\beta)]$,其中 $\delta \pi \beta$ 是 临界指数.并且,他们提出了一个唯象的"通用曲 线",可以用来有效地预测磁热效应和判断相变性 质 $^{[15,23]}$.但另一方面,由于一级磁相变的复杂性和 多样性,针对一级磁相变材料磁热效应和磁场的相 关性研究还相对较少 $^{[17,24]}$.

MM'X (M, M'为过渡族元素, X 为主族元素) 合金是一种新型磁制冷材料, 因发生顺磁 Ni₂In 型 六角相到铁磁 TiNiSi 型正交相的一级磁结构相变, 表现出大磁热效应, 故受到越来越多的关注. 近期, 研究发现 MM'X 合金存在 $\Delta S_{\rm M}$ 和磁场 $\mu_0 H$ 的线 性相关性 ^[25,26], 然而这一线性相关性的内在原因 尚不清楚.本工作以具有一级磁结构相变的 MM'X 合金为基础, 详细研究了一级磁结构相变材料的 $\Delta S_{\rm M}$ 和 $\mu_0 H$ 的相关性, 分析了产生线性相关性的 内在机制, 并对比了该线性相关性对其他一级磁结 构/磁弹相变材料的适用性.

2 实 验

将纯度大于99.9 wt.%的组成元素按 Mn0.6 Fe0.4 NiSi_{0.5}Ge_{0.5}, Ni₅₀Mn₃₄Co₂Sn₁₄, LaFe_{11.7}Si_{1.3}的化 学成分进行配比,在氩气保护气氛下进行电弧熔炼. 将熔炼好的铸锭密封在充有高纯氩气的石英管中 进行退火处理,其中Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}铸锭在 1123 K退火5 d并炉冷至室温, Ni₅₀Mn₃₄Co₂Sn₁₄ 在1173 K退火4 d并冰水淬火, LaFe11 7Si13在 1373 K 退火 40 d 并冰水淬火. 室温 X 射线衍射 (X-ray diffraction, XRD) 实验确认, 除LaFe_{11.7}Si_{1.3}存在 少量 α-Fe 第二相外 (约 4.4 wt.%), 所有样品均形成 了单相. 采用 MPMS SQUID VSM 磁性测量设备 对材料的热磁曲线和等温磁化曲线进行了测试,为 了避免出现"伪巨磁熵变 $\Delta S_{\rm M}$ "^[27,28], $M-\mu_0H$ 测 量采用 loop 模式, 即每条 $M-\mu_0H$ 曲线测试前, 先 将样品加热至完全顺磁态,然后降温至目标测试温 度^[29,30].此外, M-µ0H曲线还进行了退磁校正, 即 $H_{\rm int} = H_{\rm ext} - N_{\rm d}M.$

3 结果与讨论

图 1 (a) 所示为 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 在不同 磁场变化下的等温磁熵变 $-\Delta S_M$ 随温度变化的关 系. 由图 1 (a) 可以看出, $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 表 现出巨磁热效应, 5 T磁场下在315 K的最大磁熵 变 $-\Delta S_{\rm M}$ 为38.0 J/(kg·K). 这一巨磁热效应归因 于从顺磁 Ni₂In 型六角相到铁磁 TiNiSi 型正交相 的一级磁结构相变^[25].为进一步研究 $-\Delta S_{\rm M}$ 的磁 场相关性,图1(b)绘出了 $-\Delta S_{\rm M}$ 峰值与磁场 $\mu_0 H$ 的依赖关系.可以看出当 $\mu_0 H > 1$ T时, $-\Delta S_{\rm M}$ 与 磁场存在线性依赖关系:

$$-\Delta S_{\rm M} = -\Delta S_0 + \kappa \mu_0 H, \tag{1}$$

其中 $-\Delta S_0$ 为零磁场时的截距, κ 是描述 $-\Delta S_M$ 对 磁场依赖性的斜率.线性拟合的校正 R 方因子为 0.99834, 表明 ΔS_M - $\mu_0 H$ 曲线具有很好的线性依赖 关系. 但同时发现, 在低场下出现了一定的偏差 (图1(b) 插图).下面将通过数值分析详细讨论高场 下的线性相关性和低场下偏差出现的原因.

图 1 (a) 不同磁场变化下 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 的等温磁熵 变 $-\Delta S_M$ 随温度的变化关系; (b) $-\Delta S_M$ 峰值与磁场 $\mu_0 H$ 的依 赖关系及线性拟合, 插图为低场部分的线性拟合偏差

Fig. 1. (a) Temperature dependence of $-\Delta S_{\rm M}$ for Mn_{0.6} Fe_{0.4}NiSi_{0.5}Ge_{0.5} compound under different magnetic field changes; (b) $-\Delta S_{\rm M}$ value at peak as a function of $\mu_0 H$, and the fitting line to $-\Delta S_{\rm M}$ - $\Delta \mu_0 H$ curve (the inset shows the $-\Delta S_{\rm M}$ - $\Delta \mu_0 H$ curve and the fitting line at low fields).

图 2 (a) 所示为 Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} 的等温 磁化曲线. 在居里温度 $T_{\rm C} = 312$ K附近, 磁化曲 线在低场时随磁场迅速增加并趋于饱和, 然后当 $\mu_0 H > 1$ T时出现大的上升, 表明发生了磁场诱导 的从顺磁 Ni₂In 型六角相到铁磁 TiNiSi 型正交相 的变磁转变. 同时, 大的磁滞说明该相变性质为一 级相变. 根据等温磁化曲线, 可以利用麦克斯韦关 系式计算等温磁熵变 $\Delta S_{\rm M}^{[16,31]}$:

$$\Delta S_{\rm M}(T,H) = \mu_0 \int_0^H (\partial M/\partial T)_{\rm H} \mathrm{d}H. \quad (2)$$

近些年,由于采用麦克斯韦关系式计算一级 磁相变材料的磁熵变常常出现"伪巨磁熵变 $\Delta S_{\rm M}$ ",因此,其是否适用于一级相变磁熵变的计算存在 很多争论^[28,32–34].近期,Amaral等^[35,36]发现麦 克斯韦关系式产生"伪巨磁熵变 $\Delta S_{\rm M}$ "不是一级磁 相变性质造成的,而是由于没有考虑两相共存的 非平衡态以及测试过程对不同磁性的影响.进而, Caron等^[1,29]指出,通过采用loop模式测试等温磁 化曲线能够避免"伪巨磁熵变 $\Delta S_{\rm M}$ "的出现,因此, 麦克斯韦关系式仍适用于一级磁相变.因为等温磁 化曲线是在不连续的温度点下测得,所以麦克斯韦 关系式可以近似为^[12,31]

$$\Delta S_{\rm M} \left(\frac{T_1 + T_2}{2}, H \right)$$

= $\frac{\mu_0}{T_2 - T_1} \left[\int_0^H M(T_2, H) dH - \int_0^H M(T_1, H) dH \right]$
= $\mu_0 \sum_i \frac{M(T_2, H_i) - M(T_1, H_i)}{T_2 - T_1} \Delta H_i,$ (3)

其中 $M(T_1, H_i)$ 和 $M(T_2, H_i)$ 分别为在磁场 H_i 下 温度为 T_1 和 T_2 时的磁化强度.

以
$$T_1$$
和 T_2 分别为314K和316K为例,

$$\frac{M(T_2, H_i) - M(T_1, H_i)}{T_2 - T_1} = \frac{\Delta M}{2},$$

其中 ΔM 为磁场 H_i 下降场磁化曲线 $M_{316 \text{ K}}$ 和 $M_{314 \text{ K}}$ 之间的差值.图2(b)所示为 $\Delta M/2$ 与磁场 的变化关系.根据(3)式,315 K时的磁熵变 ΔS_M 应为 $\Delta M/2-\mu_0 H$ 曲线的面积积分.由图2(b)可 知,低场时由于铁磁相的磁化强度迅速增大导致 $\Delta M/2$ 快速上升,随后在到达一个峰值后 $\Delta M/2$ 开始缓慢下降.以该峰值 $\Delta M_{\text{max}}/2$ 为界可将 ΔS_M 分为两部分,第一部分 ΔS_{M1} 可以近似看为三角形, 特别是在 0.2 T以下斜率接近为常数.因此, ΔS_{M1} 可以近似用如下表达式计算:

$$\Delta S_{\rm M1}(T,H) = \frac{1}{2} \times a \times (\mu_0 H)^2, \qquad (4)$$

图 2 (a) 不同温度下 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 的等温磁化曲 线; (b) 314 K和 316 K之间 $\Delta M/2$ 与磁场 $\mu_0 H$ 的变化关系; (c) 0.2 T 磁场以下磁熵变 $-\Delta S_M$ 峰值与磁场的依赖关系及指 数拟合

Fig. 2. (a) Magnetization isotherms of Mn_{0.6}Fe_{0.4}NiSi_{0.5} Ge_{0.5} compound in loop process; (b) $\Delta M/2$ between 314 K and 316 K as a function of magnetic field $\mu_0 H$; (c) magnetic field dependence of $-\Delta S_{\rm M}$ value at peak and the fitting line at fields below 0.2 T.

其中*a*是该三角形的斜率.由(4)式可以看出,当*a* 是常数时, $|\Delta S_{M1}| \propto H^2$.图2(c)为0.2 T磁场以 下磁熵变 $-\Delta S_M$ 峰值与磁场的依赖关系及指数拟 合.该曲线符合非线性指数拟合条件,磁场 $\mu_0 H$ 的 指数拟合为1.81,接近2,证明了以上数值分析的合 理性.

当磁场大于峰值 $\Delta M_{\text{max}}/2$ 的临界场 $\mu_0 H_{\Delta M_{\text{max}}/2}$ 时, $\Delta S_{\text{M}} = \Delta S_{\text{M1max}} + \Delta S_{\text{M2}}$,其中 ΔS_{M1max} 是 $\Delta M_{max}/2$ 以下的面积,为一个定值; 而 ΔS_{M2} 是 $\mu_0 H_{\Delta M_{max}/2}$ 和最终磁场 $\mu_0 H$ 之间的 积分面积.由图2(b)可见, ΔS_{M2} 可近似看为梯 形,因此,可用如下表达式计算:

$$\Delta S_{M2}(T,H) = \frac{1}{2} \times (\Delta M_{max}/2 + \Delta M/2)$$
$$\times (\mu_0 H - \mu_0 H_{\Delta M_{max}/2})$$
$$= \Delta M_{ave}/2 \times (\mu_0 H - \mu_0 H_{\Delta M_{max}/2})$$
$$= (-\Delta M_{ave}/2 \times \mu_0 H_{\Delta M_{max}/2})$$
$$+ (\Delta M_{ave}/2 \times \mu_0 H), \quad (5)$$

其中 $\Delta M_{\text{ave}}/2 \neq (\Delta M_{\text{max}}/2 + \Delta M/2)$ 的平均值. 根据(5)式,当磁场大于 $\mu_0 H_{\Delta M_{\text{max}}/2}$ 时,总的磁熵 变 ΔS_M 为

$$\Delta S_{\rm M} = \Delta S_{\rm M1\,max} + \Delta S_{\rm M2}$$

= $(\Delta S_{\rm M1\,max} - \Delta M_{\rm ave}/2 \times \mu_0 H_{\Delta M_{\rm max}/2})$
+ $(\Delta M_{\rm ave}/2 \times \mu_0 H).$ (6)

从图 2 (b) 可以看出, 当 $\mu_0 H > 1$ T时 $\Delta M_{\text{ave}}/2$ 近似为恒定值. 通过对比(1) 式和(6) 式, (6) 式中 的第一个括号可看成(1) 式中的 $-\Delta S_0$, (6) 式中 的第二个括号相当于(1) 式中的 $\kappa\mu_0 H$. 因此, 当 $\mu_0 H > 1$ T时, $-\Delta S_M$ 与磁场存在线性相关性.

通过以上数值分析和讨论,阐明了具有一级磁结构相变的 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 的 $\Delta S_{M-}\mu_0H$ 曲线在高场下的线性相关性和低场下偏差出现的原因.进一步,利用类似的数值分析,我们发现除了 ΔS_M 峰值外,其他温度的 ΔS_M 值与磁场

也存在线性相关性,如图3所示.

因此,可以通过线性拟合的方式推测高场下的 $\Delta S_{\rm M}$ 值.例如,通过插图中的线性拟合可以获得 7 T磁场下不同温度的 $\Delta S_{\rm M}$ 值.图3所示为7 T磁 场变化下 ${\rm Mn}_{0.6}{\rm Fe}_{0.4}{\rm NiSi}_{0.5}{\rm Ge}_{0.5}$ 的实验 $\Delta S_{\rm M}$ 及拟 合 $\Delta S_{\rm M}$ 曲线.由图3可见,拟合 $\Delta S_{\rm M}$ 曲线与实验 曲线完全重叠,这一结果证实,可以利用 $\Delta S_{\rm M}$ 值与 磁场的线性相关性来预测更高磁场下的磁熵变值. 需要指出的是,磁熵变来自于磁场诱导的相变,当 磁场达到一定值后,相变完全,则磁熵变达到饱和, 不再随磁场增加,线性相关性将不再存在.因此, 该 $\Delta S_{\rm M}$ 值与磁场的线性相关性只在磁场未达到相 变饱和磁场以下成立.

 $\Delta S_{\rm M}$ 与磁场 $\mu_0 H$ 的线性相关性在其他具有 一级磁结构相变的MM'X合金中也被发现报 道^[25],本文工作进一步验证了该线性相关性在 一级磁结构相变的MM'X合金中具有普适性.为 了进一步验证 $\Delta S_{\rm M}$ 值与磁场的线性相关性是 否也适用于其他一级磁相变体系,我们进一步 研究了Ni₅₀Mn₃₄Co₂Sn₁₄和LaFe_{11.7}Si_{1.3}的 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 的依赖关系(图4).需要指出的是, Ni₅₀Mn₃₄Co₂Sn₁₄经历的是一级马氏体磁结构相 变,而LaFe_{11.7}Si_{1.3}则为一级磁弹相变.由图4可 知,Ni₅₀Mn₃₄Co₂Sn₁₄的 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 具有 很好的线性相关性,但LaFe_{11.7}Si_{1.3}的 $\Delta S_{\rm M}$ - $\mu_0 H$ 曲线不符合线性相关性,这表明 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 的线性相关性不适用于非磁结构相变体系.

图 3 (a) $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 在不同温度下 $-\Delta S_M$ 与磁场 $\mu_0 H$ 的依赖关系及线性拟合; (b) 7 T 磁场变化下 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 的实验 ΔS_M 及拟合 ΔS_M 曲线

Fig. 3. (a) $-\Delta S_{\rm M}$ values at different temperatures around $T_{\rm C}$ as a function of $\mu_0 H$ and the fitting lines to $-\Delta S_{\rm M}$ - $\Delta \mu_0 H$ curves for Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} compound; (b) temperature dependences of experimental and fitted $\Delta S_{\rm M}$ for under magnetic field change of 7 T for Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} compound.

由 (6) 式可知, 只有当 ΔM 随磁场变化近似为 恒定值时才会出现 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 的线性相关 性. 图 5 (a) 和图 5 (b) 对比给出了 LaFe_{11.7}Si_{1.3} 和 $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ 在不同磁场下的热磁曲线. 可以看出,两个样品都在居里温度 T_C 附近发生了 铁磁-顺磁相变.

图 4 (a) Ni₅₀Mn₃₄Co₂Sn₁₄ 和 (b) LaFe_{11.7}Si_{1.3} 的 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 的依赖关系

Fig. 4. The magnetic field dependences of $\Delta S_{\rm M}$ at peak for (a) Ni₅₀Mn₃₄Co₂Sn₁₄ and (b) LaFe_{11.7}Si_{1.3} compounds, respectively.

图 5 (a) LaFe_{11.7}Si_{1.3}和 (b) Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}在不同磁场下的热磁曲线; (c) LaFe_{11.7}Si_{1.3}和 (d) Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}的 T_C 随磁场的变化关系

Fig. 5. Temperature dependences of magnetization in various magnetic fields for (a) LaFe_{11.7}Si_{1.3} and (b) $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$; magnetic field dependence of $T_{\rm C}$ for (c) LaFe_{11.7}Si_{1.3} and (d) $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$, respectively.

居里温度*T*_C是由 d*M*/d*T*-*T* 曲线的极小值所 确定. 图5(c)和图5(d)对比给出了LaFe_{11.7}Si_{1.3} 和 Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}的*T*_C 随磁场的变化关 系. 可以看出二者的区别在于,LaFe_{11.7}Si_{1.3}的 *T*_C 随磁场增加显著向高温移动,导致*T*₁和*T*₂间的 ΔM 随磁场变化而大幅变化,从而不具备线性相关 性. 相反, Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}的*T*_C 很难被磁场 驱动,从而 ΔM 不随磁场明显变化,因此满足(6) 式的条件,出现 ΔS_{M} 值与磁场 $\mu_{0}H$ 的线性相关性. 类似地,Ni₅₀Mn₃₄Co₂Sn₁₄也同样具有*T*_C 难以被 磁场驱动的情况. 基于以上分析,表明当磁结构相 变的转变温度具有弱磁场依赖性时, ΔS_{M} 值与磁 场 $\mu_{0}H$ 表现出线性相关性.

4 结 论

我们发现一级磁结构相变 Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} 材料的 $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 在高磁场时具有线性 相关性,而在低场下出现偏差.通过麦克斯韦关 系式的数值分析详细讨论了这一线性相关性以 及低场偏差的来源,并发现低磁场时, $\Delta S_{\rm M}$ 近似 正比于 $\mu_0 H$ 的平方.进一步在一级磁结构相变 Ni₅₀Mn₃₄Co₂Sn₁₄ 材料中也印证了 $\Delta S_{\rm M}$ 与 $\mu_0 H$ 的 线性相关性,但一级磁弹相变 LaFe_{11.7}Si_{1.3} 材料不 具有该线性相关性.深入分析发现,当磁结构相变 的转变温度具有弱磁场依赖性时, $\Delta S_{\rm M}$ 值与磁场 $\mu_0 H$ 表现出线性相关性.在磁场未达到相变饱和 磁场以下时,利用 $\Delta S_{\rm M}$ 与 $\mu_0 H$ 的线性相关性能够 帮助我们有效地预测高磁场下的 $\Delta S_{\rm M}$ 值,可以作 为很好的实验预测手段.

感谢西班牙塞利维亚大学物理系的 Victorino Franco 教授的讨论.

参考文献

- Smith A, Bahl C R H, Bjørk R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288
- [2] Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439
- [3] Shen B G, Hu F X, Dong Q Y, Sun J R 2013 Chin. Phys.
 B 22 017502
- [4] Zheng X Q, Shen J, Hu F X, Sun J R, Shen B G 2016 *Acta Phys. Sin.* 65 217502 (in Chinese) [郑新奇,沈俊,胡 凤霞,孙继荣,沈保根 2016 物理学报 65 217502]
- [5] Zhang H, Shen B G 2015 Chin. Phys. B 24 127504
- [6] Franco V, Conde A 2010 Int. J. Refrig. 33 465

- [7] Zhang D K, Zhao J L, Zhang H G, Yue M 2014 Acta Phys. Sin. 63 197501 (in Chinese) [张登魁,赵金良,张红 国,岳明 2014 物理学报 63 197501]
- [8] Tegus O, Brück E, Buschow K H J, de Boer F R 2002 Nature 415 150
- [9] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620
- [10] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
- [11] Liu E K, Wang W H, Feng L, Zhu W, Li G J, Chen J L, Zhang H W, Wu G H, Jiang C B, Xu H B, de Boer F 2012 Nat. Commun. 3 873
- [12] Shen J, Li Y X, Sun J R, Shen B G 2009 Chin. Phys. B 18 2058
- [13] Zhang H, Shen B G, Xu Z Y, Zheng X Q, Shen J, Hu F X, Sun J R, Long Y 2012 J. Appl. Phys. 111 07A909
- [14] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R, Long Y 2013 Appl. Phys. Lett. **102** 092401
- [15] Franco V, Blázquez J S, Ingale B, Conde A 2012 Annu. Rev. Mater. Res. 42 305
- [16] Zheng X Q, Shen B G 2017 Chin. Phys. B 26 027501
- [17] Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z, Long Y 2016 *Chin. Phys. B* 25 127104
- [18] Oesterreicher H, Parker F T 1984 J. Appl. Phys. 55 4334
- [19] Franco V, Blázquez J S, Conde A 2006 Appl. Phys. Lett.
 89 222512
- [20] Patra M, Majumdar S, Giri S, Iles G N, Chatterji T 2010 J. Appl. Phys. 107 076101
- [21] Franco V, Blázquez J S, Conde A 2006 J. Appl. Phys. 100 064307
- [22] Franco V, Blázquez J S, Millán M, Borrego J M, Conde C F, Conde A 2007 J. Appl. Phys. 101 09C503
- [23] Bonilla C M, Herrero-Albillos J, Bartolomé F, García L M, Parra-Borderías M, Franco V 2010 Phys. Rev. B 81 224424
- [24] Casanova F, Batlle X, Labarta A, Marcos J, Mañosa L, Planes A 2002 Phys. Rev. B 66 212402
- [25] Wei Z Y, Liu E K, Li Y, Xu G Z, Zhang X M, Liu G D, Xi X K, Zhang H W, Wang W H, Wu G H, Zhang X X 2015 Adv. Electron. Mater. 1 1500076
- [26] Tao K, Zhang H, Long K W, Wang Y X, Wu M L, Xiao Y N, Xing C F, Wang L C, Long Y 2017 Intermetallics 91 45
- [27] Liu G J, Sun J R, Shen J, Gao B, Zhang H W, Hu F X, Shen B G 2007 Appl. Phys. Lett. 90 032507
- [28] Giguere A, Foldeaki M, Gopal B R, Chahine R, Bose T K, Frydman A, Barclay J A 1999 *Phys. Rev. Lett.* 83 2262
- [29] Caron L, Ou Z Q, Nguyen T T, Cam Thanh D T, Tegus O, Brück E 2009 J. Magn. Magn. Mater. **321** 3559
- [30] Li Y W, Zhang H, Tao K, Wang Y X, Wu M L, Long Y 2017 Mater. Des. 114 410
- [31] Pecharsky V K, Gschneidner Jr K A 1999 J. Appl. Phys. 86 565
- [32] Földeàki M, Chahine R, Bose T K, Barclay J A 2000 Phys. Rev. Lett. 85 4192

- [33] Sun J R, Hu F X, Shen B G 2000 Phys. Rev. Lett. 85 4191
- [34] Zou J D, Shen B G, Gao B, Shen J, Sun J R 2009 Adv. Mater. 21 693
- [35] Amaral J S, Amaral V S 2009 Appl. Phys. Lett. 94 042506
- [36] Amaral J S, Amaral V S 2010 J. Magn. Magn. Mater. 322 1552

Linear dependence of magnetocaloric effect on magnetic field in $Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}$ and $Ni_{50}Mn_{34}Co_2Sn_{14}$ with first-order magnetostructural transformation^{*}

Zhang Hu^{1)†} Xing Cheng-Fen¹⁾ Long Ke-Wen²⁾³⁾ Xiao Ya-Ning¹⁾ Tao Kun¹⁾

Wang Li-Chen⁴⁾ Long Yi¹⁾

1) (School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)

2) (Chengxian Technology Co. Ltd., Foshan 528513, China)

3) (Chuandong Magnetic Electronic Co. Ltd., Foshan 528513, China)

4) (Department of Physics, Capital Normal University, Beijing 100048, China)

(Received 9 May 2018; revised manuscript received 9 August 2018)

Abstract

The study on the field dependence of magnetocaloric effect (MCE) is considered to be of fundamental and practical importance, since it not only guides us in understanding and optimizing the MCE, but also helps us estimate the MCE for higher magnetic field which is not available in some laboratories. The magnetic field $(\mu_0 H)$ dependence of magnetic entropy change ($\Delta S_{\rm M}$) has been studied extensively in many materials with second-order magnetic transition. However, the field dependence of MCE for first-order magnetic transition (FOMT) materials has not been sufficiently studied due to their complexity and diversity. In the present work, polycrystalline Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5}, Ni₅₀Mn₃₄Co₂Sn₁₄, and LaFe_{11.7}Si_{1.3} compounds with FOMT are prepared, and the magnetic and magnetocaloric properties are investigated systematically. In order to avoid a spurious ΔS_M , the M- $\mu_0 H$ curves are measured in a loop process. The M- $\mu_0 H$ curves are corrected by taking into account the demagnetization effect, i.e. $H_{\rm int} = H_{\rm ext} - N_{\rm d}M$. It is found that the $-\Delta S_{\rm M}$ follows a linear relationship $-\Delta S_{\rm M} = -\Delta S_0 + \kappa \mu_0 H$ with the variation of magnetic field in Mn_{0.6}Fe_{0.4}NiSi_{0.5}Ge_{0.5} compound when $\mu_0 H > 1$ T. In addition, it is also noted that the $\Delta S_{\rm M}$ is approximately proportional to the square of $\mu_0 H$ at low field. The origin of this linear relationship between $\Delta S_{\rm M}$ and $\mu_0 H$ at high field and the deviation at low field are discussed by numerically analyzing the Maxwell relation. In addition to the $\Delta S_{\rm M}$ peak value, it is found that other $\Delta S_{\rm M}$ values at different temperatures also follow the linear relation at high field by performing the same numerical analysis. Moreover, it is found that the fitted $\Delta S_{\rm M}$ curve matches the experimental data very well. This result indicates that the linear relationship between $\Delta S_{\rm M}$ and $\mu_0 H$ could be utilized to predict the $\Delta S_{\rm M}$ for higher magnetic field change when the field is lower than the saturation field. The applicability of this linear relationship is also verified in other systems with first-order magnetostructural transformation, such as $Ni_{50}Mn_{34}Co_2Sn_{14}$. However, it fails to describe the field dependence of $\Delta S_{\rm M}$ in LaFe_{11.7}Si_{1.3}, which exhibits a strong field dependence of transition temperature. Consequently, our study reveals that a linear dependence of $\Delta S_{\rm M}$ on $\mu_0 H$ could occur in magnetostructural transition materials, which show the field independence of transition temperature.

Keywords: magnetocaloric effect, magnetic entropy change, magnetostructural transition

PACS: 75.30.Sg, 81.30.Kf, 75.30.Kz

DOI: 10.7498/aps.67.20180927

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 51671022, 51701130), the National Key Research and Development Program of China (Grant No. 2017YFB0702704), the Natural Science Foundation of Beijing, China (Grant No. 2162022), and the Scientific and Technological Innovation Team Program of Foshan, China (Grant No. 2015IT100044).

[†] Corresponding author. E-mail: zhanghu@ustb.edu.cn