物理学报 Acta Physica Sinica

BH+离子基态及激发态的势能曲线和跃迁性质的研究 罗华锋 万明杰 黄多辉

Potential energy curves and transition properties for the ground and excited states of BH⁺ cation

Luo Hua-Feng Wan Ming-Jie Huang Duo-Hui

引用信息 Citation: Acta Physica Sinica, 67, 043101 (2018) DOI: 10.7498/aps.20172409 在线阅读 View online: http://dx.doi.org/10.7498/aps.20172409 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I4

您可能感兴趣的其他文章 Articles you may be interested in

采用相对论多组态 Dirac-Hartree-Fock 方法对 Mg 原子同位素位移的理论研究

Theoretical calculations on isotope shifts of Mg I by using relativistic multiconfiguration Dirac-Hartree-Fock method

物理学报.2017, 66(11): 113101 http://dx.doi.org/10.7498/aps.66.113101

SiS低激发态势能曲线和光谱性质的全电子组态相互作用方法研究

All-electron configuration interaction study on potential energy curves of low-lying excited states and spectroscopic properties of SiS 物理学报.2014, 63(11): 113102 http://dx.doi.org/10.7498/aps.63.113102

磁化等离子体环境对氢原子能级结构的影响

Combined effect of plasma environment and external magnetic field on hydrogen 物理学报.2013, 62(7): 073201 http://dx.doi.org/10.7498/aps.62.073201

SO^+ 离子 $b^4\Sigma^-$ 态光谱常数和分子常数研究

Investigations on spectroscopic parameters and molecular constants of SO⁺ (b⁴ Σ^-) cation 物理学报.2012, 61(24): 243102 http://dx.doi.org/10.7498/aps.61.243102

BF 自由基 $X^{1}\Sigma^{+}$ 和 $a^{3}\Pi$ 态光谱常数和分子常数研究

Spectroscopic parameters and molecular constants of $X^{1}\Sigma^{+}$ and $a^{3}\Pi$ electronic states of BF radical 物理学报.2012, 61(9): 093105 http://dx.doi.org/10.7498/aps.61.093105

BH⁺离子基态及激发态的势能曲线和 跃迁性质的研究^{*}

罗华锋1) 万明杰2) 黄多辉2)†

(宜宾学院化学与工程学院, 宜宾 644007)
 (宜宾学院, 计算物理四川省高等学校重点实验室, 宜宾 644007)
 (2017年11月9日收到; 2017年12月8日收到修改稿)

利用高精度的多组态相互作用及 Davidson 修正方法 (MRCI+Q), 采用 ACV5Z-DK 全电子基组计算了 BH⁺ 离子的前4个离解通道 B⁺(¹S_g)+H(²S_g), B⁺(³P_u)+H(²S_g), B(²P_u)+H⁺(¹S_g)和 B⁺(¹P_u)+H(²S_g) 的 9个 A—S 态的势能曲线. X²Σ⁺, A²Π和 B²Σ⁺ 态的光谱常数和已有实验值符合得很好, 其中 b⁴Σ⁺, 3²Σ⁺, 3²Π和 4²Σ⁺ 态的光谱常数为首次报道, 3²Π和 4²Σ⁺ 态具有双势阱结构. 预测了 A²Π和 B²Σ⁺ 态的辐射寿 命: τ (A²Π) = 239.2 ns 和 τ (B²Σ⁺) = 431.2 ns. 最后在考虑自旋轨道耦合效应下讨论了 B²Σ⁺ 与 A²Π态的 势能曲线的相交对激光冷却 BH⁺ 离子的影响.

关键词:多组态相互作用,势能曲线,光谱常数,自发辐射寿命 PACS: 31.15.vn, 32.70.Cs, 33.20.-t DOI: 10.7498/aps.67.20172409

1引言

BH⁺离子和其同位素离子BD⁺的第一激发 态 A²Π 到基态 X²Σ⁺的跃迁都具有较短的自发辐 射寿命 τ 和高对角分布的弗兰克-康登因子 f_{00} , 其中BH⁺和BD⁺离子 A²Π态的辐射寿命分别约 为238 ns^[1]和235 ns^[2],弗兰克-康登因子分别为: $f_{00}(BH^+) = 0.947^{[3]}, f_{00}(BD^+) = 0.923^{[2]}.两种离$ 子在理论上都被预测为激光冷却的候选离子^[1,2].

实验上对BH⁺离子的光谱性质进行了较为 广泛的研究^[4–8]. 1937年, Almy和Horsfall^[4]首 次从实验上得到了BH⁺离子基态X²Σ⁺的光谱 常数,并给出了A²Π → X²Σ⁺跃迁0-0带的跃迁 能 $\nu_{00} = 26376.2 \text{ cm}^{-1}$. 1964年, Bauer等^[5]指出 BH⁺离子基态的离解能比BH分子基态的离解能 小1.47 eV. 1981年, Ottinger和Reichmuth^[6]通过 化学发光反应B⁺ + H₂ → BH⁺ (A²Π) + H观测 到了 BH⁺ 的 A²II → X²Σ⁺ 跃迁. 并给出了 A²II 态 的光谱常数. Ramsay 和 Sarr^[7] 通过高分辨率拍摄 BH⁺ 的 A²II → X²Σ⁺ 跃迁得到了 X²Σ⁺ 和 A²II 态 的光谱常数. 2006 年, Viteri 等^[8] 报道了 ¹¹BH⁺ 基 态 X²Σ⁺ 的最新实验成果, 并得到了更加精确的光 谱常数.

理论上主要集中在 BH⁺ 离子的基态和第一激 发态的势能曲线研究^[1,3,9–11]. 1977年, Rosmus 和 Meyer^[9] 分别采用赝势轨道组态相互作用 (PCO-CI) 和耦合电子对方法 (CEPA) 计算了 BH⁺ 离子 基态的势能曲线,并得到了其光谱常数. 1981年, Guest 和 Hirst^[10] 采用多参考双重激发组态相互作 用方法 (MRDCI) 计算了其前三个离解极限的势 能函数,给出了 $X^2\Sigma^+$, $A^2\Pi$ 和 $B^2\Sigma^+$ 态的光谱常 数. 1982年, Klein等^[11] 计算了 BH⁺ 离子最低3个 电子态的光谱常数,并给出了 BH⁺ 离子的偶极矩 和跃迁偶极矩. 1984年, Kusunoki^[3] 计算了 BH⁺ 离子 $X^2\Sigma^+$, $A^2\Pi$, $B^2\Sigma^+$, $a^4\Pi$ 和 $b^4\Sigma^-$ 态的光谱常

^{*} 国家自然科学基金理论物理专项 (批准号: 11647075) 资助的课题.

[†]通信作者. E-mail: hdhzhy912@163.com

^{© 2018} 中国物理学会 Chinese Physical Society

数. 文中指出 $2^{4}\Pi$ 为排斥态, $b^{4}\Sigma^{-}$ 态为第一四重激 发态. 同时给出了 $A^{2}\Pi \rightarrow X^{2}\Sigma^{+}$, $B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+}$ 和 $b^{4}\Sigma^{-} \rightarrow a^{4}\Pi$ 跃迁的弗兰克-康登因子. 2011年, Nguyen 等^[1] 选用 aug-cc-pV5Z 全电子基组,在采 用多参考组态相互作用单双激发方法 (MRCISD) 和完全相互作用方法 (FCI) 精确地计算了 BH⁺ 离 子最低3个电子态的光谱常数,并给出了 $A^{2}\Pi$ 态的 辐射寿命.

本文采用 MRCI 方法系统的研究了 BH⁺ 离子 最低4个离解极限的9个 Λ —S态的势能曲线及其 跃迁性质.计算得到:除了 $2^{2}\Pi$ 态为排斥态外,其 他电子态均为束缚态,并且 $3^{2}\Pi$ 和 $4^{2}\Sigma^{+}$ 态具有双 势阱结构.利用 LEVEL8.0程序拟合了弗兰克-康 登因子和自发辐射寿命等性质.B² Σ^{+} 与 A² Π 态的 势能曲线在弗兰克-康登区域出现相交情况,本文 在考虑自旋-轨道耦合效应 (SOC)下讨论了两个 电子态的相交对激光冷却 BH⁺离子的影响.

2 计算方法

BH⁺ 离子9个A—S态的电子结构都由 MOL-PRO 2010程序^[12]计算得到,由于程序限制,本 文计算采用 C_{2V} 子群. 首先采用 Hartree-Fock方 法^[13]产生BH⁺离子的初始猜测分子轨道;然后 采用完全活性空间自洽场方法 (CASSCF)^[14,15] 对 初始轨道进行优化,得到态平均的多组态波函数; 最后采用 MRCI^[16,17]及 Davidson 修正 (+Q)得到 最终的波函数.在 MRCI+Q 计算的基础上考虑了 SOC, SOC 效应通过 Breit-Pauli 算符来实现^[18].

 C_{2v} 群有4个不可约表示 (a_1, b_1, b_2, a_2) . 在 CASSCF计算中, B(1s)为双占据的闭壳层轨道, H(1s2s2p3s3p)和B(2s2p)轨道为活性轨道,可以写 为CAS(5, 13);在随后MRCI+Q计算中考虑了核-价电子 (CV)关联效应,即B(1s)轨道参与电子关联 的计算.对于B原子,本文选用了考虑CV关联的 aug-cc-pCV5Z-DK (ACV5Z-DK)全电子基组^[19], H原子选用 aug-cc-pV5Z-DK (AV5Z-DK)全电子 基组^[20].为方便起见,文中HAV5Z-DK 基组写为 ACV5Z-DK.

本文采用 Murrell-Sorbie (M-S)^[21] 来拟合各 个电子态的光谱常数.为描述拟合的效果,文中给 出了均方根值 (RMS).此外弗兰克-康登因子、辐射 速率和辐射寿命均采用 LEVEL8.0 程序^[22] 来拟合.

3 结果与讨论

本文在MRCI+Q/ACV5Z-DK水平下计算了 BH⁺离子的前4个离解通道所对应的9个 Λ —S 态的势能曲线. 原子态和分子态的对应关系列 于表1中. 其中基态X²Σ⁺对应于最低离解通道 B⁺(¹S_g)+H(²S_g), A²Π, B²Σ⁺, a⁴Π和b⁴Σ⁺ 态有 共同离解通道B⁺(³P_u)+ H(²S_g). 前两个离解通 道之间的能量差为37523.6 cm⁻¹, 比 Moore 的实验 值^[23]大178.6 cm⁻¹, 误差仅为0.48%. 第三离解 通道源自H原子的电离, 即B(²P_u)+ H⁺(¹S_g), 此 离解通道对应于 2²Π, 3²Σ⁺态,并与第一离解通道 的能量差为43106.5 cm⁻¹, 与实验值^[23]的误差为 0.83%. 第四离解通道B⁺(¹P_u)+H(²S_g)与第一离 解通道的能量差为74032.9 cm⁻¹, 与实验值^[23]的 误差为0.87%. 可以看出本文计算结果与实验值符 合较好.

表1 BH⁺ 离子分子态与原子态的离解关系 Table 1. Dissociation relationships between molecular states and atomic states of BH⁺.

百乙太	公子太	$\Delta E/\mathrm{cm}^{-1}$		
♪示 1 ² 2	刀丁芯	本文工作	实验 [<mark>23</mark>]	
$B^+(^1S_g) + H(^2S_g)$	$X^2\Sigma^+$	0	0	
$\mathrm{B^+(^3P_u)}\mathrm{+~H(^2S_g)}$	$\begin{array}{l} A^2\Pi, \ B^2\Sigma^+,\\ a^4\Pi, \ b^4\Sigma^+ \end{array}$	37523.6	37345.0	
$B(^2P_u) + H^+(^1S_g)$	$2^2\Pi, 3^2\Sigma^+$	43106.5	42750.7	
$\mathrm{B^+(^1P_u)}{+}\mathrm{H(^2S_g)}$	$3^2\Pi, 4^2\Sigma^+$	74032.9	73396.5	

3.1 势能曲线与光谱常数

计算的9个*A*—*S*态的势能曲线见图1.除2²Ⅱ 电子态外,其他电子态均为束缚态.利用M-S函数 对束缚态进行拟合所得到的光谱常数与已有实验 值及其他理论计算值列于表2中.

本文所计算基态 $X^2\Sigma^+$ 在平衡位置处其主要 电子组态为 $1\sigma^2 2\sigma^2 3\sigma_{\alpha}$, 权重为 94.48%. 其平衡核 间距 R_e 为 1.20485 Å, 谐振频率 ω_e 和非谐振频率 $\omega_e \chi_e$ 分别为 2518.36 cm⁻¹ 和 64.62 cm⁻¹, 与最新 报道的实验值^[8] 分别相差 0.00156 Å, 8.44 cm⁻¹ 和 2.64 cm⁻¹. 误差只有 0.13%, 0.33% 和 4.26%. Bauer 等^[5] 从实验上得到 BH⁺ 离子基态的离解能 比BH 分子基态的离解能小1.47 eV. 学者们分别 从实验和理论两方面研究了BH 分子基态的离解 能^[24,25] Huber 和 Herzberg^[24] 总结前人实验得到 BH分子基态的离解能 $D_0 = 3.42$ eV,可以得到 BH⁺离子基态的离解能 $D_0 = 1.95$ eV,本文的计算 值仅比实验值高 0.032 eV,误差为 1.64%.

图 1 (a) BH⁺ 离子 Λ —S 态的势能曲线; (b) A² II 和 B² Σ ⁺ 态的势能曲线 Fig. 1. (a) Potential energy curves for the Λ -S states of BH⁺; (b) potential energy curves for the A² II and B² Σ ⁺ states of BH⁺.

电子态		$R_{ m e}/{ m \AA}$	$\omega_{\rm e}/{\rm cm}^{-1}$	$\omega_{\rm e}\chi_{\rm e}/{\rm cm}^{-1}$	$B_{\rm e}/{\rm cm}^{-1}$	D_0/eV	$D_{\rm e}/{\rm eV}$	$T_{\rm e}/{\rm cm}^{-1}$	$RMS/{ m cm}^{-1}$
$\mathbf{X}^2 \Sigma^+$	本文工作	1.20485	2518.36	64.62	12.5773	1.9870	2.1411	0	0.386
	文献 [1]	1.20484	2519.4	64.6	12.578	1.99			
	文献 [3]	1.208	2594.8	74.94	12.53	1.92			
	实验 [<mark>8</mark>]	1.20329	2526.8	61.98	12.610	1.95 ^[5]			
${\rm A}^2\Pi$	本文工作	1.24759	2245.15	52.95	11.730	3.3467	3.4842	26689.72	0.565
	文献 [1]	1.24648	2251.6	53.6	11.751	3.35			
	文献 [3]	1.247	2351.8	71.38	11.76	3.19		27491.6	
	实验 [<mark>6</mark>]	1.2565	2286.4	48.9	11.746			26368.18	
	实验[7]	1.24397			11.7987			26375.90	
$B^2\Sigma^+$	本文工作	1.90198	1263.33	29.86	5.047	1.3546	1.432	43241.12	0.693
	文献 [1]	1.90116	1264.3	29.9	5.051	1.35			
	文献 [3]	1.910	1205.7	18.51	5.01	1.24		43198.7	
$a^4\Pi$	本文工作	1.7269	896.50	44.17	6.1223	0.4736	0.5278	50539.17	0.030
	文献 [3]	1.741	765.2	21.41	6.03	0.34			
$b^4\Sigma^+$	本文工作	3.82863	117.07	33.85	1.246	0.0096	0.0158	54670.37	0.045
$3^2\Sigma^+$	本文工作	3.90233	341.41	20.84	1.199	0.1915	0.2120	58713.59	0.200
$2^2\Pi$	本文工作	排斥态							
$3^2\Pi \ 1^{\rm st}$	本文工作	1.39819	2115.75	58.80	9.3394	0.6342	0.7635	85510.77	0.270
$3^2\Pi 2^{nd}$	本文工作	2.57597	509.23	55.68	2.7515	0.1302	0.1600	89996.22	0.063
$4^2\Sigma^+$ 1 st	本文工作	1.46892	1613.80	153.76	8.4617	0.4569	0.5522	96354.70	3.407
$4^2\Sigma^+$ 2 nd	本文工作	2.89825	397.48	76.37	2.1747	0.0694	0.0917	90586.92	0.327

表 2 BH^+ 离子 Λ —S 态的光谱常数 Table 2. Spectroscopic constants for the Λ -S states of BH^+ .

第一激发态 $A^2\Pi$ 在平衡位置处的主要电子 组态为 $1\sigma^2 2\sigma^2 1\pi_{\alpha}$,权重为86.23%.次要电子 组态为 $1\sigma^2 2\sigma_{\alpha} 3\sigma_{\beta} 1\pi_{\alpha} \pi 1\sigma^2 2\sigma_{\alpha} 3\sigma_{\alpha} 1\pi_{\beta}$,权重分 别为7.06% 和2.12%. $X^2 \Sigma^+ \rightarrow A^2 \Pi$ 跃迁主要 是由 $3\sigma_{\alpha} \rightarrow 1\pi_{\alpha}$ 的跃迁. 其绝热激发能 T_e 为 26689.72 cm⁻¹.通过LEVEL8.0程序计算得到 其考虑零点能后0-0带的跃迁能 ν_{00} = 26533.14 cm⁻¹.实验上,Almy^[4],Ottinger^[6],Ramsay 小组^[7]分别得到 ν_{00} 的值为26376.2,26368.18和 26375.90 cm⁻¹.本文结果与实验值的误差约 为0.60%. $A^2\Pi$ 态具有很深的势阱,其势阱深度 D_e 为3.4842 eV.通过表2可以看出 $A^2\Pi$ 态的其 他光谱常数均与实验值^[6,7]符合得较好.例如: $\delta R_e/R_e = 0.29\%, \delta \omega_e/\omega_e = 1.80\%.$

第二激发态 B²Σ⁺ 在平衡位置处的主要 电子组态由两部分组成,即1 $\sigma^2 2\sigma_a 3\sigma^2$ (49.29%) 和1 $\sigma^2 2\sigma^2 4\sigma_a$ (37.88%),而1 $\sigma^2 2\sigma^2 3\sigma_a$ 的权重降为 2.46%,基本可以忽略.也就是说 X²Σ⁺ → B²Σ⁺ 的 跃迁主要是由2 σ_β → 3 σ_a 和3 σ_a → 4 σ_a 跃迁的叠 加而成.其位于比基态高43241.12 cm⁻¹处,而且 其具有较深的势阱, $D_e = 1.432$ eV. B²Σ⁺ 与 A²Π 态的势能曲线约在2.7 Å出现相交情况,此区域在 A²Π → X²Σ⁺ 跃迁的弗兰克-康登区域以内.这两 个态势能曲线的相交对激光冷却的影响将在第3.3 节来详细讨论.到目前为止,还没有关于 B²Σ⁺ 态 的光谱常数的实验报道.本文只和采用 FCI 方法 的计算值^[1]进行对比.本文计算的X²Σ⁺, A²Π和 B²Σ⁺态的光谱常数与 FCI/AV5Z 水平下的计算 值^[1] 的最大误差不超过1%.

 $a^{4}\Pi$ 为四重态的基态,在平衡位置处其主 要电子组态为1 $\sigma^{2}2\sigma_{\alpha}3\sigma_{\alpha}1\pi_{\alpha}$,权重为97.29%. $X^{2}\Sigma^{+} \rightarrow a^{4}\Pi$ 跃迁主要是由 $2\sigma_{\alpha} \rightarrow 1\pi_{\alpha}$ 的跃迁 引起的.其绝热激发能为50539.17 cm⁻¹.到目前 为止,只有Kusunoki^[3]计算了四重态的光谱数据, 由于基组和方法的选择问题, $a^{4}\Pi$ 态的计算结果 精确度不高.Kusunoki的计算结果表明 $b^{4}\Sigma^{+}$ 为排 斥态^[3],确定⁴Σ⁻为四重态的第一激发态,本文采 用高精度的量化计算得到了 $b^{4}\Sigma^{+}$ 态是一个势阱 很小的束缚态,其势阱深度 D_{e} 只有0.0158 eV,我 们重新确定 $b^{4}\Sigma^{+}$ 为四重态的第一激发态. $b^{4}\Sigma^{+}$ 态的势阱太小可能是导致Kusunoki得到其为排 斥态的原因. $3^{2}\Pi$ 和 $4^{2}\Sigma^{+}$ 电子态都具有双势阱结 构.两个电子态分别在2.0Å和1.96Å左右发生 预解离.原因是 $3^{2}\Pi$ 和 $4^{2}\Sigma^{+}$ 电子态和更高的 ${}^{2}\Pi$ 和 ${}^{2}\Sigma^{+}$ 态在此位置发生了避免交叉的现象. $3^{2}\Pi$ 和 $4^{2}\Sigma^{+}$ 态第一势阱的平衡位置 (势阱深度)分别 为 1.39819 Å(0.7635 eV)和 1.46892 Å(0.5522 eV); 第二势阱的平衡位置 (势阱深度)分别为 2.57597 Å(0.1600 eV)和 2.89825 Å(0.0917 eV).其他的光 谱常数也列在表 2 中.其中 $b^{4}\Sigma^{+}$, $3^{2}\Sigma^{+}$, $3^{2}\Pi$ 和 $4^{2}\Sigma^{+}$ 态的光谱常数为首次报道.

为了评估势能曲线的拟合质量,本文同时给出了*RMS*值,列在表2中.可以看出所有的*RMS*值都很小.最大误差仅为3.407 cm⁻¹,其余的误差不超过0.7 cm⁻¹.可以看出本文的计算结果是可靠的.

3.2 跃迁性质

本 文 计 算 了 BH⁺ 分 子 的 A² II → X² Σ⁺, B² Σ⁺ → X² Σ⁺, 3² Σ⁺ → X² Σ⁺, B² Σ⁺ → A² II, 3² II → X² Σ⁺ 和 b⁴ Σ⁺ → $a^4 \Pi$ 的跃迁偶极矩. 跃迁 偶极矩随核间距变化的曲线见图 2. 由于 2² II 为排 斥态,故没有给出 2² II → X² Σ⁺ 的跃迁偶极矩.

Fig. 2. Transition dipole moments of BH⁺.

从图2中可以看出在核间距为10 Å时, A²Π → X²Σ⁺, B²Σ⁺ → X²Σ⁺, 3²Σ⁺ → X²Σ⁺, B²Σ⁺ → A²П和b⁴Σ⁺ → a⁴Π的跃迁偶极矩趋于0, 原因 是 X²Σ⁺, A²Π, B²Σ⁺, 3²Σ⁺, b⁴Σ⁺和 a⁴Π态全部 来源于B⁺离子的2s → 2p轨道的跃迁, H原子处 于基态; 而3²Π → X²Σ⁺的跃迁偶极矩趋近于另 一极限 (1.2323 a.u.), 原因是3²Π态来源于不同的 原子激发, B原子处于基态, H原子被电离为H⁺离 子. Nguyen等^[1]在MRCI/AV5Z水平计算了A²Π → $X^2\Sigma^+$, $B^2\Sigma^+$ → $X^2\Sigma^+$ 和 $B^2\Sigma^+$ → $A^2\Pi$ 的跃迁 偶极矩, 在核间距为1.25 Å 时分别为0.3383, 0.4493 和0.0295 a.u. 本文对应的计算结果分别为0.3389, 0.4489 和0.0294 a.u., 本文结果和 Nguyen等的结 果误差不超过0.5%. 同时可以看出 $A^2\Pi$ → $B^2\Sigma^+$ 的跃迁强度很低.

本文也预测了 $A^{2}\Pi \rightarrow X^{2}\Sigma^{+}, B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+}$ 和 $B^{2}\Sigma^{+} \rightarrow A^{2}\Pi$ 跃迁的爱因斯坦系数 $A_{\nu'\nu''}, 弗兰$ 克-康登因子 $f_{\nu'\nu''}$ 以及 $A^{2}\Pi$ 和 $B^{2}\Sigma^{+}$ 态的辐射寿 命 τ ,其中 ν' 和 ν'' 分别表示终态和初态的振动量 子数. 对于 $A^{2}\Pi \rightarrow X^{2}\Sigma^{+}$ 跃迁,本文计算的 A_{00} 和 A_{01} 分别为 4.122×10^{6} s⁻¹ 和 5.852×10^{4} s⁻¹, Nguyen 等^[1] 计算得到 τ_{00} 和 τ_{01} 分别为 241 ns 和 17 μ s, 即 $A_{00} = 4.149 \times 10^{6}$ s⁻¹, $A_{01} = 5.88 \times 10^{4}$ s⁻¹;本文计算的 f_{00} 为 0.9414,而 Kusunoki^[3]的计 算值为 0.947.对于 B²Σ⁺ → X²Σ⁺ 跃迁,由于两个 电子态的平衡核间距相差太大,弗兰克-康登因子 不存在高对角分布.对应的辐射速率峰值不在对角 元上,其辐射速率的较大峰值在 $\nu'' = 6 \pi \nu'' = 7$, 即 $A_{06} = 8.383 \times 10^5 \text{ s}^{-1}$, $A_{07} = 1.142 \times 10^6 \text{ s}^{-1}$. 同样对于 B²Σ⁺ → A²Π 跃迁,其辐射速率的较大峰 值在 $\nu'' = 3$ —5,由于其跃迁偶极矩在平衡位置附 近很小,其辐射速率的值也很小,当 $\nu'' = 3$ —5时, $A_{03} = 44.8 \text{ s}^{-1}$, $A_{04} = 62.7 \text{ s}^{-1} \pi A_{05} = 49.1 \text{ s}^{-1}$. 本文只列出了 A²Π → X²Σ⁺ 跃迁的弗兰克-康登 因子和爱因斯坦辐射系数,见表 **3**.可以看出我们 的计算值和Kusunoki的计算值^[3] 符合得很好.

表 3 BH⁺ 离子 A² Π → X² Σ ⁺ 跃迁的爱因斯坦自发辐射系数 (s⁻¹) 和弗兰克 -康登因子 Table 3. Einstein spontaneous emission coefficients $A_{v'v''}$ (in s⁻¹) and Franck-Condon factors $f_{v'v''}$ for $A^2\Pi \rightarrow X^2\Sigma^+$ transition of BH⁺.

υ'/υ''	0	1	2	3	4	5
0	4.122(6)	5.852(4)	3.641(0)	1.148(1)	7.846(-2)	4.121(-3)
	9.414(-1)	5.806(-2)	4.843(-4)	1.072(-5)	1.814(-7)	3.701(-8)
	$9.47(-1)^{[3]}$	$5.2(-2)^{[3]}$				
1	5.955(5)	3.191(6)	9.261(4)	2.327(2)	4.849(1)	1.998(0)
	5.481(-2)	8.327(-1)	1.116(-1)	7.945(-4)	9.502(-5)	2.250(-8)
	$5.0(-2)^{[3]}$	$8.44(-1)^{[3]}$	$1.05(-1)^{[3]}$			
2	7.190(4)	9.598(5)	2.475(6)	1.006(5)	1.760(3)	7.718(1)
	3.523(-3)	9.758(-2)	7.437(-1)	1.545(-1)	3.190(-4)	3.958(-4)
		$9.5(-2)^{[3]}$	$7.46(-1)^{[3]}$	$1.54(-1)^{[3]}$		
3	8.009(3)	1.872(5	1.115(7)	1.965(6)	8.318(4)	6.970(3)
	2.147(-4)	1.059(-2)	1.216(-1)	6.876(-1)	1.787(-1)	3.201(-4)
			$1.30(-1)^{[3]}$	$6.59(-1)^{[3]}$	$2.00(-1)^{[3]}$	

表4 BH⁺ 离子 A² II 和 B² Σ ⁺ 态总辐射速率 A_{total} (s⁻¹) 和自发辐射时间 τ (ns)

Table 4. Total emission coefficients A_{total} (s⁻¹) and radiative lifetime τ (ns) for the A² Π and B² Σ^+ states of BH⁺.

ν' — $A_{\rm to}$		${\rm A}^2\Pi \to {\rm X}^2\Sigma$	+	${\rm B}^{2}\Sigma^{+} \rightarrow {\rm X}^{2}\Sigma^{+}$	${\rm B}^2\Sigma^+ ightarrow {\rm A}^2\Pi$		
	$A_{\rm total}$	$\tau~({\rm A}^2\Pi)$	$\tau (\mathrm{A}^2 \Pi)^{[1]}$	$A_{ m total}$	$A_{\rm total}$	$\tau(B^2\Sigma^+)$	
0	4.181(6)	239.2	238	2.319(6)	2.022(2)	431.2	
1	3.879(6)	257.8		5.028(6)	8.143(2)	198.9	
2	3.609(6)	277.1		7.519(6)	6.244(2)	133.0	
3	3.365(6)	297.1		8.878(6)	7.791(2)	112.6	

 $A^{2}\Pi \rightarrow X^{2}\Sigma^{+}, B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+} 和 B^{2}\Sigma^{+} \rightarrow A^{2}\Pi$ 跃迁 ($\nu' = 0$ —4)的总辐射速率以及辐射寿 命列在表4中.可以看出当 $\nu' = 0$ 时,本文计算的 $A^{2}\Pi$ 态的辐射寿命为239.2 ns,与Nguyen等^[1]的 计算结果误差只有不到1%.随着 $A^{2}\Pi$ 态振动量子 数的增加,其辐射寿命呈增加趋势. $B^{2}\Sigma^{+}$ 态的自 发辐射分为两种情况,即 $B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+}$ 和 $B^{2}\Sigma^{+}$ $\rightarrow A^{2}\Pi$ 跃迁.从表3中可以看出 $B^{2}\Sigma^{+} \rightarrow A^{2}\Pi$ 跃 迁的总辐射速率大约只有 $B^{2}\Sigma^{+} \rightarrow X^{2}\Sigma^{+}$ 跃迁的 总辐射速率的1/10⁴倍,因此我们在计算 $B^{2}\Sigma^{+}$ 态 的自发辐射时间时可以只考虑 $B^{2}\Sigma^{+} \rightarrow A^{2}\Pi$ 跃 迁的辐射速率,本文预测 $B^{2}\Sigma^{+}$ 态的辐射寿命为 431.2 ns,随着 $B^{2}\Sigma^{+}$ 态振动量子数的增加,其辐射 寿命呈减小趋势.

3.3 SOC效应对激光冷却BH+离子 的影响

由于BH⁺离子的A²II和B²Σ⁺态大约在 2.7 Å发生了交叉,从图1(b)中可以看出A²II态 的势能曲线在5.0 Å左右才开始趋于解离,两个电 子态相交在弗兰克-康登区域.考虑SOC效应时, A²II态的1/2分量和B²Σ⁺态的1/2分量必然会避 免交叉.为了讨论这种避免交叉给激光冷却BH⁺ 离子带来的影响,我们在相同水平下考虑SOC效 应计算了X²Σ⁺,A²II和B²Σ⁺态的势能曲线及跃 迁偶极矩,并重新评估激光冷却的两个必要条件: 弗兰克-康登因子及辐射寿命.

Fig. 3. Potential energy curves for the Ω states of BH⁺.

BH⁺ 离子的 $X^2\Sigma_{1/2}^+$, $A^2\Pi_{1/2}$, $A^2\Pi_{3/2}$ 和 $B^2\Sigma_{1/2}^+$ 态的势能曲线见图 3. 采用 M-S 函数拟合得到了 $A^2 \Pi_{1/2} 和 A^2 \Pi_{3/2}$ 态的光谱常数,对于 $A^2 \Pi_{1/2}$ 态, $R_e = 1.24756$ Å, $\omega_e = 2250.29$ cm⁻¹和 $\omega_e \chi_e = 54.62$ cm⁻¹;对于 $A^2 \Pi_{3/2}$ 态, $R_e = 1.24756$ Å, $\omega_e = 2248.17$ cm⁻¹和 $\omega_e \chi_e = 52.27$ cm⁻¹.由于 $A^2 \Pi_{1/2} 和 B^2 \Sigma^+_{1/2}$ 态在 2.7Å出现了避免交叉导 致了 $A^2 \Pi_{1/2}$ 态的曲线平滑度变差,SOC效应对 $A^2 \Pi_{1/2}$ 态的光谱常数的影响比对 $A^2 \Pi_{3/2}$ 态的影响 要显著,尤其是非谐振频率.

随后我们预测了 $A^2\Pi_{1/2} \rightarrow X^2\Sigma_{1/2}^+$ 跃迁的 弗兰克-康登因子及辐射寿命. 计算得到 $f_{00} =$ 0.9430, $\tau = 239.0$ ns, 和在自旋无关情况下 $A^2\Pi$ $\rightarrow X^2\Sigma^+$ 跃迁的计算结果基本相同, 误差分别仅为 0.17%和0.08%. 可以看出SOC 效应对激光冷却 BH⁺离子的影响很小.

4 结 论

本 文 利 用 MRCI+Q 方 法, 采 用 ACV5Z-DK 全 电 子 基 组 计 算 了 BH⁺ 离 子 前 4 个 离 解 通 道 B⁺(¹S_g)+H(²S_g), B⁺(³P_u)+H(²S_g), B(²P_u)+H⁺(¹S_g)和 B⁺(¹P_u)+H(²S_g)的9个 A—S 电子态的势能曲线. 采用 M-S 函数拟合得到了每 个电子态的光谱常数.本文计算的 X²Σ⁺, A²Π 和 B²Σ⁺态的光谱常数和已有实验值符合得很 好. A²Π 和 B²Σ⁺态的势能曲线在 2.7 Å出现交 叉. b⁴Σ⁺, 3²Σ⁺, 3²Π 和 4²Σ⁺态的光谱常数为首 次报道, 3²Π 和 4²Σ⁺ 态具有双势阱结构. 采用 LEVEL8.0程序分别计算得到了 A²Π 和 B²Σ⁺态 的自发辐射寿命: τ (A²Π) = 239.2 ns 和 τ (B²Σ⁺) = 431.2 ns. 最后在考虑 SOC 效应情况下得到 A²Π_{1/2}态的辐射寿命为239 ns. SOC 效应对激光 冷却 BH⁺ 离子的影响很小.

参考文献

- Nguyen J H V, Viteri C R, Hohenstein E G, Scherrill C D, Brown K R, Odom B 2011 New J. Phys. 13 063023
- [2] Li Y C, Meng T F, Li C L, Qiu X B, He X H, Yang W, Guo M J, Lai Y Z, Wei J L, Zhao Y T 2017 Acta Phys. Sin. 66 163101 (in Chinese) [李亚超, 孟腾飞, 李传亮, 邱 选兵, 和小虎, 杨雯, 郭苗军, 赖云忠, 魏计林, 赵延霆 2017 物理学报 66 163101]
- [3] Kusunoki I 1984 Chem. Phys. Lett. 105 175
- [4]~ Almy G M, Horsfall Jr R B 1937 $Phys.\ Rev.\ {\bf 51}$ 491
- [5] Bauer S H, Herzberg G, Johns J W C 1964 J. Mol. Spectrosc. 13 256

- [6] Ottinger C, Reichmuth J 1981 J. Chem. Phys. 74 928
- [7] Ramsay D A, Sarre P J 1982 J. Chem. Soc.: Faraday Trans. 78 1331
- [8] Viteri C R, Gilkison A T, Rixon S J, Grant E R 2006 J. Chem. Phys. 124 144312
- [9] Rosmus P, Meyer W 1977 J. Chem. Phys. 66 13
- [10] Guest M F, Hirst D M 1981 Chem. Phys. Lett. 80 131
- [11] Klein R, Rosmus P, Werner H J 1982 J. Chem. Phys. 77 3559
- [12] Werner H J, Knowles P J, Lindh R, et al. M O L P R O, version 20101, a package of *ab initio* programs, 2010, see http://www.molpro.net
- [13] Roothaan C C J 1960 Rev. Mod. Phys. 32 179
- [14] Knowles P J, Werner H J 1985 J. Chem. Phys. 82 5053
 [15] Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259
- [16] Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803
- [17] Knowles P J Werner H J 1988 Chem. Phys. Lett. 145
- 514 [18] Berning A, Schweizer M, Werner H J, Knowles P J,
- [18] Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823

- [19] Woon D E, Dunning Jr T H 1995 J. Chem. Phys. 103 4572
- [20] Dunning Jr T H 1989 J. Chem. Phys. 90 1007
- [21] Murrell J N, Sorbie K S 1974 J. Chem. Soc.: Faraday Trans. 70 1552
- [22] Le Roy R J Level 80: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels, University of Waterloo Chemical Physics Research Report CP-663 See http://leroy.uwaterloo.ca/programs
- [23] Moore B C 1971 Atomic Energy Levels (Vol. 1) Natl. Stand Ref. Data Ser. Natl. Bur. Stand. No. 35 (Washington, DC: U.S. GPO) pp1–2 and 16–19
- Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure, Constants of Diatomic Molecules (Vol. 4) (New York: van Nostrand Reinhold) p90
- [25] Wang X Q, Yang C L, Su T, Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese) [王新强,杨传路,苏涛,王美山 2009 物理学报 58 6873]

Potential energy curves and transition properties for the ground and excited states of BH⁺ cation^{*}

Luo Hua-Feng¹) Wan Ming-Jie²) Huang Duo-Hui^{2)†}

1) (College of Chemistry & Chemical Engineering, Yibin University, Yibin 644007, China)

2) (Computational Physics Key Laboratory of Sichuan Province, Yibin University, Yibin 644007, China)

(Received 9 November 2017; revised manuscript received 8 December 2017)

Abstract

BH⁺ cation is one of the candidates for laser cooling. The potential energy curves (PECs) for nine electronic states $(X^2\Sigma^+, A^2\Pi, B^2\Sigma^+, a^4\Pi, b^4\Sigma^+, 3^2\Sigma^+, 2^2\Pi, 3^2\Pi, 4^2\Sigma^+)$ relating to the $B^+({}^{1}S_g) + H({}^{2}S_g), B^+({}^{3}P_u) + H({}^{2}S_g), B^+({}^{3}P_u) + H({}^{2}S_g), B^+({}^{3}P_u) + H({}^{3}S_g) +$ $B(^{2}P_{u})+H^{+}(^{1}S_{g})$, and $B^{+}(^{1}P_{u})+H(^{2}S_{g})$ dissociation channels of BH^{+} cation are obtained using highly accurate multireference configuration interaction (MRCI) plus Davidson correction. All-electron basis sets AV5Z-DK for H and ACV5Z-DK for B are used in PEC calculations for the A-i-S states of BH⁺ cation, respectively. In complete active space selfconsistent field (CASSCF) calculation, H(1s2s2p3s3p) and B(2s2p) are chosen as active orbitals, B(1s) is the closed shell; in the MRCI calculation, the core-valence (CV) correction is considered, i.e., B(1s) shell is used for CV correlation. Spinorbit coupling effects are considered with Breit-Pauli operators. Spectroscopic constants are fitted using the Murrell-Sorbie function. Spectroscopic constants for the $X^2\Sigma^+$, $A^2\Pi$, and $B^2\Sigma^+$ states are in excellent agreement with the available experimental data; spectroscopic constants for the $b^4\Sigma^+$, $3^2\Sigma^+$, $3^2\Pi$, and $4^2\Sigma^+$ states are reported. Two potential wells for the $3^2\Pi$ and $4^2\Sigma^+$ states are found. The maximum fitting error of all electronic states is only 3.407 cm⁻¹. In addition, PECs for the $A^2\Pi$ and $B^2\Sigma^+$ states are crossed at about 2.7 Å. Then, the transition dipole moments (TDMs) for the $A^2\Pi \rightarrow X^2\Sigma^+$, $B^2\Sigma^+ \rightarrow X^2\Sigma^+$, $3^2\Sigma^+ \rightarrow X^2\Sigma^+$, $B^2\Sigma^+ \rightarrow A^2\Pi$, $3^2\Pi \rightarrow X^2\Sigma^+$ and $b^4\Sigma^+ \rightarrow a^4\Pi$ transitions are also obtained. The strength for the $B^2\Sigma^+ \rightarrow A^2\Pi$ transition is very weak. Based on the accurate PECs and TDMs, the Franck-Condon factors and spontaneous radiative lifetimes are calculated. A strongly diagonal Franck-Condon factor (f_{00}) for the $A^2\Pi \rightarrow X^2\Sigma^+$ transition is obtained, which equals 0.9414. Spontaneous radiative lifetime for the $A^2\Pi$ and $B^2\Sigma^+$ states is also predicted. i.e., $\tau(A^2\Pi) = 239.2$ ns and $\tau(B^2\Sigma^+) = 431.2$ ns. When SOC effect is considered, the $A^2\Pi_{1/2}$ and $B^2\Sigma_{1/2}^+$ states avoid crossing in the Franck-Condon region (R is about 2.7 Å). Calculated f_{00} for the $A^2\Pi_{1/2} \rightarrow X^2\Sigma_{1/2}^+$ transition is 0.9430; spontaneous radiative lifetime for the $A^2\Pi_{1/2}$ is 239.0 ns. Our calculated results indicate that the influence for laser cooling BH⁺ cation via the crossing between $B^2\Sigma^+$ and $A^2\Pi$ states can be ignored.

Keywords: multi-reference configuration interaction, potential energy curves, spectroscopic constants, spontaneous radiative lifetimes

PACS: 31.15.vn, 32.70.Cs, 33.20.-t

DOI: 10.7498/aps.67.20172409

^{*} Project supported by the Special Foundation for Theoretical Physics Research of the National Natural Science Foundation of China (Grant No. 11647075).

[†] Corresponding author. E-mail: hdhzhy912@163.com