物理学报 Acta Physica Sinica

Institute of Physics, CAS

太赫兹自由电子激光的受激饱和实验

黎明 杨兴繁 许州 束小建 鲁向阳 黃文会 王汉斌 窦玉焕 沈旭明 单李军 邓德荣 徐勇 柏伟 冯第超 吴岱 肖德鑫 王建新 罗星 周奎 劳成龙 闫陇刚 林司芬 张鹏 张浩 和天慧 潘清 李 相坤 李鹏 刘宇 杨林德 刘婕 张德敏 李凯 陈亚男

Experimental study on the stimulated saturation of terahertz free electron laser

Li Ming Yang Xing-Fan Xu Zhou Shu Xiao-Jian Lu Xiang-Yang Huang Wen-Hui Wang Han-Bin Dou Yu-Huan Shen Xu-Ming Shan Li-Jun Deng De-Rong Xu Yong Bai Wei Feng Di-Chao Wu Dai Xiao De-Xin Wang Jian-Xin Luo Xing Zhou Kui Lao Cheng-Long Yan Long-Gang Lin Si-Fen Zhang Peng Zhang Hao He Tian-Hui Pan Qing Li Xiang-Kun Li Peng Liu Yu Yang Lin-De Liu Jie Zhang De-Min Li Kai Chen Ya-Nan

引用信息 Citation: Acta Physica Sinica, 67, 084102 (2018) DOI: 10.7498/aps.67.20172413 在线阅读 View online: http://dx.doi.org/10.7498/aps.67.20172413 当期内容 View table of contents: http://wulixb.iphy.ac.cn/CN/Y2018/V67/I8

您可能感兴趣的其他文章 Articles you may be interested in

太赫兹波段 Smith-Purcell 辐射的介质加载光栅高频特性

High frequency characteristics of dielectric-loaded grating for terahertz Smith-Purcell radiation 物理学报.2016, 65(1): 014101 http://dx.doi.org/10.7498/aps.65.014101

介质加载复合光栅结构的色散特性研究

Dispersion characteristics of dielectric loaded metal grating 物理学报.2014, 63(2): 024101 http://dx.doi.org/10.7498/aps.63.024101

短波长自由电子激光器电子运动特性研究

Characteristics of electron motion in a short-wavelength free-electron laser 物理学报.2013, 62(14): 144103 http://dx.doi.org/10.7498/aps.62.144103

带光速调管的高增益高次谐波振荡器自由电子激光模拟

Simulation of high gain high harmonics oscillator with optical klystron free electron laser 物理学报.2013, 62(9): 094102 http://dx.doi.org/10.7498/aps.62.094102

拉曼型自由电子激光器中相对论电子运动稳定性的比较研究

Comparative study of relativistic electron motion stability in a Raman free-electron laser 物理学报.2013, 62(8): 084104 http://dx.doi.org/10.7498/aps.62.084104

太赫兹自由电子激光的受激饱和实验^{*}

黎明¹) 杨兴繁¹) 许州²) 東小建³) 鲁向阳⁴) 黄文会⁵) 王汉斌¹)
窦玉焕²) 沈旭明¹) 单李军¹) 邓德荣¹) 徐勇¹) 柏伟¹) 冯第超¹)
吴岱¹)[†] 肖德鑫¹) 王建新¹) 罗星¹) 周奎¹) 劳成龙¹) 闫陇刚¹)
林司芬¹) 张鹏¹) 张浩¹) 和天慧¹) 潘清¹) 李相坤¹) 李鹏¹)
刘宇¹) 杨林德¹) 刘婕¹) 张德敏¹) 李凯¹) 陈亚男¹)

(中国工程物理研究院应用电子学研究所, 绵阳 621900)
 2)(四川省国防科技工业办公室, 成都 610051)
 3)(北京应用物理与计算数学研究所, 北京 100094)
 4)(北京大学重离子物理研究所, 北京 100871)
 5)(清华大学工程物理系, 北京 100084)
 (2017年11月9日收到; 2017年12月21日收到修改稿)

中国工程物理研究院基于半导体光阴极高压直流电子枪和超导直线加速器的高平均功率太赫兹自由电子激光达到了受激饱和,并实现了太赫兹光输出频率可调.在1.99,2.41和2.92 THz 三个频率点上进行测试,测得太赫兹宏脉冲内平均功率大于10 W,最高达17.9 W.本文介绍了太赫兹自由电子激光装置的主要组成部分及受激饱和实验的结果.

关键词:自由电子激光,太赫兹光,光阴极高压直流电子枪,射频超导加速器 PACS: 41.60.Cr, 29.20.Ej DOI: 10.7498/aps.67.20172413

1引言

从 Madey^[1]于1971年首次提出自由电子激光 (FEL)原理至今的47年里,世界上至少已建成了 51台FEL装置,并有20台以上的装置在建或计划 建造^[2].这些FEL装置目前已经实现了从太赫兹 到硬X射线谱段的激光出光^[3-6],并作为目前最高 峰值亮度的先进光源推动了生命科学、信息技术、 材料等多个学科的进步^[7-10],成为当前研究物质 世界的强有力工具.

从 20 世纪 80 年代开始, 我国针对 FEL 开展了 大量理论与实验研究^[11-15]. 1993年, 分别代表谐 振腔型技术路线和放大器型技术路线的"北京自由电子激光"(BFEL)^[16]和"曙光一号"自由电子激 光^[17]出光;2005年,中国工程物理研究院远红外 自由电子激光获得受激辐射^[18];2012年,中国科 学院上海应用物理研究所世界首台回声放大型自 由电子激光出光^[19];2017年,中国科学院大连化学 物理研究所深紫外自由电子激光出光^[20].上海应 用物理研究所目前正在调试国内首台软X射线自 由电子激光^[21],未来还将在上海建设国内首台硬 X射线自由电子激光装置^[22].

近几年随着太赫兹(THz)技术的迅猛发展,在 FEL辐射的长波长一端,THz FEL获得了非常高 的关注度.全世界计划未来建造的20台FEL装置

†通信作者. E-mail: wudai04@163.com

© 2018 中国物理学会 Chinese Physical Society

^{*} 国家重大科学仪器设备开发专项(批准号: 2011YQ130018)和国家自然科学基金(批准号: 11475159, 11505173, 11505174, 11575264, 11605190, 11105019)资助的课题.

中就有8台能工作在THz波段^[2],这充分说明THz FEL在FEL领域占据热点位置,并将为诸如强光 场下THz非线性效应等基础研究提供先进稳定的 光源^[23-25].国内前期在加速器驱动的摇摆器超宽 带THz辐射源开展了大量工作,包括上海应用物理 研究所^[26]、北京大学^[27]和清华大学^[28]都进行了 相关研究,但摇摆器超宽带辐射源中心频率调节范 围一般不易大于1THz,且频谱宽度较宽.长期以 来,我国都缺乏一台工作在THz频段、调节范围足 够宽的自由电子激光器.

由中国工程物理研究院牵头,北京大学、清 华大学等多家单位联合研制的高平均功率THz自 由电子激光装置(CTFEL)是国内首台基于光阴 极高压直流电子枪和超导射频加速器,工作在高 重复频率、高占空比状态下的THz自由电子激光 器^[29-32].CTFEL采用谐振腔型技术路线,于2017 年8月29日首次实现受激饱和出光^[33].本文主要 介绍CTFEL装置的系统组成以及受激饱和的实验 情况.

2 装置系统组成

CTFEL装置布局示意见图1,装置的主要参数如表1所列.装置采用谐振腔型FEL技术路线, 主要包括直流高压光阴极电子源系统、射频超导加 速器、平面型摇摆器、激光谐振腔、THz传输与测量 系统等.高亮度电子束由波长532 nm的皮秒驱动 激光从砷化镓光阴极表面激发,由高压直流电子枪 发射,经过发射度补偿和微波聚束后,进入两段由 2 K超流氦冷却的4-cell TESLA型超导射频加速 腔,获得6—8 MeV能量,再经过消色散段,最终进 入摇摆器产生THz自发辐射.THz自发辐射在光 腔中谐振,并受激放大获得饱和输出.

表 1 CTFEL 装置主要参数 Table 1. Main parameters of CTFEL facility.

组成	参数	设计值	单位
电子束	单束团电荷量	10—100	\mathbf{pC}
	微脉冲重复频率	54.167	MHz
	宏脉冲重复频率	$1 - 10^{3}$	$_{\rm Hz}$
	宏脉冲长度	0.01 - 1.00	\mathbf{ms}
	占空比	10^{-5} —1	_
	归一化发射度	~ 10	$\rm mm \cdot mrad$
	纵向长度	4—8	\mathbf{ps}
	动能	6—8	MeV
	能散度	< 0.75	%
加速器	工作频率	1.3	GHz
	工作温度	2	Κ
	加速梯度	10	MV/m
	幅度稳定性	0.05	%
	相位稳定性	0.1	deg
摇摆器	磁结构	平面反对称	_
	周期数	42	—
	周期长度	38	mm
	间隙范围	18.5—32(可调)	mm
	最大磁场	0.55	Т
光腔	腔长	2767.3	mm
	腔镜曲率半径	2218	mm
	波导管尺寸	22×44	$\rm mm \times \rm mm$

图 1 CTFEL 装置布局示意图 Fig. 1. Layout of CTFEL facility.

2.1 高亮度电子源系统

高亮度电子源系统主要包括砷化镓光阴极制 备系统、load-lock系统、驱动激光以及高压直流电 子枪 (DC gun). DC gun结构如图 2 所示^[34,35],枪 体为四通型,径向尺寸达到 Φ 500 mm 以降低电极 表面场强;高压绝缘子采用电荷泄放型陶瓷绝缘 子,提高强电场工作稳定性;阴极支撑杆和地电 位之间加一电极,降低阴极支撑杆表面电场强度; 绝缘子外表面为5 atm (1 atm = 1.013 × 10⁵ Pa) 的SF₆气体绝缘,并置空间非均匀分布金属环分 压;超高真空由三极溅射离子泵和非蒸散吸气泵 (NEG)的组合实现.通过烘烤、NEG等一系列手 段,工作状态下的真空度稳定在3 × 10⁻⁹ Pa左右, 电子枪出口处电子束动能约为200—350 keV,目前 工作在 320 keV.

图 2 CTFEL 高压直流电子枪外观及细节示意图 Fig. 2. Appearance and detail of the CTFEL highvoltage direct-current gun.

2.2 射频超导加速器系统

射频超导加速器系统包括超导加速器、低温系统、微波源系统和低电平控制系统^[36].

2×4-cell超导加速器结构示意图如图3所示, 加速器核心部件为两只4-cell TESLA 型超导加速 腔,其内部建立1.3 GHz TM010模式的电磁场,电 子束从超导腔中心经过,受腔内部的电场作用获得 加速.大功率微波耦合器用于将微波源产生的功 率传输至超导腔内部建场,最大可传输功率达到 30 kW以上(连续波(CW)模式).为获得高品质的 电子束,采用低电平控制系统维持超导腔内电磁场 的幅、相稳定度分别好于0.05%和0.1°.同时,由于 抽真空降温、麦克风效应、洛伦兹失谐等作用,将 导致超导加速腔失谐,调谐器用于将超导加速腔在 2 K下的工作频率稳定在1.3 GHz.此外,低温恒 温器为超导加速腔提供低温低磁的工作环境,设有 2 K和80 K两层低温层,以减小低温系统热损.恒 温器外筒和内磁屏蔽层共同用于磁屏蔽,实现内部 磁场环境低于12 mGs (1 Gs = 10⁻⁴ T).

图 3 2×4 -cell 超导加速器结构示意图 Fig. 3. A schematic of the 2×4 -cell superconducting accelerator structure.

基于高阶模、束载、能散、工作环境等方面的 物理分析,我们对2×4-cell 超导加速器进行了设 计与制造.目前加速器已实现2K下长时间稳定运 行,平均加速梯度可达到10MV/m以上,实现电子 束增能6—8MeV可调.

2.3 摇摆器和光腔系统

CTFEL包括一台 Halbach 结构的混合型永磁 摇摆器,其周期长度为38 mm,有42个标准周期, 间隙在18—32 mm之间可调,最小间隙下峰值磁场 可达0.55 T. 摇摆器机械驱动系统采用伺服电机和 光栅尺闭环控制,间隙调节分辨率为1 μm. 单电子 轨迹中心偏移小于0.1 mm. 横向磁场好场区大于 12 mm,好场区内磁场误差小于0.1%.

CTFEL采用光学谐振腔实现光场的受激增益,光场被束缚在腔镜之间的波导中,波导可有效降低传输损耗.光腔采用下游腔镜孔耦合输出, 耦合孔直径为2.4 mm,耦合输出效率为2%左右 (计算值).腔镜采用铜材料表面镀金,反射率优于 95%.

3 THz 光测试

3.1 实验布局及测试原理

THz传输光路如图4所示. THz由激光谐振腔 下游腔镜耦合输出孔输出,再经过隔离真空环境和 氮气环境的熔融石英输出窗进入扩束整形系统中, 经过传输管道,穿过辐射隔离墙,进入到位于实验 室用户间内的聚束收集系统(为标示简单,分别采 用一块凹面镜标示整个扩束整形系统和聚束收集 系统),经过聚束后穿过迈拉膜(Mylar)输出窗进入 位于大气环境中的THz测量系统.

THz测量系统光路如图5所示.THz由聚束收 集系统的迈拉膜输出窗输出,传入功率计测量THz 宏脉冲能量,透过功率计的THz光进入傅里叶光谱 仪(Bruker VERTEX 80V型)进行频谱测量,在功 率计表面反射的THz进入到高灵敏快响应的锗掺 镓低温探测器中测量宏脉冲波形.

THz 宏脉冲内平均功率测量采用Thomas Keating Instruments (以下简称TK)的功率计,该 功率计在测量较低占空比时不能工作在功率测 量模式,只能工作在能量测量模式.测量时激光 照射在能量计窗口,THz光能量在探测器上沉积 产生电压信号,电压信号的幅值与沉积能量的对 应关系事先已经经过计量单位标定,标定系数为 $r = 0.233 \text{ mV·}\mu \text{J}^{-1}$.利用示波器测量该电压信号 V_0 ,经过计算得到沉积在探测器上的能量E为

$$E = \frac{V_0}{r}.$$
 (1)

再利用示波器测量锗掺镓探测器得到的宏脉冲宽 度τ,计算得到宏脉冲内的平均功率 Pavg 为

$$P_{\rm avg} = \frac{E}{0.49T\tau\eta},\tag{2}$$

其中 0.49 是功率计上的能量吸收效率, *T* 是功率计 窗口的 THz 传输效率, η 是由 THz 光腔耦合孔到达 功率计的传输效率. 高真空输出窗的材料为熔融石 英, 聚束系统输出窗材料为迈拉膜. 由于这两种材 料的透射率与 THz 波长有关, 实验中需要对特定波 长的两种窗口材料的透射率进行现场测量:将石英 窗口插入功率测量光路中, 得到探测器上的电压信 号为 V_1 , 取出石英窗口, 插入迈拉膜窗口, 得到探 测器上电压信号为 V_2 , 则有 $\eta = V_1V_2/V_0^2$.

图 5 THz 测量光路示意图 Fig. 5. Layout of THz measurement.

3.2 测量结果

在f = 2.0, 2.5, 3.0 THz 三个频率点附近选取 三种输出状态,测量得到的CTFEL 受激饱和功率 输出如表 2 所列.测试过程中,由于装置保护系统 尚未完成安装调试,因此选用脉冲宽度为1.0 ms或 1.5 ms、重复频率为1 Hz 的宏脉冲模式.

图 6 给出了 CTFEL 的功率和频率测量结果, 其中图 6 (b) 以 1.99 THz 为例给出了 TK 功率计上 *V*₀, *V*₁ 和 *V*₂ 的结果,由此计算出到达单个宏脉冲的 能量.图 6 中纵坐标 *S*, *U* 分别为相对强度、电压,横 坐标 *t* 为时间. 表 2 CTFEL 受激饱和功率输出结果 Table 2. Stimulated saturation power measurement of

CTFEL.

参数/单位		数值		
f/THz	2.92	2.41	1.99	
V_0/mV	46.8	66.4	96.0	
V_1/mV	2.68	7.00	20.60	
V_2/mV	24.6	38.0	61.2	
η	0.03	0.06	0.14	
$E/\mu J$	200	285	412	
$ au/\mu { m s}$	1420	1416	884	
T	0.537	0.528	0.560	
$P_{\rm avg}/{\rm W}$	17.9	12.8	12.4	

通过锗掺镓探测器的宏脉冲信号可以测量宏 脉冲长度和CTFEL的平均单程净增益. 图7(a)给 出了2.92 THz下的宏脉冲平顶,其前沿如图7(b) 所示.由图7(a)可以看出,THz宏脉冲的长度略小 于电子束的宏脉冲长度,这是因为装置宏脉冲状 态下的低电平前馈系统尚未调试完成,宏脉冲前 100 μs的电子束无法受激饱和,饱和后在长时间尺 度内微脉冲的功率一致性较差,1 ms以后信号趋于 稳定,微脉冲束团间的功率一致性好于1%.这是因 为低电平在较大束流负载时需要较长的稳定时间, 这些不利因素将在未来CW工作状态下被消除.

图 7 (b) 中将横坐标时间换算成光在光腔中经 过的来回的次数 (pass 数),由此计算出在激光功率 的指数上升区,平均单程净增益大于 2.5%.

图 6 频率与功率测量 (a) 三个频率点的频谱; (b) 1.99 THz 下 TK 功率计波形

Fig. 6. Measurement of frequency spectrum and THz power: (a) Spectrum; (b) oscilloscope waveform of TK power meter at 1.99 THz.

微脉冲功率方面,由于缺乏THz自相关仪,因 此不能准确测量纵向长度,采取下述方法进行估 计:读取傅里叶变换光谱仪的时域信号,其时域 干涉图类似于自相关曲线,做出其包络,包络半高全宽的√2/2倍近似为光的微脉冲半高全宽^[37]. 图8所示为中心频率2.92 THz时取包络半高全宽 的结果, 横坐标 z 为光谱仪动镜造成的光程差, 纵 坐标为探测器相对信号,图中用三根横线分别表示 干涉图的0点、最高位置和半高全宽位置,用两根 竖线来表示半高全宽,测量得到光束的纵向半高全 宽约为930 fs, 此处的微脉冲能量约为331 nJ, 微 脉冲功率为0.36 MW. 图中的时域干涉图误差较 大,因此这一结果仅能作为估测结果.这一方法得 到的纵向半高全宽与傅里叶变换光谱仪的频域结 果看似存在矛盾,因为如图6(a)中的频谱,每一个 峰的谱宽度都相对较窄,按照傅里叶变换的性质, 时域上的光束长度就不可能这么短. 实际上, 由于 采用的占空比过低,因此光谱仪的频谱信号是采用 30 min 多次测频谱平均得来, 时域上由于宏脉冲之 间存在时间抖动,长期的结果将使频谱收窄.在实 验中,这一判断通过取不同时间长度进行测量得到 了验证.

Fig. 8. Time-domain interferogram of the micro-pulse at 2.92 THz.

4 结 论

中国工程物理研究院高平均功率THz自由电 子激光装置采用谐振腔型技术路线,达到了自由电 子激光受激饱和,并实现了THz输出频率可调.在 1.99,2.41和2.92 THz三个频率点进行测试,THz 宏脉冲内平均功率大于10 W,最高17.9 W.下一步,CTFEL将升级保护控制系统,争取早日实现 CW运行,同时将开展装置用户实验,多渠道发掘 该装置的应用潜力与推广前景,为各相关学科研究 和THz辐射在其他高新技术领域的应用提供支撑. 同时,在现有装置的基础上进一步拓展FEL波长范 围,使其成为我国光源体系中的重要组成部分,推 动我国THz技术的发展.

参考文献

- [1] Madey J M J 1971 J. Appl. Phys. 42 1906
- [2] Cohn K, Blau J, Colson W, Blau J, Ng J 2015 Proceedings of FEL 2015 Daejeon, Korea, August 23–28, 2015 p625
- [3] Ayvazyan V, Baboi N, Bohnet I, Brinkmann R, Castellano M, Castro P, Catani L, Choroba S, Cianchi A, Dohlus M, Edwards H T 2002 *Phys. Rev. Lett.* 88 104802
- [4] Shintake T, Tanaka H, Hara T, Tanaka T, Togawa K, Yabashi M, Otake Y, Asano Y, Bizen T, Fukui T, Goto S 2008 Nature Photon. 2 555
- [5] Emma P, Akre R, Arthur J, Bionta R, Bostedt C, Bozek J, Brachmann A, Bucksbaum P, Coffee R, Decker F J, Ding Y 2010 Nat. Photon. 4 641
- [6] Pile D 2011 Nat. Photon. 5 456
- Young L, Kanter E P, Krässig B, Li Y, March A M, Pratt S T, Santra R, Southworth S H, Rohringer N, DiMauro L F, Doumy G 2010 Nature 466 56
- [8] Vinko S M, Ciricosta O, Cho B I, Engelhorn K, Chung H K, Brown C R, Burian T, Chalupský J, Falcone R W, Graves C, Hajkova V 2012 Nature 482 59
- [9] Takahashi S, Brunel L C, Edwards D T, van Tol J, Ramian G, Han S, Sherwin M S 2012 Nature 489 409
- [10] McSweeney S, Fromme P 2014 Nature 505 620
- [11] Zhao D H 1994 Acta Phys. Sin. 43 1447 (in Chinese) [赵 东焕 1994 物理学报 43 1447]
- [12] Yin Y Z 1983 Acta Phys. Sin. 32 1407 (in Chinese) [尹 元昭 1983 物理学报 32 1407]
- [13] Hui Z X, Yang Z H 1983 Free Electron Laser (Beijing: National Defense Industry Press) (in Chinese) [惠中锡, 杨震华 1983 自由电子激光 (北京: 国防工业出版社)]
- [14] Li J, Pei Y J, Hu T N, Chen Q S, Feng G Y, Shang L, Li C L 2014 Chin. Phys. C 38 103
- [15] Jia Q K 2017 Chin. Phys. C **41** 18101
- [16] Xie J L, Fu E S 1994 *High Energy Physics and Nuclear Physics* 18 572 (in Chinese) [谢家麟, 傅恩生 1994 高能 物理与核物理 18 572]
- [17] Zhou C M 1993 High Power Laser and Particle Beams
 2 1 (in Chinese) [周传明 1993 强激光与粒子束 2 1]
- [18] Jin X, Li M, Xu Z, Li W H, Yang X F, Chen T C, Xu Y, Yu H, Wang Y, Shen X M 2006 *High Energy Physics* and Nuclear Physics **30** 96 (in Chinese) [金晓, 黎明, 许 州, 黎维华, 杨兴繁, 陈天才, 徐勇, 余虹, 王远, 沈旭明 2006 高能物理与核物理 **30** 96]
- [19] Zhao Z T, Wang D, Chen J H, Chen Z H, Deng H X, Ding J G, Feng C, Gu Q, Huang M M, Lan T H, Leng Y B 2012 Nat. Photon. 6 360
- [20] Dennis N 2017 Science **355** 235
- [21] Zhao Z T, Wang D, Gu Q, Yin L, Fang G, Gu M, Leng Y
 B, Zhou Q, Liu B, Tang C, Huang W 2017 Synchrotron Radiation News 30 29
- [22] Zhu Z, Zhao Z T, Wang D, Liu Z, Li R, Yin L, Yang Z H 2017 Proceedings of FEL 2017 Santa Fe, NM, USA. August 20–25, 2017 MOP055
- [23] Liu M, Hwang H Y, Tao H, Strikwerda A C, Fan K, Keiser G R, Sternbach A J, West K G, Kittiwatanakul S, Lu J, Wolf S A 2012 Nature 487 345

- [24] Fan K, Hwang H Y, Liu M, Strikwerda A C, Sternbach A, Zhang J, Zhao X, Zhang X, Nelson K A, Averitt R D 2013 Phys. Rev. Lett. 110 217404
- [25] Kulipanov G N, Gavrilov N G, Knyazev B A, Kolobanov E I, Kotenkov V V, Kubarev V V, Matveenko A N, Medvedev L E, Miginsky S V, Mironenko L A, Ovchar V K 2008 Terahertz Sci. Technol. 1 107
- [26] Zhang J, Deng H X, Lin X, Dai D, Sun Q, Lu S, Yu T, Zhao H, Yang H, Dai Z 2012 Nucl. Instrum. Methods Phys. Res., Sect. A 693 23
- Wen X, Huang S L, Lin L, Wang F, Zhu F, Feng L, Yang L, Wang Z, Fan P, Hao J, Quan S 2016 Nucl. Instrum. Methods Phys. Res. Sect. A 820 75
- [28] Su X L, Wang D Tian Q L 2017 Proceedings of IPAC 2017 Copenhagen, Denmark, May 14–19, 2015 p1488
- [29] Xu Z, Yang X F, Li M 2013 J. Terahertz Science and Electronic Information Technology 1 1 (in Chinese) [许州,杨兴繁,黎明 2013 太赫兹科学与电子信息学报 1 1]
- [30] Dou Y H, Shu X J, Wang Y Z 2006 High Power Laser and Particle Beams 18 1345 (in Chinese) [窦玉焕, 束小 建, 王元璋 2006 强激光与粒子束 18 1345]
- [31] Dou Y H, Shu X J, Deng D R, Yang X F, Li M 2013 *High Power Laser and Particle Beams* 25 662 (in Chinese) [窦玉焕, 束小建, 邓德荣, 杨兴繁, 黎明 2013 强激光 与粒子束 25 662]
- [32] Li P, Jiao Y, Bai W, Wang H B, Cui X H, Li X K 2014 High Power Laser and Particle Beams 26 3102 (in Chi-

nese) [李鹏, 焦毅, 柏伟, 王汉斌, 崔小昊, 李相坤 2014 强 激光与粒子束 **26** 3102]

- [33] Li M, Yang X F, Xu Z, Shu X J, Lu X Y, Huang W H, Wang H B, Dou Y H, Shen X M, Shan L J, Deng D R, Xu Y, Bai W, Feng D C, Wu D, Xiao D X, Wang J X, Luo X, Zhou K, Lao C L, Yan L G, Lin S F, Zhang P, Zhang H, He T H, Pan Q, Li X K, Li P, Liu Y, Yang L D, Liu J, Zhang D M, Li K, Chen Y N 2017 *High Power Laser and Particle Beams* 29 101 (in Chinese) [黎明, 杨 兴繁, 许州, 束小建, 鲁向阳, 黄文会, 王汉斌, 窦玉焕, 沈旭 明, 单李军, 邓德荣, 徐勇, 柏伟, 冯第超, 吴岱, 肖德鑫, 王 建新, 罗星, 周奎, 劳成龙, 闫陇刚, 张鹏, 张浩, 和天慧, 林 司芬, 潘清, 李相坤, 李鹏, 刘宇, 杨林德, 刘婕, 张德敏, 李 凯, 陈亚男 2017 强激光与粒子束 29 101]
- [34] Wang H B, Yang X F, Pan Q, Li M 2013 *High Power* Laser and Particle Beams 25 145 (in Chinese) [王汉斌, 杨兴繁, 潘清, 黎明 2013 强激光与粒子束 25 145]
- [35] Wu D 2014 Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [吴岱 2014 博士学位论文 (北京: 清 华大学)]
- [36] Luo X, Lao C, Zhou K, Li M, Yang X, Lu X, Quan S, Wang F, Mi Z, Sun Y, Wang H 2017 Nucl. Instrum. Methods Phys. Res. Sect. A 871 30
- [37] Murokh A, Rosenzweig J B, Hogan M, Suk H, Travish G, Happek U 1998 Nucl. Instrum. Methods Phys. Res., Sect. A 410 452

Experimental study on the stimulated saturation of terahertz free electron laser^{*}

Li Ming¹) Yang Xing-Fan¹) Xu Zhou²) Shu Xiao-Jian³) Lu Xiang-Yang⁴)

Huang Wen-Hui⁵⁾ Wang Han-Bin¹⁾ Dou Yu-Huan²⁾ Shen Xu-Ming¹⁾ Shan Li-Jun¹⁾

Deng De-Rong¹) Xu Yong¹) Bai Wei¹) Feng Di-Chao¹) Wu Dai¹[†] Xiao De-Xin¹)

Wang Jian-Xin¹) Luo Xing¹) Zhou Kui¹) Lao Cheng-Long¹) Yan Long-Gang¹)

Lin Si-Fen¹⁾ Zhang Peng¹⁾ Zhang Hao¹⁾ He Tian-Hui¹⁾ Pan Qing¹⁾ Li Xiang-Kun¹⁾

Li Peng¹) Liu Yu¹) Yang Lin-De¹) Liu Jie¹) Zhang De-Min¹) Li Kai¹) Chen Ya-Nan¹)

1) (Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900, China)

2) (Sichuan Defense Science and Technology Industry Office, Chengdu 610051, China)

3) (Institute of Applied Physics and Computational Mathematics, Beijing 100094, China)

4) (Institute of Heavy Ion Physics, Peking University, Beijing 100871, China)

5) (Department of Engineering Physics, Tsinghua University, Beijing 100084, China)

(Received 9 November 2017; revised manuscript received 21 December 2017)

Abstract

China Academy of Engineering Physics terahertz free electron laser (CAEP THz FEL, CTFEL) is the first THz FEL oscillator in China, which is jointly built by CAEP, Peking University and Tsinghua University. It is designed as a high-repetition-rate and high-duty-cycle linac-based FEL facility.

This THz FEL mainly consists of a gallium arsenide (GaAs) photocathode high-voltage direct current (DC) gun, a superconducting radio frequency (RF) linac, a planar undulator, and a quasi-concentric optical resonator. The DC gun provides a high-brightness electron beam with the bunch charge of about 100 pC and the repetition rate of 54.167 MHz. The normalized emittance of the electron beam is less than 10 μ m, and the energy spread is less than 0.75%. A 2×4-cell superconducting RF accelerator provides an effective field gradient of about 10 MV/m and energizes the electron beam to 6–8 MeV. The beam then goes through the undulator and generates the spontaneous radiation, which is reflected back and forth in the optical resonator and then stimulated by the electron beam.

The first stimulated saturation of CTFEL in the macro-pulse mode was obtained in August, 2017. In this paper, the THz spectrum is measured by a Fourier spectrometer (Bruker VERTEX 80 V). The macro-pulse energy is measured by an absolute energy meter from "Thomas Keating Instruments". The longitudinal beam length is preliminarily calculated by the auto-correlation curve from the time-domain signal of the spectrometer. The macro-pulse duration is captured by a GeGa cryogenic detector from "QMC Instrument". The measurement results indicate that the terahertz laser frequency is continuously adjustable from 2 THz to 3 THz. The macro-pulse average power is more than 10 W and the micro-pulse power is more than 0.3 MW. The single-pass gain is larger than 2.5%.

This facility is now working in macro-pulse mode in the first step, also called "step one". The minimum macro-pulse

^{*} Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 2011YQ130018) and the National Natural Science Foundation of China (Grant Nos. 11475159, 11505173, 11505174, 11575264, 11605190, 11105019).

[†] Corresponding author. E-mail: wudai04@163.com

duration is about 50 μ s and the maximum is about 2 ms. The macro-pulse repetition is 1 Hz or 5 Hz. The typical pulse duration and repetition rate are 1 ms and 1 Hz, respectively. In the middle of 2018, the duty cycle will upgrade to more than 10 % as "step two". And the continuous wave (CW) operation will be obtained in "step three" by the end of 2018. The spectrum adjustment range will also be expanded to cover from 1 THz to 4 THz by then.

Some application experiments have been carried out on the platform of CTFEL. This facility will greatly promote the development of THz science and its applications in material science, chemistry science, biomedicine science and many other cutting-edge areas in general.

Keywords: free electron laser, terahertz, photocathode high-voltage direct-current electron gun, radiofrequency superconducting accelerator

PACS: 41.60.Cr, 29.20.Ej

DOI: 10.7498/aps.67.20172413